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Curse of Dimensionality 

 Real world applications deal with spaces with high 
dimensionality 

 High dimensionality poses serious challenges for the 
design of pattern recognition techniques 

Oil flaw data in two 
dimensions 

Red = homogeneous 

Green = annular 

Blue = laminar 

Curse of Dimensionality 

 A simple classification approach 
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Curse of Dimensionality 

 Going higher in dimensionality… 

The number of regions of a regular grid grows 
exponentially with the dimensionality        of the 
space 

DMAX/DMIN 

Curse of Dimensionality       
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Curse of Dimensionality       

Curse of Dimensionality       
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Curse of Dimensionality       

Curse of Dimensionality       



9/6/10 

5 

€ 

uniform distribution in the unit cube -.5,.5[ ]q
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Curse-of-Dimensionality 

€ 

K =1

€ 

d(q,N) =O(N−1/ q )

€ 

d(q,N)⇒

Curse-of-Dimensionality 
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Curse-of-Dimensionality 

Microarray Data Analysis 
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Document Classification 

Of all the sensory impressions proceeding to 
the brain, the visual experiences are the 
dominant ones. Our perception of the world 
around us is based essentially on the 
messages that reach the brain from our eyes. 
For a long time it was thought that the retinal 
image was transmitted point by point to visual 
centers in the brain; the cerebral cortex was a 
movie screen, so to speak, upon which the 
image in the eye was projected. Through the 
discoveries of Hubel and Wiesel we now 
know that behind the origin of the visual 
perception in the brain there is a considerably 
more complicated course of events. By 
following the visual impulses along their path 
to the various cell layers of the optical cortex, 
Hubel and Wiesel have been able to 
demonstrate that the message about the 
image falling on the retina undergoes a step-
wise analysis in a system of nerve cells 
stored in columns. In this system each cell 
has its specific function and is responsible for 
a specific detail in the pattern of the retinal 
image. 

sensory, brain,  
visual, perception,  
retinal, cerebral cortex, 
eye, cell, optical  
nerve, image 
Hubel, Wiesel 

brain 
visual 

eye 

cell 

Cerebral cortex 

perception 
sensory retinal 

Wiesel optical 
nerve 

Bag-of-words 
representation of a 
document 
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dictionary 
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What’s the size of the dictionary? 
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Curse-of-Dimensionality 
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Dimensionality Reduction 

•  Many dimensions are often interdependent 
(correlated); 

We can: 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates into 
significant and independent ones; 
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Decision Theory 
•  Decision theory, when combined with probability 

theory, allows to make optimal decisions in 
situations involving uncertainty 

•  Training data: 

•  Inference: joint probability distribution 

•  Decision step: make optimal decision  

Decision Theory 
Classification example: medical diagnosis problem 

•       set of pixel intensities in an image 

•  Two classes:  
–              absence of cancer 

–              presence of cancer 

•  Inference step: estimate 

•  Decision step: given      predict        so that a 
measure of error is minimized according to the 
given probabilities 
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Decision Theory 
How probabilities play a role in decision making? 

•  Decision step: given      predict 

Thus, we are interested in 

Intuitively: we want to minimize the chance of 
assigning       to the wrong class. Thus, choose 
the class that gives the higher posterior 
probability  

Minimizing the misclassification rate 
•  Goal: Minimize the number of misclassifications 

We need to find a rule that assigns each input 
vector to one of the possible classes 

Such rule divides the input space into regions          
so that all points in        are assigned to 

Boundaries between regions are called decision 
boundaries 
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Minimizing the misclassification rate 
•  Goal: Minimize the number of misclassifications 

•  Assign x to the class that gives the smaller value 
of the integrand: 
–  Choose          if      

–  Choose          if 
€ 

p mistake( ) = p x ∈ R1,C2( ) + p x ∈ R2,C1( )
                  = p x,C2( )

R1

∫ dx + p x,C1( )
R2

∫ dx

Minimizing the misclassification rate 
–  Choose          if      

–  Choose          if 

Thus: 

–  Choose          if   

–  Choose          if 
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Minimizing the misclassification rate 

Optimal decision boundary: 

Minimizing the misclassification rate 

Thus: 

General case of K classes: 

Choose          that gives the largest   
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Minimizing the expected loss 

cancer 

cancer normal 

normal 

The optimal solution is the 
one that minimizes the loss 
function 

Minimizing the expected loss 
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Minimizing the expected loss 

The Reject Option 
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Inference and Decision 

( )x|kCp

Generative Methods 

( )kCp |x kC
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Discriminative Methods 

( )x|kCp

Discriminant Functions 
( )xf
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Example 

Linear Models for Classification 
  Classification: Given an input vector x, assign it to 
one of K classes        where k = 1,…, K 

   The input space is divided in decision regions whose 
boundaries are called decision boundaries or decision 
surfaces    

   Linear models: decision surfaces are linear functions 
of the input vector x. They are defined by (D -1)-
dimensional hyperplanes within the D -dimensional input 
space  

kC
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Linear Models for Classification 
  For regression:  

   For classification, we want to predict class labels, or 
more generally class posterior probabilities. 

   We transform the linear function of w using a nonlinear 
function  f () so that  

( ) 0wy T += xwx

€ 

f wTx + w0( )

Generalized Linear Models 

Linear Discriminant Functions 
Two classes: 

Decision boundary:  

( ) 0wy T += xwx

( )
2

10
Ctoassignotherwise
Ctoassignyif

  x           
  x         x  ≥

( ) 0=xy
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Linear Discriminant Functions 
Geometrical properties: 

Decision boundary:  

Let           be two points which lie on the decision boundary 
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Linear Discriminant Functions 
Multiple classes 

one-versus-the-rest: K-1 classifiers each of which solves 
a two-class problem of separating points of         from 
points not in that class 

kC

Linear Discriminant Functions 
Multiple classes 

one-versus-one: K(K-1)/2 binary discriminant functions, 
one for every possible pair of classes.  
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Linear Discriminant Functions 
Multiple classes 

Solution: consider a single K-class  discriminant 
comprising K linear functions of the form 

Assign a point x to class        if   
The decision boundary between 
class       and class       is given by 

( ) 0k
T
kk wy += xwx

kC ( ) ( ) kjxyxy jk ≠∀>   

    

€ 

yk x( ) =y j x( )  

⇒ wk − w j( )
T

x + wk 0 − wj0( ) = 0

kC jC

Linear Discriminant Functions 

Two approaches: 

   Fisher’s linear discriminant 

   Perceptron algorithm 
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Fisher’s Linear Discriminant 
One way to view a linear classification model is in terms of 
dimensionality reduction. 

Two class case: 

Suppose we project x onto one dimension: 

Set a threshold  t 

xwTy =

2

1

Ctoassignotherwise
Ctoassigntyif

  x           
  x           ≥
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Fisher’s Linear Discriminant 

•  Find an orientation along which the projected 
samples are well separated; 

•  This is exactly the goal of linear discriminant 
analysis (LDA); 

•  In other words: we are after the linear 
projection that best separates the data, i.e. 
best discriminates data of different classes. 
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LDA 

•       samples of class 

•       samples of class 

•  Consider              with 

•  Then:         is the projection of      along the 
direction of    

•  We want the projections         where         
separated from the projections          where 

N
iin C 1)},{( =x q

n ℜ∈x } ,{ 21 CCCi ∈

1N 1C

2N 2C
qℜ∈w 1=w

xwT

w
x

xwT 1C∈x
xwT

2C∈x

LDA 
•  A measure of the separation between the 

projected points is the difference of the 
sample means: 

iC
    

€ 

mi =
1
N i

x
x∈Ci

∑

    

€ 

mi =
1
N i

wT x
x∈Ci

∑ = wT mi

    

€ 

m1 −m2 = wT (m1 −m2)
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LDA 
•  To obtain good separation of the projected data we 

really want  the difference between the means to be 
large relative to some measure of the standard 
deviation of each class: 

iC    

€ 

si
2 = wT x −mi( )

2

x∈Ci

∑

  

€ 

s1
2 + s2

2

    

€ 

arg  max
w

  
m1 −m2

2

s1
2 + s2

2

LDA 
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LDA 

( )
 :  matrices   following  the

  define    we  of   function   explicit  an  as    obtain   To wwJ

( ) 2
2

2
1

2
21

ss
mm

J
+

−
=w

    

€ 

Si = x −mi( ) x −mi( )T

x∈Ci

∑

SW = S1 + S2
Then: 

    

€ 

si
2 = wT x −mi( )

x∈Ci

∑
2

= wT x − wT mi( )
2

x∈Ci

∑

= wT x −mi( )
x∈Ci

∑ x −mi( )T w = wT Siw

LDA 

    

€ 

So :     s1
2 = wT S1w     and     s2

2 = wT S2w  
Thus :    s1

2 + s2
2 = wT S1w + wT S2w =

                          wT S1 + S2( )w  = wT SWw

    

€ 

Similarly :     

m1 −m2( )2
= wT m1 − wT m2( )2

=

                    wT m1 −m2( ) m1 −m2( )T w =

                    wT SB w

where   SB =  m1 −m2( ) m1 −m2( )T
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LDA 
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We    observe    that :

SB w = m1 −m2( ) m1 −m2( )T w
( )21 mm −

( )21
1 mmw −= −

WS

( )
ww
www

W
T

B
T

S
SJ =

    

€ 

J w( )  is  maximized  when      wT SB w( )SWw = wT SWw( )SB w
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LDA 

Projection onto the line joining the class means 

LDA 

Solution of LDA 
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LDA 

( )21
1 mmw −= −

WS

LDA 


