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Clustering 

Supervised vs. Unsupervised Learning 

•  So far we have assumed that the training 
samples used to design the classifier were 
labeled by their class membership 
(supervised learning)  

•  We assume now that all one has is a 
collection of samples without being told 
their categories (unsupervised learning) 
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Clustering 
•  Goal: Grouping a collection of objects (data 

points) into subsets or “clusters”, such that 
those within each cluster are more closely 
related to one other than objects assigned 
to different clusters. 

•  Fundamental to all clustering techniques is 
the choice of distance or dissimilarity 
measure between two objects. 
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Dissimilarities based on Features 

      

€ 

xi = xi1,xi2,,xiq( )
T
∈ ℜq ,   i =1,,N

D xi,x j( ) = dk xik ,x jk( )
k =1

q

∑

  

€ 

dk xik ,x jk( ) = xik − x jk( )
2

    

€ 

⇒ D xi,x j( ) = xik − x jk( )
k =1

q

∑
2

Squared Euclidean distance 

    

€ 

Dw xi,x j( ) = wk xik − x jk( )
k =1

q

∑
2 Weighted squared Euclidean 

distance 

Categorical Features 

•  E.g.: color, shape, etc. 
•  No natural ordering between variables 

exist; 
•  The degree-of-difference between pairs 

of values must be defined; 
•  If a variable assumes M distinct values: 
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Clustering 

•  Discovering patterns (e.g., groups) in data 
without any guidance (labels) sounds like an 
“unpromising” problem.  

•  The question of whether or not it is 
possible in principle to learn anything from 
unlabeled data depends upon  the 
assumptions one is willing to accept. 

Clustering 

•  Mixture modeling: makes the assumption 
that data are samples of a population 
described by a probability density function 

•  Combinatorial algorithms: work directly on 
the observed data with no reference to an 
underlying probability model. 
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Clustering Algorithms:  
Mixture Modeling 

•  Data is a sample from a population described by 
a probability density function;  

•  The density function is modeled as a mixture of 
component density functions (e.g., mixture of 
Gaussians). Each component density describes 
one of the clusters; 

•  The parameters of the model (e.g., means and 
covariance matrices for mixture of Gaussians) 
are estimated as to best fit the data (maximum 
likelihood estimation). 

Clustering Algorithms:  
Mixture Modeling 

•  Suppose that we knew, somehow, that the given 
sample data come from a single normal 
distribution 

•  Then: the most we could learn from the data 
would be contained in the sample mean and in the 
sample covariance matrix 

•  These statistics constitute a compact 
description of the data. 
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Clustering Algorithms:  
Mixture Modeling 

What happens if our knowledge 
is inaccurate, and the data are 

not actually normally 
distributed? 

Example 

All four data sets have identical mean and 
covariance matrix 
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Example 

Clearly second-order statistics are not capable to 
revealing all of the structure in an arbitrary set of 

data  

Clustering Algorithms:  
Mixture Modeling 

•  If we assume that the samples come from a 
mixture of c normal distributions, we can 
approximate a greater variety of situations; 

•  If the number of component densities is 
sufficiently high, we can approximate virtually 
any density function as a mixture model. 

•  However… 
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Clustering Algorithms:  
Mixture Modeling 

•  The problem of estimating the parameters of a 
mixture density is not trivial; 

•  When we have little prior knowledge about the 
nature of the data, the assumption of specific 
parametric forms may lead to poor or 
meaningless results. 

•  There is a risk of imposing structure on the data 
instead of finding the structure. 

Combinatorial Algorithms 

•  These algorithms work directly on the observed 
data, without regard to a probability model 
describing the data. 

•  Commonly used in data mining, since often no 
prior knowledge about the process that 
generated the data is available. 
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Combinatorial Algorithms 

Combinatorial Algorithms 

    

€ 

Since the goal is to assign close points to the same cluster,
a natural loss function would be :

W C( ) =
1
2

D xi,x j( )
j∈Ck

∑
i∈Ck

∑
k =1

K

∑ Within cluster scatter 
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Combinatorial Algorithms 
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The number of distinct partitions is :

S N ,K( ) =
1
K!

−1( )K−k K
k
 

 
 

 

 
 

k =1

K

∑ k N

Combinatorial Algorithms 

•  Initialization: a partition is specified. 

•  Iterative step: the cluster assignments are 
changed in such a way that the value of the loss 
function is improved from its previous value. 

•  Stop criterion: when no improvement can be 
reached, the algorithm terminates. 

Iterative greedy descent. 
Convergence is guaranteed, but to local 

optima. 
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K-means 

•  One of the most popular iterative 
descent clustering methods. 

•  Features: quantitative type. 

•  Dissimilarity measure: Euclidean distance. 

K-means 

    

€ 

The "within cluster point scatter" becomes :

W C( ) =
1
2

xi − x j
2

j∈Ck

∑
i∈Ck

∑
k =1

K

∑

    

€ 

W C( ) can be rewritten as :

W C( ) = Ck xi − x k
2

i∈Ck

∑
k =1

K

∑

(obtained by rewriting xi − x j( ) = xi − x k( ) − x j − x k( ))
where

x k =
1

Ck

xi    is the mean vector of cluster  Ck
i∈Ck

∑

Ck    is the number of points in cluster  Ck
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K-means 
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 The objective is :

min
C

Ck xi − x k
2

i∈Ck

∑
k =1

K

∑

    

€ 

 We can solve this problem by noticing :
for any set of data S

x S = argmin
m

xi −m 2

i∈S
∑

(this is obtained by setting 
∂ xi −m 2

i∈S
∑

∂m
= 0)

    

€ 

 So we can solve the enlarged optimization problem:

min
C ,m k

Ck xi −mk
2

i∈Ck

∑
k =1

K

∑

K-means: The Algorithm 

      

€ 

1. Given a cluster assignment C,  the total within cluster scatter

Ck xi −mk
2

i∈Ck

∑  is minimized with respect to the m1,,mK{ }
k =1

K

∑

giving the means of the currently assigned clusters;

      

€ 

2. Given a current set of means m1,,mK{ },

Ck xi −mk
2

i∈Ck

∑  is minimized with respect to C
k =1

K

∑  

by assigning each point to the closest current cluster mean;
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K-means Example (K=2) 
Initialize Means 

x 

x 
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K-means Example 
Assign Points to Clusters 
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K-means Example 
Re-estimate Means 

x 

x 
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Weight 

K-means Example 
Re-assign Points to Clusters 
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K-means Example 
Re-estimate Means 
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K-means Example 
Re-assign Points to Clusters 
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K-means Example 
Re-estimate Means and Converge 
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K-means Example 
Convergence 
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K-means: Properties and Limitations 

• The algorithm converges to a local minimum 

• The solution depends on the initial partition 

• One should start the algorithm with many 
different random choices for the initial 
means, and choose the solution having smallest 
value of the objective function 

K-means: Properties and Limitations 
• The algorithm is sensitive to outliers 
• A variation of K-means improves upon robustness 
(K-medoids): 

• Centers for each cluster are restricted to be 
one of the points assigned to the cluster; 

• The center (medoid) is set to be the point that 
minimizes the total distance to other points in 
the cluster; 
• K-medoids is more computationally intensive 
than K-means. 
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K-means: Properties and Limitations 
• The algorithm requires the number of clusters K;  

• Often K is unknown, and must be estimated from 
the data: 

    

€ 

We can test K ∈ 1,2,,Kmax{ }
Compute W1,W2,,Wmax{ }

    

€ 

In general :   W1 >W2 > >Wmax

  

€ 

K∗ =  actual number of clusters in the data,
when K < K∗,  we can expect WK >>WK +1

when K > K∗,  further splits provide smaller decrease of W

  

€ 

Set ˆ K ∗ by identifying  an "elbow shape" in the plot of Wk

Gap Statistics: 
Estimating the number of clusters in a 

data set via the gap statistic 
Tibshirani, Walther, & Hastie, 2001 

  

€ 

Plot   logWK

  

€ 

Plot the  curve  logWK  obtained  from data uniformely distributed

  

€ 

Estimate ˆ K ∗ to be the point where the gap between the two
curves is largest
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An Application of K-means:  
Image segmentation 

•  Goal of segmentation: partition an image into regions 
with homogeneous visual appearance (which could 
correspond to objects or parts of objects) 

•  Image representation: each pixel is represented as a 
three dimensional point in RGB space, where 
–  R = intensity of red 
–  G = intensity of green 
–  B = intensity of blue 

An Application of K-means:  
Image segmentation 

pixel 

(R,G,B) 
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An Application of K-means:  
Image segmentation 

Mean (R,G,B) 

An Application of K-means:  
Image segmentation 
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An Application of K-means:  
(Lossy) Data compression 

•  Original image has N pixels 
•  Each pixel  (R,G,B) values 
•  Each value is stored with 8 bits of precision 
•  Transmitting the whole image costs 24N bits 
Compression achieved by K-means: 
•  Identify each pixel with the corresponding centroid 
•  We have K such centroids  we need           bits per pixel 
•  For each centroid we need 24 bits 
•  Transmitting the whole image costs 24K + N log2K bits 
Original image = 240x180=43,200 pixels  43,200x24=1,036,800 bits 
Compressed images:  
K=2: 43,248 bits            K=3: 86,472           K=10: 173,040 bits 

  

€ 

log2 K


