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ABSTRACT OF THE DISSERTATION

Locally Adaptive Techniques for Pattern Classication

by

Carlotta Domeniconi

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, August, 2002

Prof. Dimitrios Gunopulos, Chairperson

Pattern classication faces a difcult challenge in nite settings and high dimensional

spaces due to the curse of dimensionality. Nearest neighbor methods are especially sensitive to

this problem. The need for large neighborhoods in high dimensional spaces is the cause of highly

biased estimates. Due to the local nature of feature relevance, any chosen xed metric violates the

assumption of locally constant class posterior probabilities, and therefore fails in making correct

predictions in different regions of the input space. In order to achieve accurate predictions, it be-

comes crucial to be able to estimate the different degrees of relevance that input features may have

in various locations of the feature space.

This dissertation introduces novel approaches to computing local feature relevance for

nearest neighbor methods that overcome limitations of previous techniques. It makes four specic

contributions:
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1. ADAMENN algorithm: A novel approach to computing local feature relevance for pattern

classication. It uses the Chi-squared distance to design a exible metric that approximates

the theoretical innite sample risk at the query point. No assumption is made on the proba-

bility distribution of data. It is formally shown that the measure of feature relevance derived

by ADAMENN reduces the overall mean-squared estimation error.

2. LFM-SVM algorithm: A new local exible metric technique based on support vector ma-

chines. This method overcomes the limitations of lazy learning approaches concerned with

scalability and efciency issues. It is shown that the weighting scheme performed by the

LFM-SVM algorithm increases the margin of the solution provided in input by the SVM.

3. GenProClus algorithm: A novel algorithm that computes intra-cluster adaptive metrics for

clustering. This algorithm represents an attempt to dodge the curse of dimensionality for

clustering, and provides information to what features are relevant for each partition. It is

shown that the algorithm converges to a local minimum of the associated error function.

4. AdaBand algorithm: A new locally adaptive technique to set the bandwidth parameters for

kernel density estimation. This approach can serve as an efcient approximation of nearest

neighbor methods. It is shown how this algorithm can be used to efciently solve classica-

tion, clustering, and range query approximation problems.

The efcacy of the techniques presented is demonstrated through extensive experimental evalua-

tions, using a variety of simulated and real world problems, such as texture recognition in images

and letter classication.
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Chapter 1

Introduction

1.1 Pattern Classification

The ability to classify patterns is certainly one of the key features of intelligent behavior,

be it of humans or animals. This ability emerged with the biogenetic evolution for survival pur-

poses, not only of individuals but also of entire species. An individual receives sensory information

that must be processed to perceive, and ultimately act, possibly for orientation in the environment,

distinction between edible and poisonous food, or detection of dangerous enemies.

Machine perception and classication as features of articial systems serve similar but

more constrained purposes. Machine classication aims at providing articial systems with the

ability to react to situations and signals coming from the environment to perform specic tasks. As

such, pattern classication is a fundamental building block of any cognitive automata.

Pattern classication is a very general concept with numerous applications ranging from

science, engineering, target marketing, medical diagnosis and electronic commerce to weather fore-

1



cast based on satellite imagery. A typical application of pattern classication is mass mailing for

marketing. For example, credit card companies often mail solicitations to consumers. Naturally,

they would like to target those consumers who are most likely to respond. Often, demographic

information is available for those who have responded previously to such solicitations, and this

information may be used in order to target the most likely respondents. Another application is elec-

tronic commerce of the new economy. E-commerce provides a rich environment to advance the

state-of-the-art in classication because it demands effective means for text classication in order

to make rapid product and market recommendations.

Recent developments in data mining have posed new challenges to pattern classication.

Data mining is a knowledge discovery process whose aim is to discover unknown relationships

and/or patterns from a large set of data, from which it is possible to predict future outcomes. As such,

pattern classication becomes one of the key steps in an attempt to uncover the hidden knowledge

within the data. The primary goal is usually predictive accuracy, with secondary goals being speed,

ease of use, and interpretability of the resulting predictive model.

The term pattern is a word of our everyday vocabulary, and means something exhibiting

some form of regularity, able to serve as a model representing a concept of what was observed. As

a consequence, a pattern is never an isolated observation, but rather a collection of observations

connected in time or space or both. A pattern exhibits, as a whole, a certain structure indicative

of the underlying concept. The pattern classication task can then be seen as the task of inferring

concepts from observations. Thus, designing a pattern classier means dening a mapping from a

measurement space into the space of possible meanings, that are viewed as nite and discrete target

points.

2



From this perspective, it makes no difference what kind of observations are considered and

to what kind of meanings they may be linked. The same approach can be used to recognize written

text, spoken language, objects, or any other multidimensional signals as well. The selection of

meaningful observations from a specic domain is a feature extraction process. From a theoretical

viewpoint, the distinction between feature extraction and classication is arbitrary, but nevertheless

useful. In general, the problem of feature extraction is much more domain dependent than the

problem of classication.

This thesis focuses on classication. We are not concerned with the problem of feature

extraction. We assume that a set of measurements is given, and we investigate the relevance of

the given features for the classication task at hand. According to our point of view, no boundary

exists between feature relevance estimation and classication, and the two processes are carried out

together.

1.2 Statistical Approach

A characteristic of patterns in the context of classication is that every concept (or class)

may have multiple representative points in the measurement space. For example, for the task of

character recognition from their images, there exists a potentially unlimited plurality of ways of

designing character images that correspond to the same character. Therefore, the very core of pattern

classication is to cope with variability. The difculty of the task depends on the degree to which

the representatives of a class are allowed to vary and how they are distributed in the measurement

space. This observation brings together two intrinsic components of the pattern classication task:

the statistical component and the principle of learning from examples.
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The problem of classication can be seen as one of partitioning the feature space into

regions, one region for each category. Ideally, we would like to arrange this partitioning so that

none of the decisions is ever wrong. This objective may not be achievable for two reasons. The

distributions of points of different classes in the measurement space overlap, so that we cannot

reliably separate one class from the other. Moreover, even if we are able to nd a rule that does a

good job of separating the examples, we have no guarantee that it will perform as well on new points.

In other words, that rule may not generalize well on data never seen before. It would certainly be

safer to consider more points, and check how many of those are correctly classied by the rule. This

suggests that we should look for a classication procedure that aims at minimizing the probability

of error. The problem of classication becomes then a problem in statistical decision theory.

1.3 Challenges

While pattern classication has shown promise in many areas of practical signicance,

it faces difcult challenges from real world problems, of which the most pronounced is Bellman’s

curse of dimensionality [Bel61]. It states the fact that the sample size required to perform accurate

prediction in problems with high dimensionality is beyond feasibility. This is because in high di-

mensional spaces data become extremely sparse and are apart from each other. As a result, severe

bias that affects any estimation process can be introduced in a high dimensional feature space with

nite samples.

Consider, for example, the rule that classies a new data point with the label of its clos-

est training point in the measurement space (1-Nearest Neighbor rule). Suppose each instance is

described by 20 attributes, but only three of them are relevant to classifying a given instance. In
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this case, two points that have identical values for the three relevant attributes may nevertheless be

distant from one another in the 20-dimensional input space. As a result, the similarity metric that

uses all 20 attributes will be misleading, since the distance between neighbors will be dominated

by the large number of irrelevant features. This shows the effect of the curse of dimensionality

phenomenon, that is, in high dimensional spaces distances between points within the same class

or between different classes may be similar. This fact leads to highly biased estimates. Nearest

neighbor approaches are especially sensitive to this problem.

In many practical applications things are often further complicated. In the previous exam-

ple, the three relevant attributes for the classication task at hand may be dependent on the location

of the query point, i.e. the point to be classied, in the feature space. Some features may be relevant

within a specic region, while other features may be more relevant in a different region.

These observations have two important implications. Distance computation does not vary

with equal strength or in the same proportion in all directions in the feature space emanating from

the input query. Moreover, the value of such strength for a specic feature may vary from location

to location in the feature space. Capturing such information, therefore, is of great importance to any

classication procedure in high dimensional settings.

We emphasize that the curse of dimensionality is not conned to classication. It affects

any estimation process in a high dimensional feature space with nite examples. Thus, clustering

equally suffers from the same problem. The clustering problem concerns the discovery of homo-

geneous groups of data according to a certain similarity measure. It is not meaningful to look for

clusters in high dimensional spaces as the average density of points anywhere in input space is
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likely to be low. As a consequence, distance functions that equally use all input features may be

ineffective.

In this thesis we investigate new classication and clustering techniques to mitigate the

curse of dimensionality and reduce bias. This issue has both a theoretical and practical relevance,

since many applications could benet from such an improvement in prediction error. We lay a theo-

retical foundation upon which to build adaptive metric machines for classication. We then describe

effective procedures for operating such a machine, and later extend the setting for clustering. We

show results demonstrating the efcacy of our methods using a variety of simulated and real world

problems, such as texture recognition in images and letter classication.

1.4 Dissertation Overview

The goal of this chapter has been to set up the appropriate context within which this

dissertation is to be developed. An introduction to the problem of pattern classication has been

presented, angled toward its intrinsic statistical nature, and the learning from examples paradigm.

We have also emphasized the reasons why pattern classication and clustering are difcult and

complex tasks, expecially when the examples lie in a high dimensional feature space.

The contributions of this dissertation can be briey summarized as follows:

1. ADAMENN algorithm: A novel approach to computing local feature relevance for pattern

classication;

2. LFM-SVM algorithm: A new local exible metric technique based on support vector ma-

chines;
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3. GenProClus algorithm: A novel algorithm that computes intra-cluster adaptive metrics for

clustering;

4. AdaBand algorithm: A new locally adaptive technique to set the bandwidth parameters for

kernel density estimation, and its applications to efciently solve classication, clustering,

and range query approximation problems.

The content of the chapters of this dissertation is organized as follows:

Chapter 2 introduces background work in pattern classication, focusing on the super-

vised learning paradigm. It begins by discussing the concepts of Bayes decision theory, that pro-

vides a fundamental statistical approach to the problem of pattern classication. It then goes on

to describe different possible approaches to estimating the posterior probability values. Particular

emphasis is given to nearest neighbor methods, since they represent the core of this thesis. Finally,

it discusses the main concepts and properties of support vector machines, that will be used in later

chapters.

Chapter 3 describes the problem caused by nite settings in high dimensional spaces,

highlighting the importance of estimating the different degree of relevance that input features may

have in various locations in the feature space. It discusses previous work in the literature on exible

metric computation along with their limitations.

Chapter 4 presents a novel approach (ADAMENN) to computing local feature relevance.

It rst lays a theoretical foundation upon which to build an adaptive metric machine, and then de-

scribes an effective procedure for operating such a machine. It discusses the question of convergence

of our method, and proves that our measure of feature relevance reduces the overall mean-squared
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estimation error.

Chapter 5 presents an extensive experimental evaluation comparing ADAMENN with

well-known techniques in the literature, using both simulated and real data. The results obtained

strengthen the theoretical properties of our technique discussed in the previous chapter.

Chapter 6 addresses the limitations of lazy learning approaches concerned with scalability

and efciency issues. It presents a new locally exible metric technique (LFM-SVM) based on

support vector machines that overcomes some of the drawbacks of ADAMENN. It proves that the

weighting scheme performed by our technique increases the margin of the solution provided by the

support vector machine.

Chapter 7 presents an extensive experimental evaluation comparing LFM-SVM with a

variety of classication approaches, including SVMs and ADAMENN. Both simulated data with an

increasing number of noisy predictors and real data are used.

Chapter 8 introduces a novel algorithm (GenProClus) that computes intra-cluster adaptive

metrics for clustering. The algorithm discovers clusters in subspaces spanned by different combina-

tions of dimensions via local weightings of features. This algorithm represents an attempt to dodge

Bellman’s curse of dimensionality for clustering problems. The technique provides information

to what features are relevant for each partition. The chapter presents a proof of convergence of

GenProClus to a local minimum of the associated error function.

Chapter 9 presents an experimental evaluation comparing GenProClus, EM, and K-means

algorithms, and using a variety of simulated data sets. The superior accuracy achieved by GenPro-

Clus in high dimensional spaces provides evidence of the feasibility of the approach. Experimental
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results also show a perfect corresponence between the weight values of each cluster and local cor-

relations of data.

Chapter 10 proposes a new locally adaptive technique to address the problem of setting the

bandwidth parameters for kernel density estimation. The technique is efcient and can be performed

in only two data passes. It is also shown how to apply the method to efciently solve range query

approximation, classication and clustering problems in very large data sets.

Chapter 11 validates the efciency and accuracy of locally adapting the bandwidth param-

eters for kernel density estimation, for both range query approximation and classication problems.

Finally, Chapter 12 summarizes the work presented in the previous chapters. It contains

a brief description of the new algorithms and concepts introduced in this dissertation. A short

description of important directions for future research concludes the dissertation.
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Chapter 2

Background

Bayes decision theory provides a fundamental statistical approach to the problem of pat-

tern classication. It is based on the assumption that the decision problem is posed in probabilistic

terms, and that all relevant probability values are known. In the following we introduce supervised

learning approaches to estimating the posterior probability values, in an attempt to come as closer

as possible to the optimum Bayesian classier. The chapter concludes with a discussion on the main

concepts and properties of support vector machine classiers.

2.1 Classification

In a classication problem an observation is characterized by feature measurements

and is presumed to be a member of one of classes, , . The

particular group is unknown, and the goal is to assign the given object to the correct group using its

measured values .
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Let be the loss incurred by assigning to the th group , when it is actually a

member of the th group [DH73]. By denoting the probability that is a member of the

th class given the particular set of measurements , the expected loss associated with class is

(2.1)

which is also known as the conditional risk. Whenever we encounter a particular observation , we

can minimize the expected loss by selecting the class that minimizes the conditional risk,

(2.2)

A loss function of particular interest is the so-called symmetrical or zero-one loss function,

if

if
(2.3)

where . This loss function assigns no loss to a correct decision and a unit loss to any

error. Thus, all errors are equally costly. The risk corresponding to this loss function is the average

probability of error, or the error rate, since the conditional risk is

(2.4)

and is the conditional probability that class is correct. Therefore, equation (2.2) reduces

to

(2.5)
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if all misclassications are considered equally costly. Equations (2.2) and (2.5) are known as the

Bayes decision rules and their associated error rate is the minimum achievable. Thus, to minimize

the average probability of error, we should select the class that maximizes the posterior probability

. In other words, for minimum error rate:

In order to apply the Bayes decision rule the true conditional probabilities

must be known for every query point at which class predictions are to be made. Unfortu-

nately, this is seldom the case, and the conditional probabilities must be estimated.

Bayes decision theory provides a fundamental statistical approach to the problem of pat-

tern classication. It is based on the assumption that the decision problem is posed in probabilistic

terms, and that all relevant probability values are known. In the following we introduce supervised

learning approaches to estimating the posterior probability values, in an attempt to come as closer

as possible to the optimum Bayesian classier.

We are given classes and training observations. The training observations consist of

feature measurements and the known class labels, :

(2.6)

Here . The goal is again to predict the class label of a given query . The training

data (2.6) are used to obtain the estimates

(2.7)
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which are then used in (2.1) and (2.2) to get the class assignment estimate

(2.8)

or the corresponding analog for (2.5):

(2.9)

2.2 Density Estimation

One approach to estimating the posterior class conditional probabilities is based on den-

sity estimation via Bayes theorem

(2.10)

Here is the probability density function of given class , and is the probability that

reects our prior knowledge of observing an object of class in the absence of a set of measurement

values x. Thus, Bayes rule shows how observing the values x changes the a priori probability

to the posterior probability .

With this approach, the training data in each class , for , are used separately

to estimate the corresponding probability density function over the measurement space. The

prior probabilities are either known in advance through some knowledge of the nature of the

problem under study, or are estimated as the proportions of each class in the training data set. These

estimates are then used to derive the posterior class conditional probabilities (2.7) through (2.10).
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2.2.1 Discriminant Analysis

An example of the density estimation approach is discriminant analysis [Mcl92]. In this

case, the class conditional density functions are approximated by Gaussian distributions, and the

training data for each class are used to estimate the mean vector and the covariance matrix for

that class. The goal of discriminant analysis is to nd discriminant functions in feature space that

achieve the lowest error rate to the extent that the normal assumption is correct. Thus, a classier

is dened in terms of a set of discriminant functions , . The classier assigns a

feature vector to class if

In words, the classier selects the class corresponding to the largest discriminant. A Bayes classi-

er can easily be represented in this way. We can dene , since the maximum

discriminant function will then correspond to the minimum conditional risk. For the minimum er-

ror rate case, things could be further simplied by taking , so that the maximum

discriminant function corresponds to the maximum posterior probability. The discriminant func-

tions can be written in a variety of forms, all resulting in the same classication result. In general,

by replacing every with , where is a monotonically increasing function, resulting

classication is unchanged. In particular, for minimum error rate classication, it is convenient to

consider

(2.11)

as a discriminant function, which is equivalent to having . The expression in (2.11)

can be evaluated if we assume that the densities are multivariate normal. Let
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, where

(2.12)

Then,

(2.13)

A simple case arises when the covariance matrices for all classes are identical. Since in (2.13)

becomes independent of , it can be ignored, along with the constant , resulting in the

discriminat functions

(2.14)

If the a priori probabilities are the same for all classes, then the term can

be ignored. In this case, the decision rule can be stated very simply: To classify a feature vector ,

measure the distance (known as the squared Mahalanobis distance) from

to each of the mean vectors, and assign to the category of the nearest mean. Unequal a priori

probabilities bias the decision towards the a priori more likely class.

By expanding the term it can be shown that the quadratic term

is independent of . By deleting it, we obtain linear discriminant functions:

(2.15)

where

(2.16)

and

(2.17)
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Thus, the resulting decision boundaries are hyperplanes. They dene the optimal decision rule when

the normal and equal covariance assumptions are satised by the actual underlying distributions of

the data.

2.2.2 Naive Bayesian Classifier

The so-called “naive” Bayesian classier makes the assumption that the values of the

attributes of an example are independent given the class of the example. As a consequence, the joint

density function in (2.10) can be written as the product of the marginal densities of each attribute,

making the use of Bayes theorem much simpler. Although this assumption is almost always violated

in practice, naive Bayesian learning is remarkably effective in practice [DP96].

2.3 Regression

The density estimation approach to classication computes posterior probabilities by es-

timating the probability density functions conditioned on the value of the class label. A second

category of supervised learning techniques directly estimate the probabilities . At a

given query point the class label is assumed to be a random variable from a multinomial dis-

tribution with probabilities . Each possible value for at is characterized by an

additional output variable such that

if

otherwise
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where . represents the characteristic function of class at and gives rise to

separate training sets, one for each class :

(2.18)

Then

(2.19)

The posterior probabilities are the target functions to be estimated by using the corresponding

training samples (2.18)

(2.20)

where , so that they become the solutions of a set of least-squares problems. It is evi-

dent that, since they represent probabilities, the target functions satisfy the constraints

Many of the techniques developed in machine learning and pattern recognition apply more

or less closely this regression paradigm to the classication problem. We elaborate more on some

specic methods such as neural networks, decision trees, K-nearest-neighbors, and support vector

machines.

2.3.1 Neural Networks: Generalized Linear Models (GLIM)

We describe how a two class classication problem can be modeled by using a neural

network representation [Bis95]. The interpretation of the output of the resulting neural network

model as posterior probabilities has a statistical foundation in Bayes theory [Jor95].
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Suppose the two classes have labels and . For a given point , its class label is

assumed to be a random variable from a Bernoulli distribution with probabilities :

(2.21)

where is the posterior probability associated with class 1, , and

. Equation (2.21) represents the Bernoulli mass function.

Our goal is to estimate the posterior probability value . We are given a training set

. Here . The learning system needs to infer the probability value

by the given pairs in . We can write , which means: given x as

input, the corresponding probability of observing the output is . Here

undergoes a linear transformation, whose result is then mapped to the interval by a non linear

“squashing” function . The parameters (weights) of the linear transformation

are not known and are to be estimated by the learning system.

By assuming independence and identical distribution among the data in , we can write

the joint density function of as the product of the densities of each data pair:

(2.22)

where . Equation (2.22) represents the likelihood function of . Our objective is to

maximize with respect to . By computing the log of (2.22) we obtain

, and thus the cost function

(2.23)
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which is the binary cross entropy. By taking the gradient with respect to the weights we get

(2.24)

where is the th component of , and is the logistic function:

(2.25)

Finally, by considering the stocastic gradient, we obtain the following learning rule for the weights

(2.26)

The use of the logistic function as the output function for a two case classication problem

has a motivation within Bayes theory: given specic assumptions, the logistic function formally

provides the posterior probability of a given class [Jor95]. A similar result can be obtained for the

general classication problem with more than two groups, where the logistic function is replaced

by the softmax function and the cost function gets the general form of a cross entropy.

2.3.2 Decision Trees

Decision trees constitute a local learning paradigm that employs local averaging to es-

timate the class posterior probabilities for the decision rule (2.8) [BFO+84, Qui86, Qui93]. The

regions over which the averaging takes place are constructed in a highly adaptive manner by using a

top-down recursive splitting strategy, from which the alternative name of recursive partitioning (RP)

is derived. RP begins with a single region containing all the training data. At each step every

existing region is split into two subregions, thereby increasing the number of regions. This recursive

splitting procedure is continued until a region meets a local terminal criterion, i.e. it contains train-
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ing observations of the same class, and is not further split. When all regions have met the terminal

criterion, they provide the nal input space partition for local estimation of class probabilities.

The shape of the terminal regions is governed by the splitting procedure. One denes a

splitting function of the input variables , characterized by a set of parameters , and a real

valued split point . The form of the split function is usually taken to be linear

(2.27)

(CART) [BFO+84], often with the restriction of being parallel to the coordinate input axes (CART,

C4.5) [BFO+84, Qui93]

(2.28)

Here is the basis unit vector for the th input coordinate. The particular variable and location

used to dene the split are those that jointly minimize a given criterion. In general, such criterion is

related to the average misclassication risk associated with using the resulting subregions to classify

all training observations that respectively lie within them. In other words, the variable and location

that best separate the data in the current region are chosen.

After the splitting is completed a “pruning” procedure is usually applied that recursively

recombines adjacent regions in a bottom-up manner using cross-validated misclassication risk to

determine when to stop the pruning. Other approaches are also possible. For example, all available

data can be used for training, and a statistical test (e.g., chi-square) is then applied to estimate

whether pruning a particular node is likely to produce an improvement beyond the training set.

Techniques that stop growing the tree earlier, before it reaches the point where it perfectly classies

the training data, are also in use [Mit97].
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The resulting set of regions represents a disjoint partition of the input measurement space.

The region used for estimating the class probabilities and making the assignment (2.8) for any

prediction point is the resulting region in which the point lies.

We note that at each step in the recursive subdivision the variable that gives the most

estimated classication information is considered for splitting, thereby reducing the extent of the

neighborhood along the chosen axis for all successive regions that are descendants of the one being

split. Moreover, the choice of the variable for splitting is based only on the local data contained in

each region. Thus, recursive partitioning methods can exploit “local relevance” of input variables at

different query points in feature space. Some recursive partitioning implementations add locally

derived variables that are functions of the original input variables, allowing regions to have non-axis

oriented boundaries. Finally, if pruning is employed recursive partitioning methods also estimates

the best region size locally for different query points .

With this built-in exibility one might expect recursive partitioning methods to perform

well in general. However, in benchmark studies even the simplest K-NN rules (see Section 2.3.3)

often outperform recursive partitioning methods. Among the possible reasons for this behavior,

some can be identied. The training sample size restricts the number of splits that can be used to

limit the extension of a subregion. As the partitioning proceeds the number of training observations

in successive regions becomes smaller and smaller. After a relatively small number of splits the data

remaining is insufcient to provide meaningful estimates. A second limitation, related to the rst,

is that decision trees produce a partition of the input space, that is the terminal regions that cover

the space are disjoint. The consequence is that the resulting approximations are piecewise-constant

and discontinuous, leading to large errors (bias) near region boundaries. Each prediction point is
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contained in only one region and it can be very far from the region center and training points in that

region. This can induce high bias that may overcome the bias reduction achieved by customizing the

shape of the region. Finally, the approximations produced by RP are highly unstable with respect

to minor perturbations of the training data. This leads to high variance predictions, induced by

sampling uctuations of the mechanism that produces the training data. Minor changes in an early

split can have a major impact on later splits producing very different terminal regions.

Nearest neighbor methods, to be introduced next, overcome some of the limitations of

recursive partitioning techniques by producing continous and overlapping neighborhoods, resulting

in highly stable procedures with respect to perturbations of the training data. It should be also

mentioned that several approaches have been proposed to mitigate the instability of RP methods.

Among them is the bagging procedure [Bre96, Qui96].

2.3.3 Nearest-Neighbor Methods

The nearest neighbor classication method [CD88, Ho98, Low95, Mcl92, Sal91, Sto77]

is a simple and appealing approach: it nds the nearest neighbors of the query point in the

training set, and then predicts the class label of as the most frequent one occurring in the

neighbors. Such a method produces continuous and overlapping neighborhoods, and uses a differ-

ent neighborhood for each individual query so that all points in the neighborhood are close to the

query, to the extent possible. It is based on the assumption of smoothness of the target functions,

which translates to locally constant class posterior probabilities for a classication problem. That

is, for small enough, where . Then,

(2.29)
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where is a neighborhood of that contains points in the dimensional space that

are “close” to . denotes the number of points in . Given the training data

, this motivates the estimates

(2.30)

where is an indicator function such that it returns 1 when its argument is true, and 0 otherwise.

A particular nearest-neighbor method is dened by how the neighborhood is spec-

ied. K-nearest-neighbor methods (K-NN) dene the region at to be the one that contains exactly

the closest training points to according to a -norm distance metric on the Euclidean space of

the input measurement variables

(2.31)

The resulting neighborhood is determined by the value of and by the choice of the distance

measure, which in turn depends on a norm and a metric dened by the matrix .

The K-nearest-neighbor method has nice asymptotic properties [CH67, Cov68]. As the

training sample size becomes arbitrarily large it results

(2.32)

provided that the value for is chosen as a function of so that

(2.33)

The rst condition reduces the variance by making the estimation independent of the accidental

characteristics of the nearest neighbors. The second condition reduces the bias by assuring that
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the nearest neighbors are arbitrarily close to the query point. Intuitively, if is kept xed when

the number of samples is allowed to approach innity, then all the nearest neighbors will

converge to . Conditions (2.33) require that grow innitely large, but at a lower rate than .

These results imply that asymptotically, as , the K-NN rule achieves the minimum

error rate of the Bayes rule, provided that the value of is properly chosen, independent of the norm

or the metric .

Another asymptotic result holds for the 1-NN rule. Let be the classication error

rate of the 1-NN rule and that of the Bayes rule. Then , where

, so that with an unlimited number of samples the error rate for the 1-NN rule

is no worse than twice the Bayes rate. This implies that in the asymptotic limit no decision rule is

more than twice as accurate as the 1-NN rule, including a K-NN rule for any value of .

Let us gain some understanding on why the 1-NN rule should work well. Let be the

query point and its nearest neighbor in the training data. We recall that the label of is a random

variable, and the probability that is simply the posterior probability . Then, when the

number of samples is very large, it is reasonable to assume that is sufciently close to so that

. In this prospective we can view the 1-NN rule as a randomized decision that

classies by selecting the class with probability .

If we dene as

then the Bayes rule always selects . When is close to one, the nearest-neighbor selection

is almost always the same as the Bayes selection. That is, when the minimum probability of error
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is small, the nearest-neighbor probability of error is also small. When is close to , so

that all classes are essentially equally likely, the selections made by the nearest-neighor rule and the

Bayes rule are rarely the same, but the probability of error is approximately for both.

Example. Consider two classes (labelled 1 and 2) with probability density functions and ,

respectively, as in Figure 2.1. Each density function is a mixture of two uniform distributions. Both

densities share the same component for ; in this interval both densities have value .

Assume that the prior probabilities of the two classes are equal to 1/2. The Bayes risk at , when

, is

Since with probability , the Bayes risk is equal to . If , it denetely belongs

to class 1. With probability 1, the training set contains at least one sample of class 1 in the interval

. This is because the training set size is growing to innity. Hence, the 1-NN rule will classify

correctly. A similar argument applies when . However, when , ,

that is the conditional probability that the class label is 1 given is 1/2, because the priors are

equals, and the class conditional densities are equal in such interval. Therefore, no matter how the

1-NN classies a sample , it is wrong with probability 1/2, just like the Bayes decision

rule. Hence, the 1-NN rule has the same conditional probability of error as the Bayes decision rule

for every , and therefore its risk equals the Bayes risk.

The asymptotic results discussed suggest that the 1-NN based on simple Euclidean dis-

tance ( , )

(2.34)
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Figure 2.1: Probability density functions and .

might perform well provided that the training data set is not too small.

An obvious question concerns the rate of convergence of the 1-NN procedure: how rapidly

the performance of the 1-NN rule converges to the asymptotic value? Unfortunately, the only state-

ments that can be made in the general case are negative. It can be shown that convergence can be

arbitrarily slow, and the error rate need not even decrease monotonically with the increasing number

of data [Cov68]. As with other nonparametric methods, it is difcult to obtain anything other than

asymptotic results without making regularity assumptions about the underlying probability struc-

ture. Under suitable smoothness conditions, the error rate of the sample nearest neighbor rule

converges to its limit on the order of : [Cov68].

2.4 Support Vector Machines

In this section we introduce the main concepts and properties of support vector machines

(SVMs) [Bur98, Vap98, Vap99, CT01, SS02]. Again, we are given observations. Each observa-
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tion consists of a pair: a vector , , and the associated class label

(we restrict ourselves to a two class case). It is assumed that there exists some unknown probability

distribution from which these data are drawn. The task it to learn the set of parameters in

so that realizes the mapping . A particular choice of denes the corresponding

trained machine .

The expectation of the test error (i.e., the expected risk, or just the risk) for a trained

machine is

This quantity gives a nice way of writing the true mean error, but unless we have an estimate of

what is, it is not very useful. The empirical risk is then dened, as the mean error

rate measured over the training set:

The following bound holds (with high probability over the random draw of the training

sample) [Vap99]:

where is the Vapnik Chervonenkis (VC) dimension, and is a measure of the ability of the ma-

chine to learn any training set without error. The term is called the VC condence. Given

a family of functions , it is desirable to choose the machine which gives the lowest upper

bound on the risk. The rst term, , represents the accuracy attained on a particular training

set, whereas the second term represents the ability of the machine to learn any training set

without error. and respectively drive the bias and the variance of the generaliza-
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tion error. The best generalization error is achieved when the right balance between these two terms

is attained. This gives a principled method for choosing a learning machine for a specic task, and

is the essential idea of structural risk minimization.

Unlike traditional methods which minimize the empirical risk, a support vector machine

aims at minimizing the above upper bound of the generalization error. It achieves this goal by learn-

ing the s in so that the resulting trained machine saties the maximum margin property, i.e.

the decision boundary it represents has the maximum minimum distance from the closest training

point.

The well developed theory that has motivated SVMs makes them an attractive learning

machine for a variety of tasks. An SVM maps the data into a higher-dimensional space (fea-

ture space) and denes a separating hyperplane there. Translating the training set into a higher-

dimensional space incurs both computational and learning-theoretic costs. SVMs avoid overtting

by choosing a particular hyperplane among the many that can separate the data in the feature space,

specically the maximum margin hyperplane.

The computational burden of explicitly representing the feature vectors is avoided by

dening a function, called the kernel function, that plays the role of the dot product in feature space.

Therefore, an SVM can locate a separating hyperplane in feature space and classify points in that

space without ever representing the space explicitly.

By choosing different functions as kernels, SVMs can realize Radial Basis Function

(RBF), Polynomial and Multi-layer Perceptron classiers. Compared with the traditional way of

implementing such classiers, SVMs have the advantage of automatically selecting both the num-
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ber and locations of the kernel function during training.

In addition to avoid overtting, the use of the maximum margin hyperplane leads to a

learning algorithm that can be reduced to a convex optimization problem. In order to train the

SVM, the unique minimum of a convex function must be found. As a consequence, support vector

machines do not suffer from the local minima problem that affects many learning schemes and,

unlike the backpropagation learning algorithm for neural networks, a given SVM will always deter-

ministically converge to the same solution for a given data set, regardless of the initial conditions.

Another appealing feature of SVMs is the sparseness representation of the decision bound-

ary they provide. The location of the separating hyperplane in feature space is specied via real-

valued weights on the training examples. In general, those training examples that lie far away from

the hyperplane do not participate in its specication and therefore receive zero weight. Training

examples that lie close to the decision boundary between the two classes receive non-zero weights.

These training examples are called support vectors, since their removal would change the location

of the separating hyperplane. The design of SVMs, in general, allows the number of support vectors

to be small compared to the total number of training examples. This property allows the SVM to

classify new examples efciently, since the majority of the training examples will be safely ignored.

2.4.1 Learning with SVMs

In the simple case of two linearly separable classes, a support vector machine selects,

among the innite number of linear classiers that separate the data, the classier that minimizes

an upper bound on the generalization error. The SVM achieves this goal by computing the classier

that saties the maximum margin property, i.e. the classier whose decision boundary has the
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maximum minimum distance from the closest training point.

If the two classes are non-separable, the SVM looks for the hyperplane that maximizes

the margin and that, at the same time, minimizes a quantity proportional to the number of misclas-

sication errors. The trade-off between margin and misclassication error is driven by a positive

constant that has to be chosen beforehand. The corresponding decision function is then obtained

by considering the , where , and the coefcients are the

solution of a convex quadratic problem, dened over the hypercube . In general, the solution

will have a number of coefcients equal to zero, and since there is a coefcient associated

to each data point, only the data points corresponding to non-zero will inuence the solution.

These points are the support vectors. Intuitively, the support vectors are the data points that lie at

the border between the two classes, and a small number of support vectors indicates that the two

classes can be well separated.

This technique can be extended to allow for non-linear decision surfaces. This is done

by mapping the input vectors into a higher dimensional feature space: , and by

formulating the linear classication problem in the feature space. Therefore, can be expressed

as .

If one were given a function , one could learn and use the maxi-

mum margin hyperplane in feature space without having to compute explicitly the image of points

in . It has been proved (Mercer’s Theorem) that for each continuous positive denite function

there exists a mapping such that , . By making use
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of such function (kernel function), the equation for can be rewritten as

(2.35)

Examples of kernel functions are:

(polynomial);

(Gaussian);

(sigmoid).
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Chapter 3

Related Work

Pattern classication faces a difcult challenge in nite settings and high dimensional

spaces due to the curse of dimensionality. It becomes crucial in such cases the estimation of different

degrees of relevance that input features may have in various locations in feature space. In this

chapter we discuss previous work in the literature on exible metric computation.

3.1 Curse-of-dimensionality

Related to the question of rate of convergence of the 1-NN rule is the one on how well

the rule works in nite-sample settings. The asymptotic results rely on the fact that the bias of the

estimate of each

(3.1)

becomes arbitrarily small. This is because the region will only contain training points

arbitrarily close to (provided that is continuous at and ). In a nite setting, if
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the number of training data is large and the number of input features is small then the asymptotic

results may still be valid. However, for a moderate to large number of input variables, the sample

size required for their validity is usually beyond feasibility.

This phenomenon is known as the curse-of-dimensionality [Bel61]. It refers to the fact

that in high dimensional spaces data become extremely sparse and are far apart from each other. To

get a quantitive idea of this phenomenon, consider a random sample of size drawn from a uniform

distribution in the dimensional unit hypercube. The expected diameter of a neighborhood

using Euclidean distance is proportional to , which means that for a given , the diameter of

the neighborhood containing the closest training point shrinks as for increasing . Table

3.1 shows the length of the diameter for various values of and . For example, for ,

if the length of the diameter is 1.51, if , if .

Considering that the entire range of each variable is 1, we note that even for a moderate number of

input variables very large training sample sizes are required to make a nearest neighborhood

relatively small. The proportion (diameter ) discussed here for inicts all

norms.

The fact that the data become so sparse in high dimensional spaces has the consequence

that the bias of the estimate can be quite large even for and very large data sets. This high bias

effect due to the curse-of-dimensionality can be reduced by taking into consideration the fact that

the class probability functions may not vary with equal strength in all directions in the feature space

emanating from the query point . This can be accomplished by choosing a metric (2.31)

that credits the highest inuence to those directions along which the class probability functions are

not locally constant, and correspondingly less inuence to other directions. As a result, the class
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Table 3.1: Expected length of the diameter of a neighborhood for various values
of and .

4 100 0.42
4 1000 0.23
6 100 0.71
6 1000 0.48

10 1000 0.91
10 0.72
20 1.51
20 1.20
20 0.76

conditional probabilities tend to be approximately constant in the resulting modied neighborhood,

whereby better classication can be obtained, as we will see later.

From the above discussion it should be clear that, in nite settings, the choice of the metric

can strongly affect performance, and therefore the choice of a distance measure becomes

crucial in determining the outcome of nearest neighbor classication.

Nevertheless, it should be noted that, despite the curse-of-dimensionality, nearest neigh-

bor methods in many benchmark studies turn out to be competitive with other classication methods,

and often are among the best performers. There may be many reasons for this behavior but two can

be clearly identied. First, often there is a high degree of correlation among the input features so

that the data actually lie within a (much) lower dimensional subspace of the -dimensional measure-

ment space. It is this intrinsic dimensionality of the data that drives the curse-of-dimensionality: to

the extent that it is much smaller than the number of inputs the curse is mitigated. A second reason

is due to the nature of the classication problem itself. For accurate classication (2.8) it is not
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necessary to achieve accurate estimates of the actual values of the conditional probabilities. For

example, with the zero-one loss function (2.3) to obtain the optimal decision (2.5) is sufcient that

the largest estimated class probability correspond to the one that is actually the largest

(3.2)

irrespective of their actual values, or the values and order of the estimated probabilities for the

other classes. Therefore, the bias (3.1) could be very high but if it affects all the estimates

in roughly the same proportion, so that their order relation is similar enough to that of the true

underlying probabilities , an optimal class assignment can still be performed.

3.2 Adaptive Metric Techniques

While K-NN methods are more resistant to the curse-of-dimensionality than expected,

their performance is still affected by it. The need for large neighborhoods in high dimensional

spaces can affect the bias (3.1) differentially for the respective class probability estimates enough

to cause nonoptimal decision, thereby increasing misclassication error. Thus, the nearest neighbor

rule becomes less appealing with nite training samples. Severe bias can be introduced in the nearest

neighbor rule in a high dimensional input feature space with nite samples. The commonly used

Euclidean distance measure, while simple computationally, implies that the input space is isotropic

or homogeneous. However, the assumption for isotropy is often invalid and generally undesirable

in many practical applications. Figure 3.1 illustrates a case in point, where class boundaries are

parallel to the coordinate axes. For query , dimension is more relevant, because a slight move

along the axis may change the class label, while for query , dimension is more relevant. For
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Figure 3.1: Feature relevance varies with query locations.

query , however, both dimensions are equally relevant. This implies that distance computation

does not vary with equal strength or in the same proportion in all directions in the feature space

emanating from the input query. Capturing such information, therefore, is of great importance to

any classication procedure in high dimensional settings.

3.3 Flexible Metric Nearest Neighbor Classification

Friedman [Fri94] describes an adaptive approach for pattern classication that combines

some of the best features of K-NN learning and recursive partitioning. The resulting hybrid method

inherits the exibility of recursive partitioning to adapt the shape of a region as well as the

ability of nearest neighbor techniques to keep the points within the region close to the point being

predicted. The method is capable of producing nearly continuous probability estimates with the
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region centered at , and the shape of the region separately customized for each individual

prediction point. In the following we describe the method proposed in [Fri94] in more details.

Consider an arbitrary function of arguments . In the absence of values

for any of the argument variables the least-squares estimate for is just the expected value

, over the joint probability density of its arguments. Suppose now that the

value of just one of the argument variables were known, say . The least-squares prediction

for in this case would be the expected value of , under the restriction that assumes the

known value : . The improvement in squared prediction

error associated with knowing the value of the th input variable is therefore

(3.3)

measures how much we gain by knowing that . It reects the inuence of the th input

variable on the variation of at the particular point . Note that if then

is independent of at the particular point , and accordingly .

Consider an arbitrary point in the q-dimensional input space. A measure

of the relative inuence, relevance, of the th input variable to the variation of at is

given by

(3.4)

In [Fri94], Friedman proposes an algorithm, called machete, that uses the local relevance

measure (3.4) to dene a splitting procedure centered at the prediction point, overcoming some of

the limitations of the static splitting of recursive partitioning. As with recursive partitioning, the

machete begins with the entire input measurement space and divides it into two regions by a
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split on one of the input variables. However, the manner in which the splitting variable is selected

and the nature of the split itself, are quite different. The input variable used for splitting is the one

that maximizes the estimated relevance as evaluated at the point to be predicted

(3.5)

Thus, for the same training data, different input variables can be selected for this rst split at differ-

ent prediction points , depending on how the relevance of each input variable changes with location

in feature space. The space is then split on the th input variable so that the th component of ,

, is centered within the resulting subinterval that contains it. In particular the training data are

sorted in increasing order on and the new region is

(3.6)

where is a distance value such that contains training observations.

As with all recursive methods, the entire machete procedure is dened by successively

applying its splitting procedure to the result of the previous split. The algorithm stops when there

are training observations left in the region under consideration, with being one of the input

parameters of the machete.

In [Fri94], Friedman also proposes a generalization of the machete algorithm, called

scythe, in which the input variables inuence each split in proportion to their estimated local rele-

vance, rather than according to the winner-take-all strategy of the machete.

The major limitation concerning the machete/scythe method is that, like recursive par-

titioning methods, it applies a “greedy” strategy. Since each split is conditioned on its “ancestor”
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split, minor changes in an early split, due to any variability in parameter estimates, can have a signif-

icant impact on later splits, thereby producing different terminal regions. This makes the predictions

highly sensitive to the sampling uctuations associated with the random nature of the process that

produces the training data, and therefore may lead to high variance predictions.

We performed a comparative study, to be seen later (Chapter 5), that shows that while

machete/scythe demonstrates performance improvement over recursive partitioning, simple K-NN

still remains highly competitive.

3.4 Discriminant Adaptive Nearest Neighbor Classification

In [HT96a], Hastie and Tibshirani propose a discriminant adaptive nearest neighbor clas-

sication method (DANN) based on linear discriminant analysis. The method computes a local

distance metric as a product of properly weighted within and between sum of squares matrices. The

authors also describe a method to perform global dimensionality reduction, by pooling the local

dimension information over all points in the training set [HT96a, HT96b].

The goal of linear discriminant analysis (LDA) is to nd an orientation in feature space on

which the projected training data are well separated. This is obtained by maximizing the difference

between the class means relative to some measure of the standard deviations for each class. The

difference between the class means is estimated by the between-class scatter matrix , and the

measure of the standard deviations for each class is given by the within-class scatter matrix .

Both matrices are computed by using the given training data. Once the data are rotated and scaled

for best separation of classes, a query point is classied to the class of the closest centroid, with a

correction for the class prior probabilities.
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In [HT96a], the authors estimate and locally at the query point, and use them to

form a metric that behaves locally like the LDA metric. The metric proposed is ,

which has the effect of crediting larger weights to directions in which the centroids are more spread

out than to those in which they are close. First the metric is initialized to the identity matrix.

A nearest neighborhood of points around the query point is identied using the metric .

Then, the weighted within and between sum of squares matrices and are calculated using the

points in the neighborhood of . The result is a new metric for use in a nearest

neighbor classication rule at . The algorithm can be either a single step procedure, or a larger

number of iterations can be carried on.

The authors also show that the resulting metric used in DANN approximates the weighted

Chi-squared distance

(3.7)

which measures the distance between the query point and its nearest neighbor , in terms of their

class posterior probabilities. The approximation, derived by a Taylor series expansion, holds only

under the assumption of Gaussian class densities with equal covariance matrices.

While sound in theory, DANN may be limited in practice. The main concern is that in

high dimensions we may never have sufcient data to ll in matrices. Also, the fact that the

distance metric computed by DANN approximates the weighted Chi-squared distance (3.7) only

when class densities are Gaussian and have the same covariance matrix may cause a performance

degradation in situations where data do not follow Gaussian distributions or are corrupted by noise,

which is often the case in practice. We will see that this hypothesis is validated in our experimental

results (Chapter 5). These considerations lead us to our method.
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Chapter 4

Adaptive Metric Nearest Neighbor

Classification

This chapter presents a novel approach (ADAMENN) to computing local feature rele-

vance. The technique uses the Chi-squared distance in order to estimate to which extent each

dimension can be relied on to predict class posterior probabilities. We motivate our technique and

describe the algorithm in detail.

4.1 Introduction

K-NN methods are based on the assumption of smoothness of the target functions, which

translates to locally constant class posterior probabilities for a classication problem. This as-

sumption, however, becomes invalid for any xed distance metric when the input observation

is near a class boundary, as illustrated in Figure 3.1. In the following, we describe a nearest
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neighbor classication technique that is capable of producing a local neighborhood in which the

posterior probabilities are approximately constant, and that is highly adaptive to query locations

[DPG00a, DPG00b, DPG02].

We propose an adaptive nearest neighbor classication method to try to minimize bias in

high dimensions. We estimate a exible metric for computing neighborhoods based on Chi-squared

distance analysis. The resulting neighborhoods are highly adaptive to query locations. Moreover,

the neighborhoods are elongated along less relevant feature dimensions and constricted along most

inuential ones. As a result, the class conditional probabilities tend to be constant in the modied

neighborhoods, whereby better classication performance can be obtained.

Figure 4.1 shows an example. There are two classes and the data for both classes are

generated from a bivariate standard normal distribution. The data for class one have the radius less

than or equal to 1.15, while the data for class two have the radius greater than 1.15. As a result,

class one is surrounded by class two. Figure 4.1(a) shows the nearest neighborhood of size 50 of a

query located at (0, -1) near the class boundary. This neighborhood is computed using the Euclidean

distance metric. Figure 4.1(b) shows the same size neighborhood computed by using our adaptive

nearest neighbor classication algorithm. Note how the modied neighborhood is elongated along

the direction of the true decision boundary and constricted along the direction orthogonal to it,

which is the most relevant direction for the given query.
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Figure 4.1: Plot (a) shows the spherical neighborhood of the query point containing
50 points (shown as darker circles). Plot (b) shows the corresponding neighborhood found
by our adaptive nearest neighbor algorithm, also containing 50 points. After applying our
adaptive procedure the neighborhood is constricted along the most relevant dimension and
elongated along the less important one.

4.2 Chi-Squared Distance

Our technique is motivated as follows. Consider a query point with feature vector . Let

be the nearest neighbor of computed according to a distance metric . Our goal is to

nd a metric that minimizes , where .

Here is the class conditional probability at . That is, is the nite sample error

risk given that the nearest neighbor to by the chosen metric is [DH73]. Equivalently, we can

minimize

(4.1)

where is the theoretical innite sample risk at . By

substituting this expression and that for into (4.1), we obtain the following metric that
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minimizes (4.1) [MH90]:

(4.2)

The idea behind this metric is that if the value of for which is small is selected, then the

expectation (4.1) will be minimized.

This metric is related to the theory of the two class case developed in [SF81]. However, a

major concern with the above metric is that it has a cancellation effect when all classes are equally

likely [MH90]. Suppose that for two classes and , , and

. Then, in equation 4.2 the summands for classes and will tend to cancel

each other out, even if the magnitudes of and are large.

We can overcome this limitation by considering the Chi-squared distance [HT96a]

, which measures the distance between the query and the point , in

terms of the difference between the class posterior probabilities at the two points. Furhermore, by

multiplying it by we obtain the following weighted Chi-squared distance

(4.3)

Note that in comparison to the Chi-squared distance, the weights, , in (4.3) have the ef-

fect of increasing the distance of to any point whose most probable class is unlikely to include

. That is, if , we have , as a consequence, it becomes highly

improbable for any such point to be a nearest neighbor candidate. In general, such a weighting ben-

ets any nearest neighbor classier whose distance metric approximates the Chi-squared distance

[HT96a].
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Equation (4.3) computes the distance between the true and estimated posteriors. Our goal

is to estimate the relevance of feature by computing its ability to predict the class posterior prob-

abilities locally at the query point. We do so by considering the expectation of conditioned

at a location along feature dimension . Then, the Chi-squared distance (4.3) tells us the extent to

which dimension can be relied on to predict . Thus, Equation (4.3) provides us with a foun-

dation upon which to develop a theory of feature relevance in the context of pattern classication.

4.3 Local Feature Relevance

Based on the above discussion, the details of our local feature relevance measure are as

follows. We rst notice that is a function of . Therefore, we can compute the conditional

expectation of , denoted by , given that assumes value , where represents

the th component of . That is,

(4.4)

Here is the conditional density of the other input variables dened as

, where is the Dirac delta function having the properties

and . Let

(4.5)

represents the ability of feature to predict the s at . The closer

is to , the more information feature carries for predicting the class posterior probabilities

locally at .
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We can now dene a measure of feature relevance for as

(4.6)

where denotes the neighborhood of containing the nearest training points, according

to a given metric. measures how well on average the class posterior probabilities can be ap-

proximated along input feature within a local neighborhood of . Small implies that the class

posterior probabilities will be well captured along dimension in the vicinity of . Note that

is a function of both the test point and the dimension , thereby making a local relevance

measure.

To formulate the measure of feature relevance as a weighting scheme, we rst dene

i.e., the more relevant dimension is, the larger becomes. A weighting scheme can then be given

by

(4.7)

where , giving rise to linear and quadratic weightings, respectively. In this thesis we propose

the following exponential weighting scheme

(4.8)

where is a parameter that can be chosen to maximize (minimize) the inuence of on . When

we have , thereby ignoring any difference between the ’s. On the other hand,

when is large a change in will be exponentially reected in . In this case, is said to follow

the Boltzmann distribution. The exponential weighting is more sensitive to changes in local feature
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relevance (4.6) and gives rise to better performance improvement. In fact, it is more stable because it

prevents neighborhoods from extending innitely in any direction, i.e., zero weight. This, however,

can occur when either linear or quadratic weighting is used. Thus, (4.8) can be used to compute the

weight associated with each feature, resulting in the weighted distance computation

(4.9)

These weights enable the neighborhood to elongate less important feature dimensions, and, at

the same time, to constrict the most inuential ones. Note that the technique is query-based because

weightings depend on the query [Aha97, AMS97].

An intuitive explanation for (4.5) and, hence, (4.6), goes as follows. Suppose that the

value of is small, which implies a large weight along dimension . Consequently, the neigh-

borhood is shrunk along that direction. This, in turn, penalizes points along dimension that are

moving away from . Now, can be small only if the subspace spanned by the other input

dimensions at likely contains samples similar to in terms of the class conditional proba-

bilities. Then, a large weight assigned to dimension based on (4.8) says that moving away from

the subspace, hence from the data similar to , is not a good thing to do. Similarly, a large value of

, hence a small weight, indicates that in the vicinity of along dimension one is unlikely to

nd samples similar to . This corresponds to an elongation of the neighborhood along dimension

. Therefore, in this situation in order to better predict the query, one must look farther away from

.

So far we have considered estimating feature relevance along each individual dimension,

one at a time. However, there are situations where feature relevance can only be captured by exam-
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ining several feature variables simultaneously. That is, feature variables are not independent, and

there is a degree of correlation among them. It should be clear that, in the absence of any other

information, determining which feature subsets should be examined to estimate local relevance

adds considerable complexity to feature relevance computation. One way to decorrelate association

among the features is to rotate the feature dimensions so that they coincide with the eigenvectors of

a sample covariance matrix, as in [HT96a]. We do not perform such transformation in our experi-

ments.

Using full weight matrices relates to transforming the sample space. Principal compo-

nent analysis (PCA) [Mei72, DH73, Fuk90] (known in the communication theory literature as the

Karhunen-Löeve expansion) can transform a sample space, re-representing it with a list of polyno-

mial equations of the original features, ordered by nonincreasing variance. However, PCA’s bias is

not always appropriate for classication; features with low variance might actually have high pre-

dictive relevance. In fact, for the purposes of pattern classication, the most serious problem of the

approaches to global dimensionality reduction (e.g., PCA) is that they are overly concerned with

faithful representation of the data. Greatest emphasis is usually placed on those features or groups

of features that have the greatest variability. But, for classication, we are interested in discrimina-

tion, not representation. Roughly speaking, the most interesting features are the ones for which the

difference in the class means is large relative to the standard deviations, not the ones for which the

standard deviations are large.

In addition, traditional feature selection algorithms select certain dimensions in advance.

This can lead to a loss of information. As shown in Figure 3.1, a single feature may have different

degrees of relevance from location to location in input space. As a consequence, each dimension
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could be relevant to at least one of the classes. Thus, it may not always be feasible to prune off

too many dimensions without incurring a loss of crucial information. We solve this problem by

crediting to features the query-based weights dened in (4.8).

We observe that the reduction in prediction error considered by Friedman [Fri94], in our

notation, can be described by

(4.10)

where represents the expected value of . This measure reects the inuence of the th

input variable on the variation of at the particular point . In this case, the most infor-

mative input variable is the one that gives the largest deviation from the average value of .

One of the key differences between our relevance measure (4.6) and Friedman’s is the

rst term in the squared difference. While the class conditional probability is used in our relevance

measure, its expectation is used in Friedman’s. This difference is driven by two different objectives:

in the case of Friedman’s, the goal is to seek a dimension along which the expected variation of

is maximized, whereas in our case we seek a dimension that minimizes the difference be-

tween the class probability distribution for a given query and its conditional expectation along that

dimension (4.5).

Another fundamental difference is that the machete/scythe methods, like recursive parti-

tioning, employ a greedy peeling strategy that removes a subset of data points permanently from

further consideration. As a result, changes in an early split, due to any variability in parameter es-

timates, can have a signicant impact on later splits, thereby producing different terminal regions.

This makes predictions highly sensitive to the sampling uctuations associated with the random
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nature of the process that produces the training data, thus leading to high variance predictions. In

contrast, our technique employs a “patient” averaging strategy that takes into account not only the

test point itself, but also its nearest neighbors. As such, the resulting relevance estimates

(4.6) are in general more robust and have the potential to reduce the variance of the estimates, as

formally shown in Section 4.6 and demonstrated in our experiments.

4.4 Estimation

Here we discuss how to estimate the unknown quantities involved in our feature relevance

measure (4.5). In particular, since both and in (4.5) are unknown, we must

estimate them using the training data

in order for the relevance measure (4.6) to be useful in practice. Here . The quantity

is estimated by considering a neighborhood centered at :

(4.11)

where is an indicator function such that it returns 1 when its argument is true, and 0 otherwise.

To compute , we introduce an additional variable

such that

if

otherwise

where . We then have , from which it is not hard to show that
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However, since there may not be any data at , the data from the neighborhood of along

dimension are used to estimate , a strategy suggested in [Fri94]. In detail, by noticing

the estimate can be computed from

(4.12)

where is a neighborhood centered at (larger than ), and the value of is chosen so

that the interval contains a xed number of points:

(4.13)

Using the estimates in (4.11) and in (4.12), we obtain an empirical measure of the relevance (4.6)

for each input variable .

Given a test point , and input parameters , , , , , and :

1. Initialize in (6.4) to 1;
2. Compute the nearest neighbors of using the weighted distance metric (6.4);
3. For each dimension , , compute relevance estimate (4.6)

through Equations (4.11) and (4.12);
4. Update according to (4.7) or (4.8);
5. Iterate steps 2, 3, and 4 (zero and ve times in our experiments);
6. At completion, use , hence (4.9), for -nearest neighbor classication at the

test point .

Figure 4.2: The ADAMENN algorithm

4.5 Adaptive Metric Nearest Neighbor Algorithm

The adaptive metric nearest neighbor algorithm (ADAMENN) has six adjustable tuning

parameters:
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: the number of neighbors of the test point;

: the number of neighbors in for estimation (4.11);

: the size of the neighborhood for each of the neighbors for estimation (4.12);

: the number of points within the intervals;

: the number of neighbors in the nal nearest neighbor rule;

: the positive factor for the exponential weighting scheme (4.8).

Cross-validation can be used to determine the optimal values of the parameters. Note that

is common to all NN rules. We have considered the range of values for in our

experiments. is used to reduce the variance of the estimates; its value should be a small fraction

of . We set in our experiments. Often a smaller value is preferable for to

avoid biased estimates; in our experiments. We obtained optimal performance for

small values (one or three) of parameters and in all our experiments. and are common to

the machete and scythe algorithms described in [Fri94]. The values of and determine the bias

and variance trade-off for the estimation of . The way these estimates are used does

not require a high accuracy. As a consequence, ADAMENN performance is basically insensitive to

the values chosen for and , provided they are not too small (close to one), nor too large (close

to ). We set and in our experiments. The value of should increase as

the input query moves close to the decision boundary, so that highly stretched neighborhoods will

result. We chose empirically in our experiments, and considered the range of values .

Different values of the factor turned out to be optimal for different problems (5, 11, and 16).
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Arguably we have introduced a few more parameters that might potentially cause overt-

ting. However, it is important to realize that one of the parameters ( ) plays the role of averaging

or smoothing. Because it helps reduce variance, we can afford to have a few parameters that adapt to

produce modied neighborhoods having more homogeneous posterior probabilities, thereby reduc-

ing estimation bias. As a result, performance can be improved, as evidenced by the results shown

in Chapter 5.

At the beginning, the estimation of the values in (4.6) is accomplished by using a

weighted distance metric (6.4) with being initialized to 1. Then, the elements of are

updated according to values via (4.7) or (4.8). In our experiments, we tested both a linear and an

exponential weighting scheme. We obtained better results using the exponential scheme, therefore

we present the results for this case. The update of can be iterated. At completion, the resulting

is plugged in (6.4) to compute nearest neighbors at the test point .

4.6 Rationale for Averaging Relevance Estimate

In this section we show more formally that averaging in (4.6) potentially reduces the

overall mean-squared estimation error, thereby improving classication performance. Let be a

given query point. For each given dimension , our goal is to estimate :

(4.14)

Let be the estimator as dened by Equation (4.5), where is in . Then the aggre-

gated estimator
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is the average over of in a neighborhood of .

Lemma 1 The averaging of relevance estimate in (4.6) reduces the overall mean-squared estima-

tion error:

Proof: Assume is xed and is the relevance value for dimension at . Then the

combined mean-squared error of the estimates for all dimensions is

(4.15)

Applying to the third term in (4.15) gives

(4.16)

Integrating both sides of (4.16) over the joint distribution of and , we can conclude that

the mean-squared error of is lower than the mean-squared error of averaged over .

This concludes our proof.

We note that is a function of both and the probability distribution from which

the training data are drawn. Of course, our estimate (4.6) is not . Instead, it follows the

distribution that allocates to each . The gain in error reduction depends on how

unequal the two sides of (4.16) are. This is in direct analogy to improvement in performance that

can be achieved by bagging predictors [Bre96].
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4.7 Discussion

While it is difcult in general to answer the question of convergence of ADAMENN, we

can gain some insight into the issue in a way similar to that used in [HT96a]. Let be a diagonal

matrix, where the diagonal entries are dened by (4.8). Our weighted distance metric (4.9) can

be written as . At each step we take a spherical neighborhood of the query

point, compute the metric , and transform the feature vectors through . Thus,

the effective metric for the original feature vectors is , where

is the metric estimated at the th iteration. It follows that the xed point of the transformation

satises . That is, we have a xed point when is the identity matrix in the transformed

space. In such a space, all features have equal relevance. In practice, however, could only become

proportional to the identity matrix, since the diagonal entries (weights) are normalized. Therefore,

the stopping criterion is met when the diagonal entries of are all equal to in the transformed

space, in which case we still have equal relevance among the features.

As discussed in Section 4.3 we have considered estimating feature relevance along each

individual dimension, one at the time. A potential extension is to consider additional derived vari-

ables (features) for local relevance estimate, thereby contributing to the distance calculation. When

the derived features are more informative, huge gains may be expected. On the other hand, if they

are not informative enough, they may cause classication performance to degrade since they add

to the dimensionality count. The challenge is to be able to have a mechanism that computes such

informative derived features efciently.

The local nature of adaptation performed in ADAMENN makes the idea of considering
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derived variables particularly attractive. Derived variables can be customized to a specic query

point where prediction is to be made, thereby dening different derived variables for different query

points. Here, we consider derived variables that are linear combinations of the input features :

(4.17)

The challenge is to compute the values of the coefcients that make highly relevant. One

possibility consists of using ADAMENN to determine the relevant input features at and combine

them as in (4.17) by using as coefcients the corresponding weight values (4.8). It is reasonable to

expect, in fact, that the locally relevant features might be correlated, and by combining them we may

obtain a highly relevant derived variable. The relevant features to be included in (4.17) are those

whose relevance is above the average relevance value computed across all input variables. Once

has been derived, we run ADAMENN including as an input variable.

Since the above procedure is computationally costly, we may achieve an approximation

by partitioning the input space into regions and producing for each region good discriminant linear

combination of variables. We can rely on discriminant analysis for producing such derived variables,

either by considering all classes (represented in current region) collectively, or by isolating one class

at a time. Then, for a given query point , the derived variables to be considered are the ones pre-

computed for the region that has the largest overlap with a neighborhood region centered at .
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Chapter 5

ADAMENN: Experimental Evaluation

This chapter presents an extensive experimental evaluation comparing ADAMENN with

well-known techniques in the literature, using both simulated and real data.

5.1 Methods Compared

We use both simulated and real data to evaluate the performance of ADAMENN and

compare it with several competing methods. The simulated data experiments allow us to reliably

predict the strengths and limitations of algorithms because the precise nature of the problem the

algorithms are facing is known. We compare the following classication approaches:

ADAMENN-adaptive metric nearest neighbor described in Figure 4.2 (one iteration), coupled

with the exponential weighting scheme (4.8);

i-ADAMENN-adaptive metric nearest neighbor with ve iterations;

Simple K-NN method using the Euclidean distance measure;
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C4.5 decision tree method [Qui93];

Machete [Fri94] (see Chapter 3);

Scythe [Fri94] (see Chapter 3);

DANN-discriminant adaptive nearest neighbor classication [HT96a] (see Chapter 3);

i-DANN-discriminant adaptive nearest neighbor classication [HT96a] with ve iterations.

We focus the experimental evaluation on locally adaptive techniques, since ADAMENN

belongs to this category. While enhanced performance is expected by boosting C4.5, all adaptive

algorithms considered here could also be boosted. We do not include any boosting method in this

study.

In all the experiments, the features are rst normalized over the training data to have zero

mean and unit variance, and the test data features are normalized using the corresponding training

mean and variance.

5.1.1 Choice of Tuning Parameters

Procedural parameters for each method were determined empirically through cross-validation

over the training data. Details for setting the parameters of ADAMENN are provided in Section 4.5.

We have considered the range of values for in the K-NN method.

The machete and scythe algorithms have the same and input parameters as ADAMENN.

We apply the same guidelines described in Section 4.5 to set them. In addition, for the machete and

scythe techniques we need to specify the rate at which the sample size decreases in the sequence
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of regions produced by the successive splitting ( parameter in [Fri94]). We set in our

experiments.

The DANN algorithm has two adjustable parameters: the number of nearest neighbors

of the query point for estimation of the metric, and the number of neighbors in the nal nearest

neighbor rule. We set the rst parameter as for ADAMENN, i.e. equal to . For

the second parameter, we again consider the range of values .

5.2 Experiments on Simulated Data

For all simulated data, 20 independent training samples (of size ) were generated. For

each of these, an additional independent test sample consisting of 500 observations was generated.

These test data were classied by each competing method using the respective training data set.

Error rates computed over all 10,000 such classications are reported in Table 5.1.

5.2.1 The Problems

1. This problem is taken from [Fri94], and designed to be favorable to the adaptive meth-

ods (ADAMENN/DANN/scythe/machete/C4.5), and unfavorable to the regular K-NN procedure.

There are input features, training data, and classes. The data for the rst

class were generated from a standard normal distribution . The data for the second

class were also generated from a normal distribution , with the coordinate mean

values and covariance matrix given by
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Although all input variables are relevant, the ones with higher coordinate number are more so.

Also, since only the diagonal elements of the covariance matrix are non zeros, much of the discrim-

inating information is axis oriented. The rst column of Table 5.1 shows the results for the eight

methods under comparison, with standard deviations: 1.86, 1.36, 1.98, 1.78, 1.19, 1.62, 1.16 and

1.18 respectively. i-DANN had the lowest error rate, with DANN exhibiting similar performance.

As expected, the K-NN procedure had the poorest performance for this problem.

2. This problem is adapted from [HT96a], and consists of four dimensional spheres with 6 noise

features. There are input features, training data, and classes. The last

6 features are noise variables, with standard Gaussian distributions, independent of each other and

the class membership. The data for both classes are generated from a standard normal distribution.

The data for class one have the property that the radius, computed from the rst four features, is

greater than 1.85 while the data for class two do not have such restriction. Class one basically

surrounds class two in the subspace spanned by the rst four features. Results are shown in the

second column of Table 5.1. The standard deviations are: 2.30, 2.83, 2.73, 1.56, 2.44, 2.59, 3.17,

and 2.26 respectively. C4.5 is by far the best performer in this case. Machete gives the second best

performance, with i-DANN and i-ADAMENN being close to it. K-NN performs very poorly on this

problem.

3. This example is also taken from [Fri94]. It is designed to be more favorable to the K-NN

procedure, since all the input variables have the same global relevance. As before there are

input features and classes, but training data. The data for both classes are generated
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from a standard normal distribution , and the classes are dened by

The third column of Table 5.1 shows the results for this example, with the standard deviations:

2.09, 2.01, 2.35, 2.74, 2.71, 1.97, 2.36 and 1.73 respectively. The K-NN procedure exhibits a more

competitive performance with the adaptive techniques, even though it still has the worst error rate.

i-DANN shows the best performance for this problem. DANN gives a similar result, with C4.5

being the closest to it. Note that for this example, the performance of ADAMENN doesn’t improve

by performing ve iterations.

4. This example is again taken from [Fri94]. It is constructed so that all input variables have equal

local relevance everywhere in the input space. However, there is a single direction in the space that

contains all the discriminant information. There are input features, training data,

and classes. The data for both classes are generated from a standard normal distribution

, and the classes are dened by

Results are shown in the fourth column of Table 5.1. The standard deviations are: 2.32, 1.83, 1.62,

2.06, 1.92, 1.99, 2.20 and 1.86. i-DANN gives the best performance, with DANN being very close to

it. K-NN performs well because all variables are equally locally relevant everywhere. ADAMENN

and i-ADAMENN come close to it, showing that with our adaptive method we don’t loose much

when all variables are equally relevant. For this example, the performance of ADAMENN improves

only slightly by performing 5 iterations. C4.5 is the worst performer in this case.
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5. This problem is adapted from [HT96a]. There are input features, training

data, and classes. Each class contains six spherical bivariate normal subclasses, having

standard deviation 0.25. The means of the 12 subclasses are chosen at random without replacement

from the integers . For each class, data are evenly drawn from each of

the six normal subclasses. The fth column of Table 5.1 shows the results for this problem, with

standard deviations: 0.83, 0.78, 0.86, 6.01, 0.82, 0.76, 1.11 and 1.20, respectively. ADAMENN,

i-ADAMENN and scythe show the best performance for this problem. K-NN and machete give

similar results. C4.5 is again the worst performer.

6. This problem is taken from [HT96a]. There are input features, training data,

and classes. Each class contains three spherical bivariate normal subclasses, having standard

deviation 0.25. As in the previous example, the means of the 12 subclasses are chosen at random

without replacement from the integers . For each class, data are evenly

drawn from each of the three normal subclasses. Results are shown in the sixth column of Table 5.1.

The standard deviations are: 1.46, 1.37, 1.19, 8.57, 5.04, 5.36, 1.69 and 1.75, respectively. For this

problem ADAMENN, i-ADAMENN and K-NN give the best performance. DANN shows a similar

result. Again, the worst performer is C4.5.

7. This problem is also taken from [HT96a]. There are input features, training

data, and classes. The data for this problem are generated as in the previous example, but

augmented with eight predictors having independent standard Gaussian distributions. They serve

as noise. The seventh column of Table 5.1 shows the results, with standard deviations: 3.93, 3.66,

8.02, 16.84, 5.31, 4.96, 8.31 and 7.74, respectively. ADAMENN is by far the best performer in this
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case, with only i-ADAMENN coming close to it. K-NN gives the worst performance in this case.

5.2.2 Results

Table 5.1 shows that, for each method, there is at least one example for which it has the

best performance, or close to the best. Therefore, it seems natural to ask the question of robustness.

That is, how well a particular method performs on average in situations that are most favorable to

other procedures. Following Friedman [Fri94], we capture robustness by computing the ratio of

its error rate and the smallest error rate over all methods being compared in a particular example:

Thus, the best method for that example has , and all other methods have larger values

, for . The larger the value of , the worse the performance of method is in

relation to the best one for that example, among the methods being compared. The distribution of

the values for each method over all the examples, therefore, seems to be a good indicator

concerning its robustness. For example, if a particular method has an error rate close to the best in

every problem, its values should be densely distributed around the value 1. Any method whose

value distribution deviates from this ideal distribution reect its lack of robustness.

Figure 5.1 plots the distribution of for each method over the seven simulated data sets.

The dark area represents the lower and upper quartiles of the distribution that are separated by the

median. The outer vertical lines show the entire range of values for the distribution. It is clear that

the most robust method over the simulated data is i-ADAMENN. In 4/7 of the data its error rate was

no worse than higher than the best error rate. In the worst case it was . In contrast, C4.5
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Table 5.1: Average classification error rates for simulated data.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7
ADAMENN 9.9 23.9 33.7 20.8 2.4 3.3 12.8

i-ADAMENN 8.3 23.1 33.7 20.3 2.4 3.3 14.2
K-NN 14.7 33.9 36.1 18.1 2.5 3.3 50.7
C4.5 10.3 14.6 30.6 30.1 25.5 31.7 38.2

Machete 7.1 21.7 33.0 25.7 2.6 14.5 20.1
Scythe 7.9 25.6 32.7 22.2 2.4 21.3 38.1
DANN 6.2 25.3 26.7 13.3 2.8 4.2 37.6

i-DANN 5.3 22.8 25.4 13.2 3.1 6.1 26.7

has the worst distribution, where the corresponding numbers are and .

DANN and i-DANN performed well in examples 1, 3 and 4, where the data were gen-

erated from Gaussian distributions. This might be attributed to the fact that the distance metric

computed by DANN approximates the weighted Chi-squared distance (4.3), only when class densi-

ties are Gaussian and have the same covariance matrix. This may also explain DANN’s performance

degradation in those examples where data do not follow Gaussian distributions or are corrupted by

noise.

5.3 Experiments on Real Data

While simulated data are informative for comparison studies, it is highly likely that arti-

cially constructed examples will not correspond to situations that are likely to occur in practice.

Thus, in this section we examine the performance of the competing classication methods using

real world data. One of the advantages of real data is that they are generated without any knowledge

of the classication procedures that it will be used to test.
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Figure 5.1: Performance distributions for simulated data.

In our experiments we used nine different real data sets. The Iris, Sonar, Vowel, Glass,

Segmentation, Letter, Liver, and Lung data are taken from UCI Machine Learning Repository at

http://www.cs.uci.edu/ mlearn/MLRepository.html. The Image data are obtained from MIT Media

Lab at ftp://whitechapel.media.mit.edu/pub/VisTex. If an attribute of a data set has missing values,

we eliminate that feature from the entire set. For the Iris, Sonar, Glass, Liver, and Lung data we

perform leave-one-out cross-validation to measure performance. For the Vowel and Image data we

randomly divide the data into a training set of 200 data points and a test set consisting of the re-

maining data points (320 for the Vowel data and 440 for the Image data). We repeat this process

10 times independently, and report the average cross-validation error rates for these two data sets.

On the Segmentation and Letter data we perform two 10-fold cross-validation. We randomly divide
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the data into 10 sets of equal size and use one of them in turn as a test set and the remaining nine

as a training set. We repeat this process two times independently and report the two 10-fold cross-

validation error rates for these two data sets. Table 5.2 shows the cross-validated error rates for the

eight methods under consideration on the nine real data.

5.3.1 The Problems

1. Iris data. This data set consists of measurements made on each of iris plants

of species. The two species are iris versicolor and iris virginica. The problem is to classify

each test point to its correct species based on the four measurements. The results on this data set are

shown in the rst column of Table 5.2.

2. Sonar data. This data set consists of frequency measurements made on each of

data of classes (“mines” and “rocks”). The problem is to classify each test point in the 60-

dimensional feature space to its correct class. The results on this data set are shown in the second

column of Table 5.2.

3. Vowel data. This example has measurements and classes. There are

samples in this example. Results are shown in the third column of Table 5.2, having standard

deviations: 2.82, 3.06, 2.56, 3.68, 2.82, 2.30, 3.06 and 2.93 respectively.

4. Glass data. This data set consists of chemical attributes measured for each of

data of classes. The problem is to classify each test point in the 9-dimensional space to its

correct class. Results are shown in the fourth column of Table 5.2.
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Figure 5.2: Sample images taken from the Image database.

5. Image data. This data set consists of 40 texture images that are manually classied into 15

classes. Each of these images is then cut into 16 non-overlapping images of , giving rise

to a total of 640 images in the database. Sample images are shown in Figure 5.2. The number of

images in each class varies from 16 to 80. The images in this database are represented by

dimensional feature vectors (8 Gabor lters: 2 scales and 4 orientations). The mean and the standard

deviation of the magnitude of the transform coefcients are used as feature components, after being

normalized by the standard deviations of the respective features, over the entire set of images in the

database. Results are shown in the fth column of Table 5.2. The standard deviations are: 0.78,

1.31, 1.21, 3.0, 1.69, 1.57, 2.23 and 3.35 respectively.

6. Segmentation data. This data set consists of images that were drawn randomly from a database

of 7 outdoor images. The images were hand segmented by the creators of the database to classify

each pixel. Each image is a region. There are classes, each of which has 330 instances. Thus,
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there are images in the database. These images are represented by real valued

attributes. Results are shown in the sixth column of Table 5.2. The standard deviations are: 0.91,

1.07, 1.27, 1.15, 1.17, 1.28, 0.91 and 1.10, respectively.

7. Letter Image Recognition data. This data set consists of numerical attributes and

classes. The objective is to identify each of a large number of black-and-white rectangular

pixel displays as one of the 26 capital letters in the English alphabet. Sample images are shown

in Figure 5.3. The character images were based on 20 different fonts and each letter within these

20 fonts was randomly distorted to produce a le of 20,000 unique stimuli. Each stimulus was

converted into 16 primitive numerical attributes (statistical moments and edge counts) which were

then scaled to t into a range of integer values from 0 through 15. Results are shown in the seventh

column of Table 5.2. The standard deviations are: 0.78, 0.71, 0.91, 0.88, 0.87, 0.87, 1.14 and 0.86,

respectively.

8. Liver data. This data set has attribute values regarding blood test results and drinking

habits. There are classes, establishing the liver disorder condition, and samples.

The results on this data set are shown in the eighth column of Table 5.2.

9. Lung data. This data set has attribute values, classes, and samples. The

results on this data set are shown in the ninth column of Table 5.2.

5.3.2 Results

Table 5.2 shows that ADAMENN achieved the best performance in 5/9 of the real data

sets, followed closely by i-ADAMENN. For three of the remaining data sets, ADAMENN has

68



Figure 5.3: Sample letter images.

the second best performance. As shown in Figure 5.4, the spread of the error distribution for

ADAMENN is narrow and close to 1. The spread for i-ADAMENN has a similar behavior. The

results clearly demonstrate that they obtained the most robust performance over these data sets.

Similar characteristics were also observed for the two methods over the simulated data sets. This

could be attributed to the fact that local feature relevance estimate in ADAMENN is conducted over

regions in the feature space instead of using individual points, as is done in machete and scythe

[Fri94]. This observation is corroborated by our discussion in Section 4.6.

5.4 Bias and Variance Calculations

For a two-class problem with , we compute a nearest neighborhood

at a query and nd the nearest neighbor having class label (random variable). The

estimate of is . The bias and variance of are: and
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Table 5.2: Average classification error rates for real data.

Iris Sonar Vowel Glass Image Seg Letter Liver Lung
ADAMENN 3.0 9.1 10.7 24.8 5.2 2.4 5.1 30.7 40.6

i-ADAMENN 5.0 9.6 10.9 24.8 5.2 2.5 5.3 30.4 40.6
K-NN 6.0 12.5 11.8 28.0 6.1 3.6 6.9 32.5 50.0
C4.5 8.0 23.1 36.7 31.8 21.6 3.7 16.4 38.3 59.4

Machete 5.0 21.2 20.2 28.0 12.3 3.2 9.1 27.5 50.0
Scythe 4.0 16.3 15.5 27.1 5.0 3.3 7.2 27.5 50.0
DANN 6.0 7.7 12.5 27.1 12.9 2.5 3.1 30.1 46.9

i-DANN 6.0 9.1 21.8 26.6 18.1 3.7 6.1 27.8 40.6

, where the expectation is computed over the distribution of the nearest

neighbor [HT96a].

We performed simulations to estimate the bias and variance of ADAMENN, K-NN, DANN

and Machete on the following two-class problem. There are input features and 180 training

data. Each class contains three spherical bivariate normal subclasses, having standard deviation

0.75. The means of the 6 subclasses are chosen at random without replacement from the integers

. For each class, data are evenly drawn from each of the normal sub-

classes. Figures 5.5 and 5.6 show the bias and variance estimates from each method at locations

and , as a function of the number of noise variables over ve inde-

pendently generated training sets. Figure 5.4 shows the corresponding mean squared errors. Here

the noise variables have independent standard Gaussian distributions. The true probability of class

1 for and are 0.943 and 0.747, respectively.

The four methods have similar variance, since they all use three neighbors for classi-

cation. While the bias of K-NN and DANN increases with increasing number of noise variables,
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ADAMENN retains a low bias by averaging out noise.
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Figure 5.4: Performance distributions for real data.

5.5 Summary

We have presented an adaptive nearest neighbor method for effective pattern classica-

tion. This method estimates a exible metric for producing neighborhoods that are elongated along

less relevant feature dimensions and constricted along most inuential ones. As a result, the class

conditional probabilities are more homogeneous in the modied neighborhoods. The experimental

results using both simulated and real data show clearly that the ADAMENN algorithm can poten-

tially improve the performance of K-NN and recursive partitioning methods in some classication

problems, especially when the relative inuence of input features changes with the location of the
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Figure 5.5: Bias and variance estimates at location .

query to be classied in the input feature space. The results are also in favor of ADAMENN over

other adaptive methods such as machete and DANN. It is interesting to note that our work can po-

tentially serve as a general framework upon which to develop a unied adaptive metric theory that

encompasses both Friedman’s work and that of Hastie and Tibshirani.
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Figure 5.6: Bias and variance estimates .
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Figure 5.7: Mean Squared Errors for the Bias and Variance estimates in Figures 5.5 and
5.6.
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Chapter 6

Local Flexible Metric Classification

using Support Vector Machines

The major limitation of the ADAMENN algorithm concerns efciency issues. The lazy

learning approach employed by ADAMENN requires a considerable amount of on-line computa-

tion, which makes it difcult for such technique to scale up to large data sets. In this chapter we dis-

cuss a novel locally adaptive metric classication method which, although still founded on a query

based weighting mechanism, computes off-line the information relevant to dene local weights.

The new technique computes a locally exible metric by means of support vector machines. The

maximum margin boundary found by the SVM is used to determine the most discriminant direction

over the query’s neighborhood. Such direction provides a local weighting scheme for input features.
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6.1 Introduction

The lazy learning approach used by ADAMENN, while appealing in many ways, requires

a considerable amount of on-line computation, which makes it difcult for such technique to scale

up to large data sets. The feature weighting scheme it introduces, in fact, is query based and is ap-

plied on-line when the test point is presented to the lazy learner. In this chapter we discuss a locally

adaptive metric classication method which, although still founded on a query based weighting

mechanism, computes off-line the information relevant to dene local weights.

"a

bc

a a’

.
..

..

X

Y

Figure 6.1: Amount of elongation-constriction decays as the query moves further from the
boundary vicinity.

Our technique uses support vector machines (SVMs) as a guidance for the process of

dening a local exible metric [DG01b, DG02]. SVMs have been successfully used as a classi-

cation tool in a variety of areas [LJB+95, OFG97, Joa98, PV98, JH98, VCC99, BGL+00, Joa02,
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DPV+02], and the maximum margin boundary they provide has been proved to be optimal in a

structural risk minimization sense. The solid theoretical foundations that have inspired SVMs con-

vey desirable computational and learning theoretic properties to the SVM’s learning algorithm, and

therefore SVMs are a natural choice for seeking local discriminant directions between classes.

The solution provided by SVMs allows to determine locations in input space where class

conditional probabilities are likely to be not constant, and guides the extraction of local information

in such areas. This process produces highly stretched neighborhoods along boundary directions

when the query is close to the boundary. As a result, the class conditional probabilities tend to be

constant in the modied neighborhoods, whereby better classication performance can be achieved.

The amount of elongation-constriction decays as the query moves farther from the boundary vicin-

ity. This phenomenon is exemplied in Figure 6.1 by queries , and . In the next chapter we

present experimental evidence of the accuracy achieved by means of this local weighting scheme.

The sparse solution given by SVMs also provides principled guidelines to efciently set

the input parameters of our technique. This is a major advantage over the ADAMENN technique,

which has a competitive behavior but requires six tunable input parameters.

Furthermore, the technique proposed here speeds up the classication process since it

computes off-line the information relevant to dene local weights, and applies the nearest neighbor

rule only once, whereas ADAMENN applies it at each point within a region centered at the query.

Indeed, the major strength of our technique is that is capable of providing local feature weightings

using a global decision scheme, specically the SVM boundary. This mechanism allows an off-line

computation of the relevant information to dene weights, leaving only local renements to an on-
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line stage. This results in a method which is more efcient than current local adaptive techniques

for nearest neighbor classication [Fri94, HT96a, DPG00a, DPG00b], which act iteratively on the

computation of neighborhoods.

6.2 Feature Weighting

The maximum margin boundary found by the SVM is used here to determine local dis-

criminant directions over query’s neighborhoods. The normal direction to local decision boundaries

identies the orientation along which data points between classes are well separated. The gradient

vector computed at points on the boundary allows us to capture such information, and to use it for

measuring local feature relevance and weighting features accordingly. Formally, the denition of

our weighting scheme proceeds as follows.

SVMs classify patterns according to the , where is dened as in equation

(2.35). Since SVMs are well suited for two class classication problems, we restrict the discussion

to such case, i.e., we assume that class labels . Clearly, in the general case of a

non-linear feature mapping , the SVM classier gives a non-linear boundary in input

space. The gradient vector , computed at any point of the level curve ,

gives the perpendicular direction to the decision boundary in input space at . As such, the vector

identies the orientation in input space on which the projected training data are well separated,

locally over ’s neighborhood. Therefore, the orientation given by , and any orientation close

to it, is highly informative for the classication task at hand, and we can use such information to

dene a local measure of feature relevance.

Let be a query point whose class label we want to predict. Suppose is close to the
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boundary, which is where class conditional probabilities become locally non uniform, and therefore

estimation of local feature relevance becomes crucial. Let be the closest point to on the

boundary : , subject to the constraint . Then we

know that the gradient identies a direction along which data points between classes are well

separated.

As a consequence, the subspace spanned by the orientation intersects the decision

boundary and contains changes in class labels. Therefore, when applying a nearest neighbor rule at

, we desire to stay close to along the direction, because that is where it is likely to nd points

similar to in terms of the class conditional probabilities. Distances should be constricted (large

weight) along and along directions close to it, thus excluding from ’s neighborhood points

along that are far from . The farther we move from the direction, the less discriminant the

correspondent orientation becomes. This means that class labels are likely not to change along those

orientations, and distances should be elongated (small weight), thus including in ’s neighborhood

points which are likely to be similar to in terms of the class conditional probabilities.

This principle is in analogy with a local linear discriminant analysis approach. In fact, the

orientation of the gradient vector identies the direction, locally at the query point, on which the

projected training data are well separated. This property guides the process of generating modied

neighborhoods with homogeneous class conditional probabilities.

Formally, we can measure how close a direction is to by considering the dot product

. In particular, by denoting with the unit vector along input feature , for , we
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can dene a measure of relevance for feature , locally at (and therefore at ), as

(6.1)

where .

The measure of feature relevance, as a weighting scheme, can then be given by

(6.2)

where , giving rise to linear and quadratic weightings, respectively. We propose the follow-

ing exponential weighting scheme

(6.3)

where is a parameter that can be chosen to maximize (minimize) the inuence of on .

When we have , thereby ignoring any difference between the ’s. On the

other hand, when is large a change in will be exponentially reected in . The exponential

weighting is more sensitive to changes in local feature relevance (6.1), and in general gives rise to

better performance improvement. In fact, the exponential weighting scheme conveys stability to

the method by preventing neighborhoods to extend innitely in any direction. This is achieved by

avoiding zero weights, which is instead allowed by the linear and quadratic weightings.

Thus, (6.3) can be used as weights associated with features for weighted distance compu-

tation

(6.4)

is the analogous of the parameter in equation 4.8
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These weights enable the neighborhood to elongate less important feature dimensions, and, at the

same time, to constrict the most inuential ones. Note that the technique is query-based because

weightings depend on the query [Aha97, AMS97].

One may be tempted to use the weights directly in the SVM classication, by ap-

plying the weighted distance measure (6.4) in (2.35). By doing so, we would compute the weighted

distances of the query point from all support vectors, and therefore we would employ the weights

for global distance computation over the whole input space. On the other hand, the weights

are based on the local (to ) orientation of the decision boundary, and therefore they are

meaningful for local distance computation of from its neighbors. The weights , in fact,

convey information on how distances should be constricted or elongated locally at : we desire

to achieve constricted distances along directions close to the gradient direction, and elongated dis-

tances along directions far from the gradient direction. Accordingly, a locally adaptive nearest

neighbor technique allows us to take into consideration only the closest neighbors (according to the

learned weighted metric) in the classication process.

6.3 Local Flexible Metric Classification based on SVMs

To estimate the closest point to the query on the boundary, we move from the query point

along the input axes (in both directions) at distances proportional to a given small step (whose initial

value can be arbitrarily small, and doubled at each iteration till the boundary is crossed). We stop

as soon as the boundary is crossed along one of the input axes, say axis , i.e. when a point

is reached that satises the condition . Given , we can get

arbitrarily close to the boundary by moving at (arbitrarily) small steps along the segment that joins
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to .

Let us denote with the intercepted point on the boundary along direction . We then

approximate with the gradient vector , computed at .

We desire that the parameter in the exponential weighting scheme (6.3) increases as

the distance of from the boundary decreases. By using the knowledge that support vectors are

mostly located around the boundary surface, we can estimate how close a query point is to the

boundary by computing its distance from the closest non bounded support vector:

(6.5)

where the minimum is taken over the non bounded ( ) support vectors . Following

the same principle, in [AW99] the spatial resolution around the boundary is increased by enlarging

volume elements locally in neighborhoods of support vectors.

Then, we can achieve our goal by setting

(6.6)

where is a constant input parameter of the algorithm. In our experiments we set equal to the

approximated average distance between the training points and the boundary:

(6.7)

By doing so the value of nicely adapts to each query point according to its location with

respect to the boundary. The closer is to the decision boundary, the higher the effect of the ’s

values will be on distances computation.
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Input: Decision boundary produced by an SVM; query point and param-
eter .

1. Compute the approximated closest point to on the boundary;
2. Compute the gradient vector ;
3. Set feature relevance values for ;
4. Estimate the distance of from the boundary as: ;
5. Set , where is dened as in equation (6.7);
6. Set according to (6.3);
7. Use the resulting for -nearest neighbor classication at the query point .

Figure 6.2: The LFM-SVM algorithm

We observe that this principled guideline for setting the parameters of our technique takes

advantage of the sparseness representation of the solution provided by the SVM. In fact, for each

query point , in order to compute we only need to consider the support vectors, whose

number is typically small compared to the total number of training examples. Furthermore, the

computation of ’s value is carried out once and off-line, since it does not depend on the query

The resulting local exible metric technique based on SVMs (LFM-SVM) is summarized

in Figure 6.2. The algorithm has only one adjustable tuning parameter, namely the number of

neighbors in the nal nearest neighbor rule. This parameter is common to all nearest neighbor

classication techniques.

In [AW99], Amari and Wu improve support vector machine classiers by modifying ker-

nel functions. A primary kernel is rst used to obtain support vectors. The kernel is then modied

in a data dependent way by using the information of the support vectors: the factor that drives the

transformation has larger values at positions close to support vectors. The modied kernel enlarges
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the spatial resolution around the boundary so that the separability of classes is increased.

The resulting transformation depends on the distance of data points from the support

vectors, and it is therefore a local transformation, but is independent of the boundary’s orientation

in input space. Likewise, our transformation metric depends on the distance of the query point from

the support vectors; this dependence is driven by the factor in the exponential weighting scheme

(6.3), which is dened in (6.6). Moreover, since we weight features, our metric is directional, and

depends on the orientation of local boundaries in input space. This dependence is driven by the

measure of feature relevance (6.1), which has the effect of increasing the spatial resolution along

discriminant directions around the boundary.

6.4 Weighting Features Increases the Margin

In this section we formally show that our weighting scheme increases the margin of the

solution provided by the SVM. Our discussion holds for Gaussian kernels. This property explains

the performance improvements achieved by our method over the SVM alone, as shown in our ex-

periments. The same argument holds for polynomial kernels with an odd exponent also. The ow

of the reasoning for a polynomial kernel is similar to the Gaussian one, and we omit it.

Lemma 2 The weighting scheme performed by the LFM-SVM algorithm increases the margin of

the solution provided in input by the SVM.

Proof: Consider the Gaussian radial basis function kernel (which we use in our experiments):

(6.8)
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The expression of the decision boundary in equation (2.35) becomes

(6.9)

Consider now the component of the gradient vector computed

with respect to x at point d:

(6.10)

where is the closest point to the query on the boundary. Our local measure of relevance (6.1)

for feature is then given by

(6.11)

We partition in and , i.e. , where is the set of support

vectors with label , and is the set of support vectors with label . We can

rewrite equation (6.11) as follows:

(6.12)

We want to identify the conditions that make large. We observe that , , and

the exponentials in (6.12) are all positive terms. A large value for is obtained when the

terms are all positive for and all negative for , or vice versa. These

conditions are satised when

(6.13)

or

(6.14)
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Figure 6.3: Illustration of a case in which conditions (6.13) are satisfied. Negative support
vectors are represented as “x” and positive support vectors are denoted with “o”. Along
feature , separates the positive support vectors from the negative ones. Along feature

support vectors with opposite sign shuffle. A large weight is assigned to feature and a
small weight to feature .

Figure 6.4 illustrates a case in which conditions (6.13) are satised. Along the orientation identied

by feature , separates the positive support vectors from the negative ones. As a consequence,

the value of is large, and a large weight is assigned to feature . On the other hand, along

the orientation identied by feature , the negative support vectors mix with the positive support

vectors. Therefore, the terms becomes positive and negative for different within either

or , and cancel each other in equation (6.12). As a result, the value of is small,

and a small weight is assigned to feature .
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By assigning a large weight to feature in Figure 6.4, and in general to input features

close to the gradient direction, locally in neighborhood of support vectors, we increase the distance

between the support vectors in and . This corresponds to improve the separability of

classes along those orientations, and therefore the margin. As a consequence, better classication

results can be achieved as also demonstrated in our experiments.
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Chapter 7

LFM-SVM: Experimental Evaluation

This chapter presents an extensive experimental evaluation comparing LFM-SVM with a

variety of classication approaches, including SVMs and ADAMENN.

7.1 Methods Compared

In the following we compare several classication methods using both simulated and real

data. We compare the following classication approaches:

LFM-SVM algorithm described in Figure 6.2. [Joa99] with radial basis kernels is

used to build the SVM classier.

RBF-SVM classier with radial basis kernels. We used [Joa99], and set the value

of in equal to the optimal one determined via cross-validation. Also

the value of for the soft-margin classier is optimized via cross-validation. The output of

this classier is the input of LFM-SVM.
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ADAMENN-adaptive metric nearest neighbor technique described in Chapter 4.

Machete [Fri94] (see Chapter 3).

Scythe [Fri94] (see Chapter 3).

DANN-discriminant adaptive nearest neighbor classication [HT96a] (see Chapter 3).

Simple K-NN method using the Euclidean distance measure.

C4.5 decision tree method [Qui93].

In all the experiments, the features are rst normalized over the training data to have zero

mean and unit variance, and the test data features are normalized using the corresponding training

mean and variance. Procedural parameters for each method were determined empirically through

cross-validation over the training data, as described in Section 5.1.1. Each problem involves two

classes.

7.2 Experiments on Simulated Data

For all simulated data, 10 independent training samples of size 200 were generated. For

each of these, an additional independent test sample consisting of 200 observations was generated.

These test data were classied by each competing method using the respective training data set.

Error rates computed over all 2,000 such classications are reported in Table 7.1.
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7.2.1 The Problems

Multi-Gaussians. The data set consists of input features, training data, and

classes. Each class contains two spherical bivariate normal subclasses, having standard deviation 1.

The mean vectors for one class are and ; whereas for the other class are

and . For each class, data are evenly drawn from each of the two normal subclasses. The

rst column of Table 7.1 shows the results for this problem. The standard deviations are: 0.17, 0.01,

0.01, 0.01, 0.01 0.01, 0.01 and 1.50, respectively.

Noisy-Gaussians. The data set consists of input features, training data, and

classes. The data for this problem are generated as in the previous example, but augmented with

four predictors having independent standard Gaussian distributions. They serve as noise. For each

class, data are evenly drawn from each of the two normal subclasses. Results are shown in the

second column of Table 7.1. The standard deviations are: 0.18, 0.01, 0.02, 0.01, 0.01, 0.01, 0.01

and 1.60, respectively.

7.2.2 Results

Table 7.1 shows that all methods have similar performances for the MultiGaussians prob-

lem, with C4.5 being the worst performer. When the noisy predictors are added to the problem

(NoisyGaussians), we observe different levels of deterioration in performance among the eight

methods. LFM-SVM shows the most robust behavior in presence of noise. K-NN is instead the

worst performer. We also observe that C4.5 has similar error rates in both cases; we noticed, in fact,

that for the majority of the 10 independent trials we run it uses only the rst two input features to
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build the decision tree. In Figure 7.2.2 we plot the performances of LFM-SVM and RBF-SVM as

a function of an increasing number of noisy features (for the same MultiGaussians problem). The

standard deviations for RBF-SVM (in order of increasing number of noisy features) are: 0.01, 0.01,

0.03, 0.03, 0.03 and 0.03. The standard deviations for LFM-SVM are: 0.17, 0.18, 0.2, 0.3, 0.3 and

0.3. The LFM-SVM technique shows a considerable improvement over RBF-SVM as the amount

of noise increases.

Table 7.1: Average classification error rates for simulated data.

MultiGauss NoisyGauss
LFM-SVM 3.3 3.4
RBF-SVM 3.3 5.3

ADAMENN 3.4 4.1
Machete 3.4 4.3
Scythe 3.4 4.8
DANN 3.7 4.7
K-NN 3.3 7.0
C4.5 5.0 5.1
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Figure 7.1: Average error rates of LFM-SVM and RBF-SVM as a function of an increasing
number of noisy predictors.
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7.3 Experiments on Real Data

In our experiments we used seven different real data sets. They are all taken from UCI

Machine Learning Repository at http://www.cs.uci.edu/ mlearn/MLRepository.html. If an attribute

of a data set has missing values, we eliminate that feature from the entire set. For the Iris, Sonar,

Liver and Vote data we perform leave-one-out cross-validation to measure performance, since the

number of available data is limited for these data sets. For the Breast, OQ-letter and Pima data

we randomly generated ve independent training sets of size 200. For each of these, an additional

independent test sample consisting of 200 observations was generated. Table 7.2 shows the cross-

validated error rates for the eight methods under consideration on the seven real data.

7.3.1 The Problems

1. Iris data. See Section 5.3.1 for a description. The results on this data set are shown in the rst

column of Table 7.2.

2. Sonar data. See Section 5.3.1 for a description. The results on this data set are shown in the

second column of Table 7.2.

3. Liver data. See Section 5.3.1 for a description. The results on this data set are shown in the third

column of Table 7.2.

4. Vote data. This data set includes votes for each of the U.S. House of Representatives Congress-

men on the 16 key votes identied by the CQA. The data set consists of instances after

removing missing values, and classes (democrat and republican). The instances are repre-

sented by boolean valued features. The average leave-one-out cross-validation error rates
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are shown in the fourth column of Table 7.2.

5. Wisconsin breast cancer data. The data set consists of medical input features that

are used to make a binary decision on the medical condition: determining whether the cancer is

malignant or benign. The data set contains examples after removing missing values. Average

error rates for this problem are shown in the fth column of Table 7.2. The standard deviations are:

0.2, 0.2, 0.2, 0.2, 0.2, 0.9, 0.9 and 0.9, respectively.

6. OQ data. This data set consists of numerical attributes and classes. The objective

is to identify black-and-white rectangular pixel displays as one of the two capital letters “O” and

“Q” in the English alphabet. There are instances in this data set. The character images

were based on 20 different fonts, and each letter within these 20 fonts was randomly distorted to

produce a le of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical

attributes (statistical moments and edge counts) which were then scaled to t into a range of integer

values from 0 through 15. The average error rates over ve independent runs are shown in the

sixth column of Table 7.2. The standard deviations are: 0.2, 0.2, 0.2, 0.3, 0.2, 1.1, 1.5 and 2.1,

respectively.

7. Pima Indians Diabete data. This data set consists of numerical medical attributes and

classes (tested positive or negative for diabetes). There are instances. Average

error rates over ve independent runs are shown in the seventh column of Table 7.2. The standard

deviations are: 0.4, 0.4, 0.4, 0.4, 0.4, 2.4, 2.1 and 0.7, respectively.
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Table 7.2: Average classification error rates for real data

Iris Sonar Liver Vote Breast OQ Pima
LFM-SVM 4.0 11.0 28.1 2.6 3.0 3.5 19.3
RBF-SVM 4.0 12.0 26.1 3.0 3.1 3.4 21.3

ADAMENN 3.0 9.1 30.7 3.0 3.2 3.1 20.4
Machete 5.0 21.2 27.5 3.4 3.5 7.4 20.4
Scythe 4.0 16.3 27.5 3.4 2.7 5.0 20.0
DANN 6.0 7.7 30.1 3.0 2.2 4.0 22.2
K-NN 6.0 12.5 32.5 7.8 2.7 5.4 24.2
C4.5 8.0 23.1 38.3 3.4 4.1 9.2 23.8

7.3.2 Results

Table 7.2 shows that LFM-SVM achieves the best performance in 2/7 of the real data sets;

in one case it shows the second best performance, and in the remaining four its error rate is still quite

close to the best one.

It seems natural to quantify this notion of robustness; that is, how well a particular method

performs on average across the problems taken into consideration. Following Friedman [Fri94],

we capture robustness by computing the ratio of the error rate of method and the smallest

error rate over all methods being compared in a particular example:

Figure 7.2 plots the distribution of for each method over the seven real data sets.

The dark area represents the lower and upper quartiles of the distribution that are separated by the

median. The outer vertical lines show the entire range of values for the distribution. The outer

vertical lines for the LFM-SVM method are not visible because they coincide with the limits of the
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Figure 7.2: Performance distributions for real data.

lower and upper quartiles. The spread of the error distribution for LFM-SVM is narrow and close

to one. The spread for ADAMENN has a similar behavior. The results clearly demonstrate that

LFM-SVM and ADAMENN obtained the most robust performance over the data sets.

The poor performance of the machete and C4.5 methods might be due to the greedy

strategy they employ. Such recursive peeling strategy removes at each step a subset of data points

permanently from further consideration. As a result, changes in an early split, due to any variability

in parameter estimates, can have a signicant impact on later splits, thereby producing different

terminal regions. This makes predictions highly sensitive to the sampling uctuations associated

with the random nature of the process that produces the traning data, thus leading to high variance

predictions. The scythe algorithm, by relaxing the winner-take-all splitting strategy of the machete

algorithm, mitigates the greedy nature of the approach, and thereby achieves better performance.

In [HT96a], the authors show that the metric employed by the DANN algorithm approxi-

mates the weighted Chi-squared distance, given that class densities are Gaussian and have the same

covariance matrix. As a consequence, we may expect a degradation in performance when the data

do not follow Gaussian distributions and are corrupted by noise, which is likely the case in real
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scenarios like the ones tested here.

We observe that the sparse solution given by SVMs provides LFM-SVM with principled

guidelines to efciently set the input parameters. This is an important advantage over ADAMENN,

which has six tunable input parameters. Furthermore, LFM-SVM speeds up the classication pro-

cess since it applies the nearest neighbor rule only once, whereas ADAMENN applies it at each

point within a region centered at the query. We also observe that the construction of the SVM for

LFM-SVM is carried out off-line only once, and there exist algorithmic and computational results

which make SVM training practical also for large-scale problems [Joa99, Pla99, CP00], and ex-

tend the SVM learning algorithm in an incremental fashion [SLS99, MMP00, DG01a]. The major

limitation of the LFM-SVM algorithm is that, like support vector machines, can be applied to clas-

sication problems with two classes only. On the other hand, ADAMENN, like nearest neighbor

methods, can be applied to problems with an arbitrary number of classes.

The LFM-SVM offers performance improvements over the RBF-SVM algorithm alone,

for both the (noisy) simulated and real data sets. The reason for such performance gain may rely on

the effect of our local weighting scheme on the separability of classes, and therefore on the margin,

as shown in Section 6.4. Assigning large weights to input features close to the gradient direction,

locally in neighborhoods of support vectors, corresponds to increase the spatial resolution along

those orientations, and therefore to improve the separability of classes. As a consequence, better

classication results can be achieved as demonstrated in our experiments.
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7.4 Discussion

We have described a locally adaptive metric classication method and demonstrated its

efcacy through experimental results. The proposed technique offers performance improvements

over the SVM alone, and has the potential of scaling up to large data sets. It speeds up, in fact,

the classication process by computing off-line the information relevant to dene local weights.

It also applies the nearest neighbor rule only once, whereas ADAMENN applies it at each point

within a region centered at the query. LFM-SVM benets from the sparse solution given by SVMs,

and efciently set the input parameters according to principled guidelines. The major advantage

of ADAMENN over LFM-SVM is that is well suited for problems with an arbitrary numbers of

classes.

A considerable amount of work has been done for efcient discovery of nearest neighbors.

Unfortunately, all methods suffer from the curse of dimensionality, and therefore they become less

effective in high dimensions. Our scheme could also be used to improve the effectiveness of nearest

neighbor search in high dimensions by virtue of the local dimensionality reduction resulting from

the feature weights. We intend to further explore this direction of research in our future work.
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Chapter 8

Within-Cluster Adaptive Metric for

Clustering

In this chapter, we introduce an algorithm that discovers clusters in subspaces spanned

by different combinations of dimensions via local weightings of features. This approach avoids

the risk of loss of information encountered in global dimensionality reduction techniques. Our

method associates to each cluster a weight vector, whose values give information of the degree of

relevance of features for each set in the partition. We formally prove that our algorithm converges,

and experimentally demonstrate (Chapter 9) the gain in perfomance we achieve with our method.

8.1 Introduction

The clustering problem concerns the discovery of homogeneous groups of data according

to a certain similarity measure. It has been studied extensively in statistics [AH96], machine learning
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[MS83, CS96], and database communities [NH94, EKX95, ZRL96].

Given a set of multi-dimensional data, (partitional) clustering nds a partition of the points

into clusters such that the points within a cluster are more similar to each other than to points in

different clusters. The popular -means or -medoids methods compute one representative point

per cluster, and assign each object to the cluster with the closest representative, so that the sum of

the squared differences between the objects and their representatives is minimized. Finding a set of

representative vectors for clouds of multi-dimensional data is an important issue in data compression

[GG91], signal coding [Ger82, GG91], pattern classication [DH73], and function approximation

tasks [MD89, PG90].

Clustering suffers from the curse of dimensionality problem in high dimensional spaces.

In high dimensional spaces, it is highly likely that, for any given pair of points within the same

cluster, there exist at least a few dimensions on which the points are far apart from each other. It is

not meaningful to look for clusters in such a high dimensional space as the average density of points

anywhere in input space is likely to be low. As a consequence, distance functions that equally use

all input features may be ineffective.

Furthermore, several clusters may exist in different subspaces, comprised of different

combinations of features. In many real world problems, in fact, some points are correlated with

respect to a given set of dimensions, and others are correlated with respect to different dimensions.

Each dimension could be relevant to at least one of the clusters.

The problem of high dimensionality could be addressed by requiring the user to specify a

subspace (i.e., subset of dimensions) for cluster analysis. However, the identication of subspaces
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by the user is an error-prone process. More importantly, correlations that identify clusters in the data

are likely not to be known by the user. Indeed, we desire such correlations, and induced subspaces,

to be part of the ndings of the clustering process itself.

An alternative solution to high dimensional settings consists in reducing the dimensional-

ity of the input space. Traditional feature selection algorithms select certain dimensions in advance.

Methods such as PCA [DH73, Fuk90] transform the original input space into a lower dimensional

space by constructing dimensions that are linear combinations of the given features, and are ordered

by nonincreasing variance. While PCA may succeed in reducing the dimensionality, it has major

drawbacks. The new dimensions can be difcult to interpret, making it hard to understand clusters

in relation to the original space. Furthermore, all global dimensionality reduction techniques (like

PCA) are not effective in identifying clusters that may exist in different subspaces. In this situation,

in fact, since data across clusters manifest different correlations with features, it may not always be

feasible to prune off too many dimensions without incurring a loss of crucial information. This is

because each dimension could be relevant to at least one of the clusters.

These limitations of global dimensionality reduction techniques suggest that, to capture

the local correlations of data, a proper feature selection procedure should operate locally in input

space. Local feature selection allows to embed different distance measures in different regions of

the input space; such distance metrics reect local correlations of data. In this paper we propose

a soft feature selection procedure that assigns (local) weights to features according to the local

correlations of data along each dimension. Dimensions along which data are loosely correlated

receive a small weight, that has the effect of elongating distances along that dimension. Features

along which data are strongly correlated receive a large weight, that has the effect of constricting
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distances along that dimension. Figure 8.1 gives a simple example. The left plot depicts two clusters

of data elongated along the and dimensions. The right plot shows the same clusters, where

within-cluster distances between points are computed using the respective local weights generated

by our algorithm (GenProClus). The weight values reect local correlations of data, and reshape

each cluster as a dense spherical cloud. This directional local reshaping of distances better separates

clusters, and allows for the discover of different patterns in different subspaces of the original input

space.
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Figure 8.1: (Left) Clusters in original input space. (Right) Clusters transformed by local
weights.

8.2 Related Work

Local dimensionality reduction approaches for the purpose of efciently indexing high di-

mensional spaces have been recently discussed in the database literature [TCL98, CM00, KCM+01].

Applying global dimensionality reduction techniques when data are not globally correlated can

cause signicant loss of distance information, resulting in a large number of false positives and

hence a high query cost. The general approach adopted by the authors is to nd local correlations in

the data, and perform dimensionality reduction on the locally correlated clusters individually. For
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example, in [CM00], the authors rst construct spatial clusters in the original input space using a

simple tecnique that resembles K-means. Principal component analysis is then performed on each

spatial cluster individually to obtain the principal components.

In general, the efcacy of these methods depends on how the clustering problem is ad-

dressed in the rst place in the original feature space. A potential serious problem with such tech-

niques is the lack of data to locally perform PCA on each cluster to derive the principal components.

Moreover, for clustering purposes, the new dimensions may be difcult to interpret, making it hard

to understand clusters in relation to the original space.

The problem of nding different clusters in different subspaces of the original input space

has been addressed in [AGG+98]. The authors use a density based approach to identify clusters. The

algorithm (CLIQUE) proceeds from lower to higher dimensionality subspaces and discovers dense

regions in each subspace. To approximate the density of the points, the input space is partitioned

into cells by dividing each dimension into the same number of equal length intervals. For a given

set of dimensions, the cross product of the corresponding intervals (one for each dimension in the

set) is called a unit in the respective subspace. A unit is dense if the number of points it contains is

above a given threshold . Both and are parameters dened by the user. The algorithm nds all

dense units in each -dimensional subspace by building from the dense units of -dimensional

subspaces, and then connects them to describe the clusters as union of maximal rectangles.

While the work in [AGG+98] successfully introduces a methodology for looking at dif-

ferent subspaces for different clusters, it does not compute a partitioning of the data into disjoint

groups. The reported dense regions largely overlap, since for a given dense region all its projections
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on lower dimensionality subspaces are also dense, and they all get reported. On the other hand,

for many applications such as customer segmentation and trend analysis, a partition of the data is

desirable since it provides a clear interpretability of the results.

[DB00] also addresses the problem of feature selection to nd clusters hidden in high

dimensional data. The authors search through feature subset space, evaluating each subset by rst

clustering in the corresponding subspace, and then evaluating the resulting clusters and feature sub-

set using the chosen feature selection criterion. The two feature selection criteria investigated are

the scatter separability used in discriminant analysis [Fuk90], and a maximum likelihood criterion.

A sequential forward greedy strategy [Fuk90] is employed to search through possible feature sub-

sets. We observe that dimensionality reduction is performed globally in this case. Therefore, the

technique in [DB00] is expected to be effective when a data set contains some relevant features and

some irrelevant (noisy) ones, across all clusters.

The problem of nding different clusters in different subspaces is also addressed in [APW+99].

The proposed algorithm (PROjected CLUStering) seeks subsets of dimensions such that the points

are closely clustered in the corresponding spanned subspaces. Both the number of clusters and

the average number of dimensions per cluster are user-dened parameters. PROCLUS starts with

choosing a random set of medoids, and then progressively improves the quality of medoids by per-

forming an iterative hill climbing procedure that discards the ’bad’ medoids from the current set. In

order to nd the set of dimensions that matter the most for each cluster, the algorithm selects the

dimensions along which the points have the smallest average distance from the current medoid. The

authors do not prove that the algorithm converges to the optimality criterion they choose.
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Our method (that we call GENeralized PROjected CLUStering) can be seen as a general-

ization of PROCLUS. Our method does not require to specify the average number of dimensions to

be kept per cluster. For each cluster, in fact, all features are taken into consideration, but properly

weighted. The PROCLUS algorithm is more prone to loss of information if the number of dimen-

sions is not properly chosen. For example, if data of two clusters in two dimensions are distributed

as in Figure 8.2, PROCLUS may nd that feature is the most important for cluster 0, and feature

is the most important for cluster 1. But projecting cluster 1 along the dimension doesn’t allow

to properly separate points of the two clusters. We avoid this problem by keeping both dimensions

for both clusters, and properly weighting distances along each feature within each cluster.

Generative approaches have also been developed for local dimensionality reduction and

clustering. The approach in [GH96] makes use of maximum likelihood factor analysis to model

local correlations between features. The resulting generative model obeys the distribution of a

mixture of factor analyzers. An expectation-maximization algorithm is presented for tting the

parameters of the mixture of factor analyzers. The choice of the number of factor analyzers, and the

number of factors in each analyzer (that drives the dimensionality reduction) remain an important

open issue for the approach in [GH96].

[TB99] extends the single PCA model to a mixture of local linear sub-models to cap-

ture nonlinear structure in the data. A mixture of principal component analyzers model is derived

as a solution to a maximum-likelihood problem. An EM algorithm is formulated to estimate the

parameters.

103



-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

y

x

Cluster0
Cluster1

Figure 8.2: Distributions of two clusters in two dimensions.

While the methods in [GH96, TB99], as well as the standard mixture of Gaussians tech-

nique, are generative and parametric, GenProClus can be seen as an attempt to directly estimate from

the data local correlations between features. Furthermore, both mixture models in [GH96, TB99]

inherit the soft clustering component of the EM update equations. On the contrary, GenProClus

computes a partitioning of the data into disjoint groups. As previously mentioned, for many data

mining applications a partition of the data is desirable since it provides a clear interpretability of

the results. We nally observe that, while mixture of Gaussians models, with arbitrary covariance

matrices, could in principle capture local correlations along any directions, lack of data to locally

estimate full covariance matrices in high dimensional spaces is a serious problem in practice.

8.3 Problem Statement

We dene what we call weighted cluster. Consider a set of points in some space of

dimensionality . A weighted cluster is a subset of data points, together with a vector of weights
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, such that the points in are closely clustered according to the norm distance

weighted using . The component measures the degree of correlation of points in along

feature . The problem becomes now how to estimate the weight vector for each cluster in the

data set.

In this setting, the concept of cluster is not based only on points, but also involves a

weighted distance metric, i.e., clusters are been discovered in spaces transformed by . Each cluster

is associated with its own , that reects the correlation of points in the cluster itself. The effect

of is to transform distances so that the associated cluster is reshaped into a dense hypersphere of

points separated from other data.

In traditional clustering, the partition of a set of points is induced by a set of representative

vectors, also called centroids or centers. The partition induced by discovering weighted clusters is

formally dened as follows.

Definition Given a set of points in -dimensional Euclidean space, a set of centers

, , , coupled with a set of corresponding weight vectors ,

, , partition into sets :

(8.1)

The set of centers and weights is optimal with respect to the Euclidean norm, if they

minimize the error measure:
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(8.2)

subject to the constraints . and are matrices whose column vectors

are and respectively, i.e. and . and are dened as

follows:

(8.3)

(8.4)

where is the cardinality of set . represents the average distance from the centroid of

points in cluster along dimension , and is the largest of such average distances .

The minimization of the error function as dened in (8.2) has a specic geometric

interpretation. The optimal solution aims to minimize, for each cluster, the (exponential of the) dis-

crepancy between the largest spread ( ) of data along each dimension, and each of such spreads

( ). As a result, in the space transformed by optimal weights, the corresponding cluster has the

shape of a hypersphere well separated from other data. The exponential function in (8.2) has the

effect of making the weights more sensitive to the discrepancy , and therefore to

changes in local feature relevance. As a consequence, clusters are better separated in the trans-

formed spaces, and large performance improvements can be achieved as also demonstrated with our

experimental results.

In the following we present an algorithm that nds a solution (set of centers and weights)

that is a local minimum of the error function (8.2).
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8.4 Generalized Projected Clustering Algorithm

We start with well-scattered points in as the centroids: we choose the rst centroid at

random, and select the others so that they are far from one another, and from the rst chosen center.

We initially set the values of weights to 1. We progressively improve the quality of the centroids

and of the weights by investigating the space near the centers, in order to estimate the dimensions

that matter the most, i.e. the dimensions along which local data are mostly correlated. Specically,

we proceed as follows.

Given the initial centroids , for , we compute the corresponding sets

as dened in (8.1), where and . We then compute the average distance along each

dimension from the points in to . Let denote this average distance along dimension , and

let the largest average distance among the dimensions for cluster . The smaller is, the

larger is the correlation of points along dimension . Thus, the difference gives us a value

that is proportional to the amount of correlation of points along feature . Let . We

use the value in an exponential weighting scheme to credit weights to features (and to clusters):

(8.5)

where is a parameter that can be chosen to maximize (minimize) the inuence of on .

When we have , thereby ignoring any difference between the . On the other

hand, when is large a change in will be exponentially reected in . We empirically de-

termine the value of through cross-validation in our experiments. The exponential weighting is

more sensitive to changes in local feature relevance [BV92] and gives rise to better performance

is the analogous of the parameter in equation 4.8, and of the parameter in equation 6.3
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improvement. In fact, it is more stable because it prevents distances from extending innitely in any

direction, i.e., zero weight. This, however, can occur when either linear or quadratic weighting is

used.

These weights enable to elongate distances along less important dimensions, i.e. di-

mensions along which points are loosely correlated, and, at the same time, to constrict distances

along the most inuential ones, i.e. features along which points are strongly correlated. Note that

the technique is centroid-based because weightings depend on the centroid.

The computed weights are used in equation (8.1) to update the sets . Then, the new

partition is used to recompute the centroid coordinates:

for each , where is the indicator function of set . The procedure is iterated

until convergence is reached, that is when no change in the coordinates of centers is observed. The

resulting algorithm, that we call GenProClus, is summarized in Figure 8.3.

8.5 Convergence of the GenProClus Algorithm

To formally prove convergence of the GenProClus algorithm we need an error function

that is differentiable with respect to both and . We observe that the error measure in (8.2),

while sound in theory, is not differentiable due to the denition of in terms of a function.

We solve this problem by substituting with a value that measures the largest spread of the

projections of data in any dimensions. We observe that is constant given the data set, and therefore

does not depend on or . provides an upper bound for all , . Thus, the
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Input: points , and the number of clusters .

1. Start with initial centroids ;
2. Set , for each centroid , and each feature ;
3. For each centroid , , and for each data point :

Set ,
where ;

4. Compute new weights:
For each centroid , , and for each feature :

Set , where is the cardinality of set ;
Set ;
Set ;
Set ;

5. For each centroid , , and for each data point :
Recompute ;

6. Compute new centroids:
Set , for each , where is the indicator function
of set ;

7. Iterate 3, 4, 5, and 6 until convergence (i.e., no change in centroid coordinates)

Output: Set of centroid and weight vectors , , for .

Figure 8.3: The GenProClus algorithm
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resulting error function obeys the same principle that motivates the original error measure (8.2).

The resulting error function to be considered is:

(8.6)

where , , and is dened in equation (8.4).

Our objective becomes the minimization of (8.6) subject to the constraints . We

can solve this constrained optimization problem by introducing the Lagrange multipliers (one

for each constraint), and minimizing the resulting (unconstrained now) error function

(8.7)

We prove the following theorem.

Theorem 1 The GenProClus algorithm converges to a local minimum of the error function (8.7).

Proof: For a xed partition and xed , we compute the optimal by setting

and . We obtain:

(8.8)

(8.9)

Solving equation (8.8) with respect to we obtain . Substituting this

expression in equation (8.9), and solving with respect to we obtain .
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Thus, the optimal is

(8.10)

as in Step 4 of the GenProClus algorithm.

For a xed partition and xed , we compute the optimal by setting . We

obtain:

(8.11)

Solving equation (8.11) with respect to we obtain:

(8.12)

as in Step 6 of the GenProClus algorithm.

The algorithm consists in repeatedly replacing and with and using equations

(8.10) and (8.12), respectively. The value of the error function at completion of each iteration is

, where we explicit the dependence of on the partition of points computed

in Step 5 of the algorithm. and are the matrices of the newly computed centroids and

weights. Since the new partition computed in Step 3 of the successive iteration is by denition

the best assignment of points to the centroids according to the weighted Euclidean distance

with weights , we have the following inequality:

(8.13)

Using this result, and the identities and
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, we can derive the following inequality:

(8.14)

where the last inequality (8.14) is derived by using the denitions of and .

Thus, each iteration of the algorithm decreases the lower bounded error function E (8.7)

until the error reaches a xed point where conditions , are veried. The xed

points and give a local minimum of the error function .

It is interesting to point out the analogy of this derivation with the mathematics of the EM

algorithm [DLR77]. The hidden variables are the assignments of the points to the centroids. Step 3

constitutes the E step of the EM algorithm: it nds the values of the hidden variables given the

previous values of the parameters and . The following step (M step) consists in nding new

matrices of weights and centroids that minimize and respectively.
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Chapter 9

GenProClus: Experimental Evaluation

This chapter presents an experimental evaluation comparing GenProClus, EM for mix-

tures of Gaussians, and K-means algorithms, using a variety of simulated data sets.

9.1 Experimental Settings

In our experiments we have designed nine different simulated data sets. Clusters are

distributed according to multivariate gaussians with different mean and standard deviation vec-

tors. We have tested problems with two and three clusters up to 50 dimensions. For each prob-

lem, we have generated 10 training data sets, and for each of them an independent test set. In

the following we report performance results obtained via 10-fold cross-validation comparing Gen-

ProClus, EM and K-means algorithms. The Matlab code written by David Corney available at

http://www.cs.ucl.ac.uk/staff/D.Corney/ClusteringMatlab.html was used for the EM algorithm. The

centroids for the three algorithms are initialized by choosing well-scattered points among the
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given data. EM estimates full covariance matrices. To facilitate the interpretation of weight values,

we require that in our experiments, by properly adjusting the normalization factor

of the weighting scheme (8.5).

9.1.1 The Problems

1. Example1. This data set consists of attributes and clusters. Data for one cluster are

generated from a multivariate normal distribution with mean vector and standard deviations

. Data for the other cluster are generated from a normal distribution with mean vector

and standard deviations . Figure 9.1 shows the distributions of data for the two clusters. Av-

erage results obtained over 10 independent training and testing sets of size 2000 each are shown in

Table 9.1.

2. Example2. This data set consists of attributes and clusters. One cluster is drawn

from a multivariate normal distribution with mean vector , and standard deviations .

The second cluster is drawn again form a multivariate normal distribution with mean vector ,

and standard deviations . Average results obtained over 10 independent training and testing

sets of size 2000 each are shown in Table 9.1.

3. Example3. This data set consists of input features and clusters. Both clusters are

distributed according to multivariate gaussians. Mean vector and standard deviations for one cluster

are are respectively. For the other cluster the vectors are and .

Figures 9.1.1-9.3 shows the two clusters projected in , , and spaces respectively.

Table 9.1 shows the results for this problem. We generated 40000 data points, and performed 10-fold

cross-validation with 20000 training data and 20000 testing data.

114



4. Example4. This data set consists of input features and clusters. Both clusters are

distributed according to multivariate gaussians. Mean vector and standard deviations for one cluster

are and , respectively. For the other cluster the vectors are

and . Table 9.1 shows the results for this problem. We generated 40000 data points,

and performed 10-fold cross-validation with 20000 training data and 20000 testing data.

5. Example5. This data set consists of input features and clusters. All three clusters are

distributed according to multivariate gaussians. Mean vector and standard deviations for one cluster

are are , respectively. For the second cluster the vectors are and , and for

the third are and . Table 9.1 shows the results for this problem. We generated 60000

data points, and performed 10-fold cross-validation with 30000 training data and 30000 testing data.

6. Example6. This data set consists of input features and clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for one

cluster are and respectively. For the other cluster the vectors

are and . Table 9.1 shows the results for this problem. We

generated 40000 data points, and performed 10-fold cross-validation with 20000 training data and

20000 testing data.

7. Example7. This data set consists of input features and clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for one

cluster are and , respectively. For the other cluster the vectors are

and . Table 9.1 shows the results for this problem. We generated

10000 data points, and performed 10-fold cross-validation with 5000 training and 5000 testing data.
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8. Example8. This data set consists of input features and clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for one

cluster are and , respectively. For the other cluster the vectors

are and . Table 9.1 shows the results for this problem. We

generated 10000 data points, and performed 10-fold cross-validation with 5000 training data and

5000 testing data.

9. Example9. This data set consists of input features and clusters. Both clusters

are distributed according to multivariate gaussians. Mean vector and standard deviations for one

cluster are and , respectively. For the other cluster the vectors

are and . Table 9.1 shows the results for this problem. We

generated 10000 data points, and performed 10-fold cross-validation with 5000 training data and

5000 testing data.

10. OQ data. See Section 7.3.1 for a description. Table 9.1 shows the results for this data set.

Table 9.1: Average error rates.

GenProClus EM K-Means
Ex1 2.7 0.3 2.5 0.3 11.9 3.3
Ex2 0.9 0.2 0.9 0.2 7.2 0.7
Ex3 7.0 0.4 6.6 0.6 19.2 2.9
Ex4 4.8 0.3 4.5 0.4 35.1 9.4
Ex5 11.4 0.3 5.0 0.4 24.2 0.5
Ex6 0.1 0.06 0.1 0.06 42.2 6.6
Ex7 0.5 0.4 0.9 0.4 49.2 1.8
Ex8 0.6 0.4 0.9 0.4 49.3 1.6
Ex9 0.08 0.1 0.9 0.5 53.2 8.5
OQ 46.9 49.9 47.1
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Table 9.2: Average number of iterations.

Ex1 Ex2 Ex3 Ex4 Ex5 Ex6 Ex7 Ex8 Ex9
GenProClus 5.3 3.9 6.1 5.4 7.2 3.1 3.2 3.2 3.0

K-Means 16.1 10.7 28.5 33.8 16.8 32.7 16.1 15.3 19.4

Table 9.3: GenProClus: Confusion matrix for Example1.

C0 (input) C1 (input)
C0 (output) 9917 464
C1 (output) 83 9536

Table 9.4: K-means: Confusion matrix for Example1.

C0 (input) C1 (input)
C0 (output) 8364 737
C1 (output) 1636 9263

Table 9.5: GenProClus: Weight values for Example1.

Cluster Std1 Std2
C0 1 4 0.999 0.001
C1 4 1 0.045 0.955

Table 9.6: GenProClus: Confusion matrix for Example2.

C0 (input) C1 (input)
C0 (output) 9895 72
C1 (output) 105 9928
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Figure 9.1: Example1: distributions of clusters.

Table 9.7: K-means: Confusion matrix for Example2.

C0 (input) C1 (input)
C0 (output) 8578 25
C1 (output) 1422 9975

9.1.2 Results

The performance results reported in Table 9.1 clearly demonstrate the large gain in perfor-

mance obtained by the GenProClus algorithm against K-means. In particular, the large error rates of

K-means for the 10, 30, and 50 dimensional data sets (Examples 6, 7, 8, and 9) show how ineffective

a distance function that equally use all input features can be in moderately high dimensional spaces.

The gain in performance achieved by locally weighting features is huge in these cases.

GenProClus and EM show similar performances for data sets up to 10 dimensions. As

expected, EM performs well on Gaussian distributed data. In higher dimensions (Examples 7, 8,
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Table 9.8: GenProClus: Weight values for Example2.

Cluster Std1 Std2 Std3
C0 1 4 1 0.40 0.02 0.58
C1 1 1 4 0.33 0.66 0.01

Table 9.9: GenProClus: Confusion matrix for Example3.

C0 (input) C1 (input)
C0 (output) 9313 705
C1 (output) 687 9295

Table 9.10: K-means: Confusion matrix for Example3.

C0 (input) C1 (input)
C0 (output) 7786 1629
C1 (output) 2214 8371

Table 9.11: GenProClus: Weight values for Example3.

Cluster Std1 Std2 Std3
C0 1 4 1 0.22 0.01 0.77
C1 1 1 4 0.21 0.78 0.01

Table 9.12: GenProClus: Confusion matrix for Example4.

C0 (input) C1 (input)
C0 (output) 9688 654
C1 (output) 312 9346
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Table 9.13: K-means: Confusion matrix for Example4.

C0 (input) C1 (input)
C0 (output) 7249 4265
C1 (output) 2751 5735

Table 9.14: GenProClus: Weight values for Example4.

Cluster Std1 Std2 Std3 Std4 Std5
C0 1 4 1 4 1 0.49 0.02 0.05 0.02 0.42
C1 4 1 1 1 4 0.04 0.45 0.05 0.45 0.01

Table 9.15: GenProClus: Confusion matrix for Example5.

C0 (input) C1 (input) C2 (input)
C0 (output) 8315 0 15
C1 (output) 1676 10000 1712
C2 (output) 9 0 8273

Table 9.16: K-means: Confusion matrix for Example5.

C0 (input) C1 (input) C2 (input)
C0 (output) 9440 4686 400
C1 (output) 411 3953 266
C2 (output) 149 1361 9334
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Figure 9.2: Example3: (Left) Distributions of clusters in x-y space. (Right) Distributions of
clusters in x-z space.

Table 9.17: GenProClus: Weight values for Example5.

Cluster Std1 Std2
C0 4 1 0.46 0.54
C1 1 4 0.99 0.01
C2 4 1 0.45 0.55

and 9) GenProClus performs consistently better than EM. In particular, in 50 dimensions (Example

9), the error rate of GenProClus is one order of magnitude smaller. In high dimensional spaces,

accurate local estimations of full covariance matrices cannot be achieved due to lack of data.

We have also tested the algorithms on a real data set, the OQ data. All three algorithms

have large error rates. This shows the high intrinsic difculty of solving clustering problems. EM

has the worst performance in this case. The similar performances of GenProClus and K-means

show that we don’t gain much by local weightings of features for this specic problem. Large

gains are expected in general when clusters are to be discovered in subspaces spanned by different
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Figure 9.3: Example3: Distributions of clusters in y-z space.

combinations of dimensions.

Table 9.2 shows the average number of iterations performed by GenProClus and K-means

to achieve convergence. For each problem, the rate of convergence of GenProClus is at least three

times faster (except for Example 5 where is 2.3 times faster); for Example 6 is 10 times faster.

To further test the accuracy of the algorithms, for each problem we have computed the

confusion matrices. The entry in each confusion matrix is equal to the number of points

assigned to output cluster , that were generated as part of input cluster . We also report the

average weight values per cluster obtained over the 10 runs conducted in our experiments. Results

are reported in Tables 9.3-9.20.

Tables 9.5, 9.8, 9.11, 9.14, 9.17 and 9.20 show that there is a perfect correspondence

between the weight values of each cluster and the correlation patterns of data within the same

cluster. This is of great importance for applications that require not only a good partitioning of data,

but also information to what features are relevant for each partition. Figures 9.1.1 and 9.3 show the
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data distributions of the two clusters of Example 3 projected in the , , and planes,

respectively. We observe that data of cluster 0 are closely correlated in the subspace , whereas

data of cluster 1 are closely correlated in the subspace . Table 9.11 shows that the resulting

weight values reect such local correlations, i.e., larger weights and are credited to cluster 0,

and larger weights and are credited to cluster 1.

As expected, the resulting weight values for one cluster depends on the congurations of

other clusters as well. If clusters have the same standard deviation along one dimension , they re-

ceive almost identical weights for measuring distances along that feature. This is informative of the

fact that feature is equally relevant for both partitions. On the other hand, weight values are largely

differentiated when two clusters have different standard deviation values along the same dimension

, implying different degree of relevance of feature for the two partitions (see for example Tables

9.11, 9.14, and 9.17).

9.2 Summary

We have formalized the problem of nding different clusters in different subspaces. Our

algorithm discovers clusters in subspaces spanned by different combinations of dimensions via local

weightings of features. This approach avoids the risk of loss of information encountered in global

dimensionality reduction techniques.

The output of our algorithm is twofold. It provides a partition of the data, so that the

points in each set of the partition constitute a cluster. In addition, each set is associated with a weight

vector, whose values give information of the degree of relevance of features for each partition. Our

experiments show that there is a perfect correspondence between the weight values of each cluster
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and local correlations of data.

We have formally proved that our algorithm converges to a local minimum of the associ-

ated error function, and experimentally demonstrated the gain in perfomance we achieve with our

method in high dimensional spaces with clusters folded in subspaces spanned by different combi-

nations of features.

Table 9.18: GenProClus: Confusion matrix for Example6.

C0 (input) C1 (input)
C0 (output) 9992 11
C1 (output) 8 9989

Table 9.19: K-means: Confusion matrix for Example6.

C0 (input) C1 (input)
C0 (output) 5933 4372
C1 (output) 4067 5628

Table 9.20: GenProClus: Weight values for Example6.

Cluster
C0 0.21 0.005 0.19 0.005 0.19 0.005 0.19 0.005 0.19 0.01
C1 0.01 0.19 0.005 0.19 0.01 0.20 0.01 0.19 0.005 0.19
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Table 9.21: GenProClus: Confusion matrix for Example7.

C0 (input) C1 (input)
C0 (output) 2486 13
C1 (output) 14 2487

Table 9.22: K-means: Confusion matrix for Example7.

C0 (input) C1 (input)
C0 (output) 1274 1236
C1 (output) 1226 1264

Table 9.23: GenProClus: Confusion matrix for Example8.

C0 (input) C1 (input)
C0 (output) 2485 13
C1 (output) 15 2487

Table 9.24: K-means: Confusion matrix for Example8.

C0 (input) C1 (input)
C0 (output) 1270 1233
C1 (output) 1230 1267

Table 9.25: GenProClus: Confusion matrix for Example9.

C0 (input) C1 (input)
C0 (output) 2497 1
C1 (output) 3 2499
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Table 9.26: K-means: Confusion matrix for Example9.

C0 (input) C1 (input)
C0 (output) 1227 1245
C1 (output) 1273 1255
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Chapter 10

Locally Adaptive Bandwidths for Kernel

Density Estimation

In this chapter, we propose a locally adaptive technique to address the problem of setting

the bandwidth parameters for kernel density estimation. Our technique is efcient and can be per-

formed in only two data passes. We also show how to apply our technique to efciently solve range

query approximation, classication and clustering problems for large data sets [DG01c].

10.1 Introduction

The application of nearest neighbor techniques on large data sets can be time and resource

consuming [BFR98]. In this chapter we introduce an efcient approximation technique based on

the observation that the density of the data set contains useful information for both the classication

and clustering tasks. For classication, the main point is that, given a query, the values of the

127



class density functions over the space around it quantify the contribution of the correspondent class

within a neighborhood of the query point. The larger the contribution of a given class is, the larger

is the likelihood for the query to belong to that class. As for clustering, local maxima of the density

function of the data set could represent cluster centers. A hill-climbing procedure applied at a given

point, would identify its density attractor.

The same approach can be applied to estimate multidimensional range queries: the value

of the integral of the estimated density, computed over the volume dened by the range query,

will give an approximation of its selectivity. Answering range queries, is one of the simpler data

exploration tasks. However, when the number of dimensions increases, recent results [WSB98]

show that the query time is linear to the size of the data set. Thus, the problem of efciently

approximating the selectivity of range queries arises naturally.

For a compact representation of the density of a data set, we use kernel density estimation

methods. Kernel methods pose the problem of setting the bandwidth parameters. Current work on

this problem in statistics has addressed only the one dimensional case satisfactorily [Sco92]. Ap-

proximately optimal bandwidth parameters in the multi-dimensional case have been obtained only

for the special case in which the following conditions are all true: (i) the attributes are independent,

(ii) the distribution along each dimension is Gaussian and (iii) all bandwidths, for all kernels and

dimensions, are to be set to the same value [Sco92]. For example, one solution to the problem

of computing the bandwidths is given by Scott’s rule [Sco92], which estimates one bandwidth pa-

rameter per attribute, by setting its value to a quantity proportional to the standard deviation of the

sample on that attribute. The rule assumes attribute independence.
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To achieve more accurate results we propose an adaptive bandwidth estimation technique

that adapts the bandwidth of the kernels using local information, and does not assume independence

between the attributes. The setting of the bandwidth for each kernel is based on the extension of

the points in the neighborhood, and each kernel uses the same bandwidth for all dimensions. Our

technique is efcient and can be performed in only two data passes.

Using the range query approximation problem as a benchmark, we show the performance

improvement we achieve with our method over Scott’s rule by using a variety of both synthetic

and real data sets. We then show how to apply our technique to efciently solve classication and

clustering problems. We focus on classication and show the results we obtained on simulated data

sets.

10.2 Related Work

Locally adaptive density estimators have been introduced in multivariate statistics. The

balloon estimator [TS92, Sai99] varies the bandwidth at each estimation point. Given a point at

which the density is to be estimated, the bandwidth value is set to the distance of from the

th nearest data point. Then, kernels of the same size are centered at each data point, and

the density estimate is computed by taking the average of the heights of the kernels at the estimation

point.

The balloon estimator requires that all data points are kept in memory, since the bandwidth

value depends on the estimation point , and on its distance from the th nearest data point (unless

an approximation scheme is used). Furthermore, acts as a smoothing parameter, and its setting is

critical. The computation of a proper value for is an open problem, and expensive least-squares
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cross-validation techniques are used to determine its value.

These limitations, along with the fact that a different density approximation function is

computed for each estimation point, make this approach not suited for efcient solutions of data

exploration tasks considered here.

Another locally adaptive technique is the sample-point estimator [BMP77, Sai99]. It

places a kernel at each data point . Each kernel has its own bandwidth, set to the distance of

the center from the th nearest point. Again, as for the balloon estimator, the choice of is

critical, and the problem of setting its value is open. We also observe that both the balloon and

sample-point estimators t a kernel at each data point. It is not clear how to couple these techniques

with sampling, since the bandwidth values won’t properly adjust to the sample size. In contrast, in

our algorithm bandwidth values are function of both sample and original data set sizes.

10.3 The Range Query Approximation Problem

Let be a data set of points, each with real attributes. The domain of each at-

tribute is scaled to the real interval . We consider range queries of the form

. The selectivity of a range query , , is the number of points

in the interior of the hyper-rectangle it represents. Since can be very large, the problem of approx-

imating the selectivity of a given range query arises naturally. Approaches proposed to address

this problem include multidimensional histograms [IP99, GKT+00], kernels [SFB99, GKT+00],

and wavelets [VWI98, CGR+00].

To formalize the notion of approximating the selectivity of range queries, let
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be a -dimensional, non-negative function, dened in and with the property

. is a probability density function. The value of at a specic point

is the limit of the probability that a tuple exists in area around over the volume of ,

when shrinks to . Then, for a given such , to nd the selectivity of a query, we compute the inte-

gral of in the interior of the given query : .

For a given and , is a good estimator of with respect to range queries if for any

range query , the selectivity of on and the selectivity of on multiplied by are similar.

To formalize this notion, we dene the following error metrics (also used in [VWI98]).

Following [VWI98], we dene the absolute error of a given query to be simply the dif-

ference between the real value and the estimated value: .

The relative error of a query is generally dened as the ratio of the absolute error over the se-

lectivity of the query. Since in our case a query can be empty, we follow [VWI98] in dening the

relative error as the ratio of the absolute error over the maximum of the selectivity of and 1:

10.4 Multi-Dimensional Kernel Density Estimators

All the proposed techniques for approximating the query selectivity compute a density es-

timation function. Such function can be thought as an approximation of the probability distribution

function, of which the data set at hand is an instance. It follows that statistical techniques which

approximate a probability distribution [Sco92, WJ95], such as kernel estimators, are applicable to

address the query estimation problem.
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For a data set , let be a set of tuples drawn from at random. Assume there exists

a dimensional function , the kernel function , with the property

The approximation of the underlying probability distribution of is

, and the estimation of the selectivity of a -dimensional range

query is

. It has been shown that the shape of the kernel function does not affect the approx-

imation substantially [Cre93]. The key feature is the standard deviation of the function, or, its

bandwidth. Therefore, we choose a kernel function that is easy to integrate, i.e. the -dimensional

Epanechnikov kernel function [Cre93], whose equation centered at 0 is:

if for all , and 0 otherwise (Figure 10.4). The parameters are the bandwidth

-1 10 -1 -.5  0 .5 1

f(x) = 3/4  (1-x^2) f(x) = 3/2 (1 - ((x-.5)/2)^2)

1.5

1
3/4

1

Figure 10.1: The one-dimensional Epanechnikov kernel, with , centered around the
origin, and with , centered at 0.5.

of the kernel function along each of the dimensions. The magnitude of the bandwidth controls

how far from the sample point we distribute the weight of the point. As the bandwidth becomes

This denition of kernel function is different from the one given in the context of SVMs, although both functions
serve as a measure of similarity between points.
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smaller, also the non-zero diameter of the kernel becomes smaller.

To estimate the bandwidths, typically Scott’s rule [Sco92] is used:

where is the standard deviation of the sample on the -th attribute. This rule is derived using the

assumption of Gaussian data distribution, therefore in general it oversmoothes the actual underlying

function. The rule assumes attribute independence. Other approaches for setting the bandwidths,

such as one-dimensional least squares cross-validation, also assume attribute independence [PT92].

10.4.1 Computing the Selectivity

In [GKT+00] we have shown how to use multi-dimensional kernel density estimators to

efciently address the multi-dimensional range query selectivity problem. We used Scott’s rule for

setting the bandwidths. We presented an experimental study that shows performance improvements

over traditional techniques for density estimation, including sampling [HS92], multi-dimensional

histograms [PI97], and wavelets [VWI98]. The main advantage of kernel density estimators is that

the estimator can be computed very efciently in one data pass, during which we both sample the

data set and approximate the standard deviation along each attribute.

Since the -dimensional Epanechnikov kernel function is the product of one-dimensional

degree-2 polynomials, its integral within a rectangular region can be computed in time:
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.

It follows that, for a sample of tuples, can be computed in time.

10.5 Locally Adaptive Bandwidths

Kernel-based methods are nearest-neighbor-type algorithms: to obtain the density esti-

mate at a given point, assuming far-off points have negligible contribution to the sum, one has to

consider only the kernel contributions of the nearest neighbors. It is therefore reasonable to adapt

the bandwidths of a kernel centered at a specic point according to the extension of the neigh-

borhood of its center, so that the kernel will mainly contribute to the density estimation of points

within that same local neighborhood. This allows us to take into account local attribute correlations:

kernels with more points close to them (according to the distance metric) will have smaller band-

widths than those with fewer points close to them. Real life data often present correlations among

attributes, and therefore performance benets from this approach [Sco92].

As a consequence, we develop a heuristic (ADAptive BANDwidth) that locally adapts the

bandwidths of kernels, according to the extension of points within the kernel neighborhood. Ada-

Band uses the same bandwidth for all the dimensions of a given kernel, but changes the bandwidth

from kernel to kernel. The heuristic works as follows.

A uniform random sample of a given size, say , is rst produced. Let be the

original data set, and its size. Each point in distributes its weight over the space around it. We

want each kernel to distribute its weight over an equal number of points in the data set, i.e. as many

points as . For each point , we compute its distance from the data points in . Among
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these distances, we identify the one that corresponds to the -quantile, i.e. the distance at

position in the sorted sequence of distances. Let be such quantile. can be seen as the

distance of from the vertex of the hypercube centered at that includes a neighborhood of

points. To set the bandwidth of a kernel centered at , we compute the projection of along each

dimension (and double it to avoid possible uncovered areas that may contain a fraction of the

points), resulting in . Each kernel has one bandwidth value associated with it, valid

for all the dimensions. The algorithm, therefore, stores numbers per kernel: values for

the coordinates of the center, and one value for the bandwidth. Figure 10.2 gives the outline of the

algorithm.

For comparison purposes, we have also performed experiments in which we estimate a

bandwidth value for each dimension and each kernel by using a localized standard deviation at the

kernel’s center along each dimension. In this case we store numbers per kernel, and therefore the

sample size is reduced to , where EstSize is the size of the estimator. We have observed that

the loss due to the reduced sample size overcomes the gain achieved by storing a distinct bandwidth

value for each dimension. AdaBand, instead, seems to capture sufcient local information by storing

one bandwidth per kernel, without over penalizing the sample size.

10.5.1 Running Time

Computing a kernel density estimator with kernels, as described above, can be done

in two data passes. During the rst pass, a random sample of size is taken. During the second

pass, an approximation of the -quantiles for the points in is computed.

In the implementation of AdaBand, to efciently estimate the quantiles we use the tech-
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Input: A -dimensional data set with points, and parameter

(Estimator Size):

1. Set ;

2. Take a random sample of size ;

3. For each point :

(a) Compute the distances of from the points in ;

(b) Compute the -quantile of the distances ;

(c) Set , for , where is the bandwidth along

dimension of the kernel centered at .

Figure 10.2: The AdaBand algorithm

nique described in [MRL98], which guarantees arbitrarily tight error bounds and, for a given desir-

able accuracy, allows the estimation of the optimal space complexity.

10.6 Classification

Here we show how we can apply the AdaBand algorithm to address classication prob-

lems. In a classication problem we are given classes and training observations. The training

observations consist of attribute measurements and the known class la-

bels: , where . The objective is to predict the class label of a given

query . The given training data are used to obtain the estimates.
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We assume, again, that the given data set is large, and we want to be able to perform

our prediction efciently. The AdaBand algorithm, applied within the data of each class, allows to

efciently compute an estimation of the class density distributions of the given data set. Formally,

by denoting with the sample extracted from the training data of class , the within class

density function estimate at a given point is

For a given query point , we have then within class density function estimates:

. The class that gives the largest value , computed over an interval centered

at , is our prediction for the class of , i.e.,

We observe that the integrals can be computed efciently in time, as described

in section 10.4.1. The integral operation allows to smooth away the estimated density functions,

thereby achieving more accurate results than with a pointwise estimation. This method, which

we call DenClass, can be seen as an attempt to approximate the optimal Bayesian classication

error rate, where is our density based approximation of class posterior

probabilities at query points. We note that, for a correct class assignment, the classier needs

only to preserve the order relation among the estimated quantities. This means that we can afford

biased estimates, as long as all are affected roughly in the same proportion. The experimental results

indeed suggest that the integration operation conveys robustness to our method. The length of the

interval is an input parameter of the DenClass algorithm, which we optimize by cross-validation

in our experiments.
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The DenClass algorithm is also related to the procedure introduced in [FF99]. The authors

in [FF99] discuss a bump hunting method that seeks sub-regions of the space of input values within

which the average value of the target is much larger than its average over the entire input space. This

approach can be used for function approximation, classication, and clustering. For classication,

the goal is to identify those regions within which an observation is most likely to be from one

specic class . These are the regions where is larger than that of any other class. Similarly,

our method classies the query point with the label of the class whose density function gives

the largest “bump” contribution within a region centered at . Figure 10.3 gives the outline of the

DenClass algorithm.

Classifier construction: Given a -dimensional data set with points and

classes, and the input parameter for each class :

1. Run AdaBand on and ( is the set of points in

with label ).

Output: , for .

Testing phase: Given a query point :

1. Classify to class s.t.

.

Figure 10.3: The DenClass algorithm
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Density Estimation: Given a -dimensional data set with points, and the input parameter :

1. Run AdaBand on and .

Output: .

Clustering phase: Given a query point , and the input parameter :

1. Compute the gradient ;

2. Perform hill-climbing. Let be the resulting density attractor;

3. If , assign to the cluster identied by ;

4. If ,

(a) Use a grid to merge with a connected cluster center ;

(b) Assign to the cluster identied by .

Figure 10.4: The DenClust algorithm

10.7 Clustering

The method we present here is an extension of [HK98]. The technique discussed in

[HK98] employs all data points; a grid approximation is proposed to cope with large data sets,

and the resulting complexity depends on the size of the grid.

The DenClass algorithm can be extended to also address clustering problems. In clus-

tering, data are unlabelled, and the density estimation is conducted for the whole data set. Local
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maxima of , that are above a certain threshold , can be considered cluster centers. A hill-

climbing procedure applied at a given point identies its density attractor. Points that converge to

the same attractor belong to the same cluster. For density attractors below , we can use connectivity

information (using a grid in input space, for example) to merge them with connected cluster centers.

What is a good choice for ? If we assume that the data set is noise-free, all density

attractors for are signicant and should be chosen in . In most cases

the data set will contain noise. If the noise level can be modeled by taking into account knowledge

specic to the problem at hand, then should be chosen above such level. As an alternative, the

value of could be set above the average value of the density function evaluated at the attractors:

. In general, the smaller the value of is, the more sensitive the clustering algorithm

will be to outliers; the larger is, the less details will be captured by the algorithm. Figure 10.4

gives the outline of the method, which we call DenClust.
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Chapter 11

Locally Adaptive Bandwidths:

Experimental Evaluation

This chapter validates the efciency and accuracy of locally adapting the bandwidth pa-

rameters for kernel density estimation, for both range query approximation and classication prob-

lems.

11.1 Experimental Settings

In our experiments we compare the performance of AdaBand, Scott’s rule and Random

Sampling on synthetic and real-life data with real valued attributes. For both AdaBand and Scott’s

rule we use the formulas described in section 10.4.1 to compute the selectivity of range queries. We

examine the behavior of the methods as additional space for storing the estimator becomes available.

We also evaluate the accuracy of the methods as the dimensionality of data increases.
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To test the accuracy of the DenClass algorithm we use simulated data sets and compare

its performance with well known methods in the literature: K-NN, C4.5 decision tree [Qui93], and

K-means. We include K-means since it allows a compact representation of the data set, specically

the within class mean vectors. Note that since we are applying K-means to classication problems

the value of is equal to the number of classes. We also compare the performance of DenClass

with an algorithm (that we call DenScott) that proceeds as DenClass, but sets the bandwidth values

according to Scott’s rule (one bandwidth value for each dimension and for each class). Procedural

parameters ( for DenClass and DenScott, and for K-NN) are determined empirically through

cross-validation.

11.2 Simulated Data

We have designed the following synthetic data sets for the range query selectivity prob-

lem. In Figures 11.1- 11.3 the 1-norm average relative errors computed over ve runs are reported.

OneGaussian: This data set contains -dimensional points drawn according to a Gaussian dis-

tribution with standard deviation set to along each dimension. In this situation Scott’s rule nds

the optimal bandwidth values.

MultiGaussian. This data set contains -dimensional points drawn according to Gaussian

distributions with mean values randomly chosen within the range , and standard deviation

values for all dimensions set to . Each Gaussian generates the same number of data points.

DiffGaussian: This data set contains -dimensional points equally drawn according to

Gaussian distributions with mean values randomly chosen within the range , and standard

deviation values randomly chosen within the set .
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NoisyGaussian: This data set contains -dimensional points. of the data (

points) is uniformly distributed random noise. The remaining points are equally gener-

ated according to Gaussian distributions with mean values randomly chosen again within the

range , and standard deviation values for all dimensions set to .

The following data sets are used for the classication problem. For each of them, ve

independent training data were generated. For each of these, an additional test set (of size 2,000 for

Ex1, 1,000 for Ex2, 6,000 for Ex3, 2,000 for Ex4, and 3,000 for Ex5) was generated. Error rates

and standard deviation values are computed over all such classications and reported in Table 11.1.

Example 1: This data set has attributes, data points, and classes

(250,000 points per class). The data for both classes are generated from a multivariate normal

distribution with standard deviation 8 along each dimension, and mean vector in one

case, and in the other. The sample size used for the DenClass algorithm is

for both classes. By taking into account both the sample points and the bandwidth values, the

resulting classier , , requires the storage of 6,000 numbers. We therefore allow a

sample of 600 points for both classes for the other four methods.

Example 2: This data set has attributes, data points, and classes

(250,000 points per class). The data for this problem are generated as in the previous example, with

the addition of 25% uniformly distributed random noise. We use for DenClass, and

accordingly a sample size of 750 points for the other methods.

Example 3: This data set has , , and classes. Each class contains

six spherical bivariate normal subclasses, having standard deviation one. The means of the 12

subclasses are chosen at random without replacement from the integers .
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For each class, data are evenly drawn from each of the six normal subclasses. We use

for DenClass for this example, and accordingly a sample size of 1,500 data points per class for the

other methods.

Example 4: This data set has , , and classes. 20% of the points

is uniformly distributed random noise. The data for both classes are generated from a multivariate

normal distribution with standard deviation 9 along each dimension, and mean vector

in one case, and in the other.

Example 5: This data set has , , and classes (200,000 points per

class). 20% of the points is uniformly distributed random noise. The data for all three classes are

generated from a multivariate normal distribution with standard deviation 10 along each dimension.

The mean vectors are: , , and .

11.3 Real Data

We use three real data sets. The USCities and the NorthEastern data sets contain, respec-

tively, 1,300,000 postal addresses of cities in the US, and 130,000 postal addresses of the North

Eastern states. Each point has two attributes. We also use the Forest Cover Data set from the UCI

KDD archive. This data set was obtained from the US Forest Service (USFS). It includes

points, and each point has attributes, of which are numerical. In our experiments we use the

entire set of numerical attributes. In this data set the distribution of the attributes is non-uniform,

and there are correlations between pairs of attributes. In Figures 11.3-11.3 the 1-norm average

relative errors computed over ve runs are reported.
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Figure 11.1: OneGaussian data set, Query workload 3, 5-dim.
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Figure 11.2: (Left) MultiGaussian data set , Query workload 2, 10-dim. (Right) DiffGaus-
sian data set, Query workload 2, 10-dim.

11.4 Query Workloads

To evaluate the techniques on the range query approximation problem we generated work-

loads of three types of queries.

Workloads 1 and 2 contains random queries with selectivity approximately 10% and

1%, respectively. Workload 3 consists of queries of the form

, for a randomly chosen point .
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Figure 11.3: NoisyGaussian data set, 10-dim. (Left) Query workload 2. (Right) Query
workload 3.
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Figure 11.4: (Left) NorthEastern data set, Query workload 1, 2-dim. (Right) NorthEastern
data set, Query workload 3, 2-dim.

For each workload we compute the average absolute error and the average

relative error .

11.5 Experimental Results for Query Approximation

The OneGaussian data set has been designed to test AdaBand performance under optimal

conditions for Scott’s rule. Scott’s rule nds optimal bandwidth values for this data set. Figure 11.1

shows the results for query workload 3. As expected, Scott’s rule shows the best performance, but

AdaBand is not too far from it. This means that we don’t loose too much in performance with our

146



0

5

10

15

20

25

30

35

40

200 500 800 1100 1400 1700 2000

1-
no

rm
 A

ve
ra

ge
 R

el
at

ive
 E

rro
r (

in
 %

)

Number of Stored Values

AdaBand
Scott’s rule

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

1-
no

rm
 A

ve
ra

ge
 R

el
at

ive
 E

rro
r (

in
 %

)

Number of Stored Values

AdaBand
Scott’s rule

Random Sampling

Figure 11.5: (Left) USCities data set, Query workload 3, 2-dim. (Right) Forest Cover data
set, Query workload 1, 10-dim.

adaptive technique in the ideal case for Scott’s rule.

The variance (spikes) observed in Figure 11.1 for smaller estimator sizes may be due to

the fact that the data set is 5-dimensional, and therefore larger sample sizes are required to attain

a smoother performance behavior. Furthermore, workload 3 presents a higher degree of difculty

since queries in this case have arbitrary sizes. This characteristic may also have contributed to the

variance of the performance.

Figures 11.3-11.3 show the results for the MultiGaussian, DiffGaussian and NoisyGaus-

sian data sets on query workloads 2 and 3. We obtained similar results for the MultiGaussian and

DiffGaussian data sets. AdaBand outperforms by far Scott’s rule in both cases. Scott’s rule is not

able to scale its performance as the size of the estimator increases, whereas our technique is capable

of adapting the bandwidths according to the number of kernels that become available. A similar be-

havior is observed for the NoisyGaussian data set on query workload 2 (Figure 11.3, left). On query

workload 3, the increase in error of Scott’s rule is likely to be due to the fact that the NoisyGaussian

data set is 10-dimensional, and workload 3 includes queries of arbitrary sizes. Indeed, errors on
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Table 11.1: Average classification error rates and standard deviation values.

Method Ex1 Ex2 Ex3
DenClass 0.3 0.1 15.4 0.1 0.3 0.6
K-NN 0.4 0.1 15.3 0.1 0.3 0.6
DenScott 10.4 12.4 46.4 1.4 0.6 0.9
C4.5 2.5 0.5 17.0 0.4 0.6 0.7
K-means 0.4 0.1 15.6 0.2 26.7 8.7

different runs showed a large variance for the tested estimator sizes. The plot for AdaBand is rather

at, but does show improvement for larger estimator sizes.

Figures 11.3-11.3 show the results for the real data sets. AdaBand shows large improve-

ments in performance over Scott’s rule with both the NorthEastern and USCities data sets for query

workload 3. For query workload 1 AdaBand performs slightly better than Scott’s rule on the North-

Eastern and Forest Cover data sets. Figure 11.3 also shows, for comparison, the results obtained

applying Random Sampling, that gives the worst performance.
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Figure 11.6: Example 4, 10-dim, two classes. (Left) CPU-time versus Number of Stored
Values. (Right) Error Rate versus Number of Stored Values.
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Figure 11.7: Example 5, 10-dim, three classes. (Left) CPU-time versus Number of Stored
Values. (Right) Error Rate versus Number of Stored Values.

11.6 Experimental Results for Classification

Table 11.1 shows the error rates obtained for classication. We observe that DenClass

outperforms DenScott, C4.5 and K-means in all three cases. DenScott shows a high sensitivity to

uniformely distributed noise (Example 2). This is likely due to the global nature of the settings of

bandwidth values. In general, the error rates for the DenScott procedure suffer from large variance.

This result demonstrates the lack of robustness of techniques based on Scott’s rule for classication

purposes, and shows the superiority of our local method DenClass.

DenClass and K-NN show similar performances in each problem in Table 11.1. Figures

11.5-11.5 plot CPU-times and Error Rates versus the Number of Stored Values for both DenClass

and K-NN, and for Examples 4 and 5 respectively. In both cases we observe that, as the number

of Stored Values increases, DenClass is capable of approximating K-NN in accuracy, while sig-

nicantly improving the execution time. These results provide evidence that we have successfully

designed an efcient approximation scheme for nearest neighbor approaches to classication. Such

approximation makes K-NN techniques applicable in large data sets. Given that nearest neigh-
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bor methods in many benchmark studies turn out to be competitive, and often are among the best

performers, an efcient approximation that allows its usage for large data sets is indeed highly

desirable.

11.7 Related Work

Multi-dimensional histograms are particularly suited as density estimators when each at-

tribute has a nite discrete domain. Efcient construction of accurate histograms becomes a prob-

lem in high dimensional spaces and when the attributes are real valued. In such cases, in fact,

histogram constructions become inefcient [GKT+00]. In contrast, our locally adaptive kernel ap-

proach allows an efcient estimator construction that requires only two data passes. Efcient query

approximation can be performed in time linear to the size of the estimator and to the dimensionality.

Furthermore, kernel density estimators have sufcient expressive power, since any distribution can

be represented as the sum of a sufcient number of kernel contributions. As a consequence, they

are able to provide accurate estimators.

In [BFG99] the density function of the data is estimated in order to build a clustered

index for efcient retrieval of approximate nearest neighbor queries. Both our density estimation

approach and the clustering process in [BFG99] work on all dimensions simultaneously. The data

density modeling is performed in the two cases for different purposes. In [BFG99], the model of

the density is used to reorganize the data on the disk, with the objective of minimizing the number

of cluster scans at query time. In our case it synthesizes the relevant information about the data to

directly address the tasks.

Furthermore, the density estimation process itself is different. In [BFG99], the location
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in space for placing the Gaussian kernels is determined by nding clusters in the data. We instead

extract a uniform random sample from the data, and center the kernels at the sampled points. As a

consequence, in our case the number of kernels used is driven by the estimator size we can afford.

In [BFG99], the number of clusters used affects the amount of data to be scanned at query time, and

its “optimal” value needs to be estimated.

Our approach is related to the Variable-kernel Similarity Metric (VSM) technique, in-

troduced in [Low95]. Here, the -nearest neighbor technique is combined with a variable kernel

method to address classication problems. The bandwidth of a Gaussian kernel centered at a point

x is set proportionally to the average distance from x of the neighbors. The classication problem

for a given query point is then solved by taking the weighted average of the known correct outputs

of the nearest neighbors of the query point. The weight values are provided by the kernel, based

on the distance of each neighbor from the query point. Distances are also weighted using global

weights computed by mean of a cross-validation procedure, and the conjugate gradient optimization

method.

The VSM technique requires, for each given query point, the computation of the -nearest

neighbors, making it an expensive procedure expecially for high dimensional data. Furthermore, it

has large memory requirements, since it needs to store the entire data set. To reduce memory

requirements, [Low95] implements a process for thinning data in regions where class labels are

uniform. Clearly, the effectiveness of this technique depends on the distribution of data, and, in

general, the memory requirement will still be much larger than the space utilization of DenClass,

which only retains the estimated density function.
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11.8 Summary

We have proposed a locally adaptive technique to address the problem of setting the band-

width parameters optimally for kernel density estimation. We have also shown how to apply our

technique to efciently solve range query approximation, classication and clustering problems for

very large data sets.

Our technique manifests a robust and competitive behavior across all the data sets we

have considered in our experiments. Moreover, it has the advantage of being simple and can be

implemented efciently in only two data passes.
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Chapter 12

Conclusions

This chapter summarizes the dissertation, discusses its contributions, and suggests direc-

tions for feature research.

12.1 Summary

We have presented a number of novel techniques to address data exploration tasks such

as classication, clustering, and range query approximation. All methods design adaptive metrics

or parameter estimates that are local in input space. Both accuracy and efciency issues have been

discussed and addressed.

Pattern classication faces a difcult challenge in nite settings and high dimensional

spaces due to the curse of dimensionality. Nearest neighbor methods are especially sensitive to

this problem. The need for large neighborhoods in high dimensional spaces is the cause of highly

biased estimates. Due to the local nature of feature relevance, any chosen xed metric violates the
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assumption of locally constant class posterior probabilities, and therefore fails in making correct

predictions in different regions of the input space. In order to achieve accurate predictions, it be-

comes crucial to be able to estimate the different degrees of relevance that input features may have

in various locations of the feature space.

In this dissertation we have discussed previous work in the literature on exible metric

computation, and introduced novel approaches to computing local feature relevance for nearest

neighbor methods that overcome the limitations of previous techniques. The rst new approach we

have introduced is ADAMENN. The ADAMENN technique uses the Chi-squared distance in order

to estimate to which extent each dimension can be relied on to predict class posterior probabilities.

The resulting exible metric produces neighborhoods that are elongated along less relevant features

and constricted along most inuential ones. As a result, the class conditional probabilities are more

homogeneous in the modied neighborhoods. In our experimental evaluation we have shown that

ADAMENN exhibits large accuracy improvements with respect to many competitor classiers. The

results obtained strengthen the theoretical properties of our technique.

The dissertation proceeds by discussing the limitations of lazy learning approaches con-

cerned with scalability and efciency issues. The lazy learning approach employed by ADAMENN

requires a considerable amount of on-line computation, which makes it difcult for such technique

to scale up to large data sets. To address this issue a new locally exible metric technique (LFM-

SVM) is presented. Although still founded on a query based weighting mechanism, LFM-SVM

computes off-line the information relevant to dene local weights. This process is guided by the

solution provided by a support vector machine. The efcacy of the method is demonstrated through

experimental results.
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The phenomenon of the curse of dimensionality is not conned to classication. It affects

any estimation process in a high dimensional feature space with nite samples. Thus, clustering

suffers from the same problem. It is not meaningful to look for clusters in high dimensional spaces

as the average density of points anywhere in input space is likely to be low. The dissertation in-

troduces a new algorithm (GenProClus) that discovers clusters in subspaces spanned by different

combinations of dimensions via local weightings of features. GenProClus represents an attempt

to dodge the curse of dimensionality for clustering problems. The feasibility of our technique is

demonstrated through experimental results.

The dissertation concludes by discussing the problem of setting the bandwidth parameters

for kernel density estimation. Current work on this problem in statistics solve only the one dimen-

sional case satisfactorily. A new locally adaptive technique (AdaBand) is introduced. The method

does not assume independence among the attributes, and exploit possible local correlations among

them. It is efcient and can be performed in only two data passes. The resulting density estimation

provides a compact representation of the data set, suited to efciently solve data exploration tasks,

such as classication, clustering and range query approximation. The efciency and accuracy of

our techniques are validated in an experimental evaluation.

12.2 Contributions

Listed below are the original contributions of this dissertation.

1. ADAMENN algorithm: A novel approach to computing local feature relevance for pattern

classication. It uses the Chi-squared distance to design a exible metric that approximates
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the theoretical innite sample risk at the query point. No assumption is made on the proba-

bility distribution of data. It is formally shown that the measure of feature relevance derived

by ADAMENN reduces the overall mean-squared estimation error. The technique overcomes

limitations of other adaptive methods that employ a greedy strategy, or base the derivation of

the metric on discriminant analysis. The theoretical properties of ADAMENN are corrobo-

rated by the experimental evaluation.

2. LFM-SVM algorithm: A new local exible metric technique based on support vector ma-

chines. This method overcomes the limitations of lazy learning approaches concerned with

scalability and efciency issues. LFM-SVM benets from the generally sparse solution given

by SVMs, and efciently set the input parameters according to principled guidelines. It is

shown that the weighting scheme performed by the LFM-SVM algorithm increases the mar-

gin of the solution provided in input by the SVM. It is interesting to note that the LFM-SVM

technique can be seen as an attempt to enhance the locality of SVMs. In fact, its transforma-

tion metric depends on the orientation of the SVM boundary locally at the query, and on the

distance of the query from the closest support vector.

3. GenProClus algorithm: A novel algorithm that computes intra-cluster adaptive metrics for

clustering. This algorithm represents an attempt to dodge the curse of dimensionality for

clustering. The output of the algorithm is twofold. It provides a partition of the data, so that

the points in each set of the partition constitute a cluster. In addition, it provides information

to what features are relevant for each partition. It is shown that the algorithm converges to

a local minimum of the associated error function. The gain in performance achieved with

GenProClus with respect to K-means is experimentally demonstrated.
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4. AdaBand algorithm: A new locally adaptive technique to set the bandwidth parameters for

kernel density estimation. This approach can serve as an efcient approximation of nearest

neighbor methods. It is shown how this algorithm can be used to efciently solve classica-

tion, clustering, and range query approximation problems. The feasibility of the approach is

demonstrated through an experimental evaluation.

12.3 Future Research

There are many possible ways to extend the research described in this dissertation. Here

we highlight relevant directions for future work.

We have considered estimating feature relevance along each individual dimension, one

at the time, both for classication and clustering. A potential extension is to consider additional

derived variables for local relevance estimate, thereby contributing to the distance calculation. The

challenge is to be able to have a mechanism that computes such informative derived features ef-

ciently.

The local nature of adaptation performed in ADAMENN makes the idea of considering

derived variables particularly attractive. Derived variables can be customized to a specic query

point where prediction is to be made, thereby dening different derived variables for different query

points. We have discussed the possibility of dening derived variables that are linear combinations

of the input features (Section 4.7).

Recent developments on kernel-based methods suggest a general framework for a poten-

tial extension of the locally adaptive techniques developed in this dissertation. Kernel PCA [SSM98]
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is a non-linear feature extractor that has been proven powerful as a preprocessing step for classi-

cation. By the use of suitable non-linear features, it can extract patterns from data that cannot be

detected by linear PCA. Kernel methods have also been introduced for clustering. Spectral kernel

methods [NJW01, BN01] construct the kernel matrix of distances, and make use of the matrix’s

eigenvectors in order to partition points in clusters.

Following this line of research, the idea of kernelizing ADAMENN and GenProClus be-

comes intriguing. It could allow, by the use of suitable non-linear features, the computation of

locally adaptive neighborhoods with arbitrary orientations and shapes in input space.
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