Clustering Gene Expression Data in SQL Using Locally
Adaptive Metrics

Carlotta Domeniconi
George Mason University
carlotta@ise.gmu.edu

Dimitris Papadopoulos
UC Riverside
dimitris@cs.ucr.edu

ABSTRACT

The clustering problem concerns the discovery of homoge-
neous groups of data according to a certain similarity mea-
sure. Clustering suffers from the curse of dimensionality. It
is not meaningful to look for clusters in high dimensional
spaces as the average density of points anywhere in input
space is likely to be low. As a consequence, distance func-
tions that equally use all input features may be ineffective.
We introduce an algorithm that discovers clusters in sub-
spaces spanned by different combinations of dimensions via
local weightings of features. This approach avoids the risk
of loss of information encountered in global dimensionality
reduction techniques. Our method associates to each clus-
ter a weight vector, whose values capture the relevance of
features within the corresponding cluster. In this paper we
present an efficient SQL implementation of our algorithm,
that enables the discovery of clusters on data residing inside
a relational DBMS.

1. INTRODUCTION

The clustering problem concerns the discovery of homoge-
neous groups of data according to a certain similarity mea-
sure. It has been studied extensively in statistics [2], ma-
chine learning [5; 13], and database communities [14; 10; 20].
Clustering suffers from the curse of dimensionality problem
in high dimensional spaces. In high dimensional spaces, it
is highly likely that, for any given pair of points within the
same cluster, there exist at least a few dimensions on which
the points are far apart from each other. It is not mean-
ingful to look for clusters in such a high dimensional space
as the average density of points anywhere in input space is
likely to be low. As a consequence, distance functions that
equally use all input features may be ineffective.

The problem of high dimensionality can be addressed by
requiring the user to specify a subspace (i.e., subset of di-
mensions) for cluster analysis. However, the identification
of subspaces by the user is an error-prone process. More
importantly, correlations that identify clusters in the data
are likely not to be known by the user. Indeed, we desire
such correlations, and induced subspaces, to be part of the
findings of the clustering process itself.

In order to capture the local correlations of data, a proper

*Supported by NSF CAREER Award 9984729, NSF IIS-
9907477, and the DoD.

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003

Dimitrios Gunopulos*

Sheng Ma
IBM T.J. Watson Research Center
shengma@us.ibm.com

UC Riverside
dg@Qcs.ucr.edu

feature selection procedure should operate locally in input
space. In this paper we propose a soft feature selection pro-
cedure that assigns (local) weights to features according to
the local correlations of data along each dimension. Dimen-
sions along which data are loosely correlated receive a small
weight, that has the effect of elongating distances along that
dimension. Features along which data are strongly corre-
lated receive a large weight, that has the effect of constrict-
ing distances along that dimension. Figures 1 give a simple
example. The left plot depicts two clusters of data elongated
along the x and y dimensions. The right plot shows the same
clusters, where within-cluster distances between points are
computed using the respective local weights generated by
our algorithm. The weight values reflect local correlations
of data, and reshape each cluster as a dense spherical cloud.
This directional local reshaping of distances better separates
clusters, and allows for the discovery of different patterns in
different subspaces of the original input space.

The data-mining task of clustering ideally can be performed
inside a relational DBMS. By relying on a DBMS to man-
age the data, the clustering application is freed from this
task. Also, implementing a clustering algorithm in SQL,
makes the programming task easier. Finally, since SQL is
an industry standard and available on all major DBMS’s,
the implementation of the clustering algorithm is portable.
In this paper we formalize the problem of finding differ-
ent clusters in different subspaces. Our algorithm (Locally
Adaptive Clustering, or LAC) discovers clusters in subspaces
spanned by different combinations of dimensions via local
weightings of features. This approach avoids the risk of loss
of information encountered in global dimensionality reduc-
tion techniques. We give a concrete SQL implementation
of our algorithm, that exhibits good performance and scal-
ability. These are the key considerations for deploying a
clustering algorithm inside a DBMS, especially when deal-
ing with very large datasets that must reside in disk space,
or if we want to take advantage of computer clusters.

2. RELATED WORK

Local dimensionality reduction approaches for the purpose
of efficiently indexing high dimensional spaces have been re-
cently discussed in the database literature [12; 4; 17]. In
general, the efficacy of these methods depends on how the
clustering problem is addressed in the first place in the orig-
inal feature space. A potential serious problem with such
techniques is the lack of data to locally perform PCA on
each cluster to derive the principal components. Moreover,
for clustering purposes, the new dimensions may be diffi-

page 1

R — T T T T T T T T
Cluster0 in original input space +
Clustert in original input space ~ x

y
SCobudhbbblioanvwrnoN®OD
T L e e e e

x
g

SCobudhbbblioanvwrnoN®OD
L e e e e e L B e

T T T T T T
Cluster0 transformed by local weights ~ +
Cluster1 transformed by local weights ~ x

3210123 456 7 8 9 1011 1213 14 15 16 17 18 19 20

x

3210123 456 7 8 9 1011 1213 14 15 16 17 18 19 20
x

Figure 1: (Left)Clusters in original input space. (Right) Clusters transformed by local weights.

cult to interpret, making it hard to understand clusters in
relation to the original space.

The problem of finding different clusters in different sub-
spaces of the original input space has been addressed in [16].
While the work in [16] successfully introduces a methodol-
ogy for looking at different subspaces for different clusters,
it does not compute a partitioning of the data into disjoint
groups. The reported dense regions largely overlap, since
for a given dense region all its projections on lower dimen-
sionality subspaces are also dense, and they all get reported.
On the other hand, for many applications such as customer
segmentation and trend analysis, a partition of the data is
desirable since it provides a clear interpretability of the re-
sults.

Recently [15], another density-based projective clustering al-
gorithm (DOC) has been proposed. This approach pursues
an optimality criterion defined in terms of density of each
cluster in its corresponding subspace. A Monte Carlo proce-
dure is then developed to approximate with high probability
an optimal projective cluster.

[9] also addresses the problem of feature selection to find
clusters hidden in high dimensional data. The authors search
through feature subset spaces, evaluating each subset by first
clustering in the corresponding subspace, and then evaluat-
ing the resulting clusters and feature subset using the chosen
feature selection criterion. We observe that dimensionality
reduction is performed globally in this case. Therefore, the
technique in [9] is expected to be effective when a data set
contains some relevant features and some irrelevant (noisy)
ones, across all clusters.

The problem of finding different clusters in different sub-
spaces is also addressed in [1]. The proposed algorithm
(PROjected CLUStering) seeks subsets of dimensions such
that the points are closely clustered in the corresponding
spanned subspaces. Both the number of clusters and the
average number of dimensions per cluster are user-defined
parameters. PROCLUS starts with choosing a random set
of medoids, and then progressively improves the quality of
medoids by performing an iterative hill climbing procedure
that discards the ’bad’ medoids from the current set. In
order to find the set of dimensions that matter the most
for each cluster, the algorithm selects the dimensions along
which the points have the smallest average distance from
the current medoid. The authors do not prove whether or
not the algorithm converges to the optimality criterion they
choose.

In contrast to the PROCLUS algorithm, our method does
not require to specify the average number of dimensions to
be kept per cluster. For each cluster, in fact, all features

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003

are taken into consideration, but properly weighted. The
PROCLUS algorithm is more prone to loss of information
if the number of dimensions is not properly chosen. For
example, if data of two clusters in two dimensions are dis-
tributed as in Figure 1 (Left), PROCLUS may find that
feature z is the most important for cluster 0, and feature y
is the most important for cluster 1. But projecting cluster
1 along the y dimension doesn’t allow to properly separate
points of the two clusters. We avoid this problem by keeping
both dimensions for both clusters, and properly weighting
distances along each feature within each cluster. In addi-
tion, while the authors in [1] do not prove whether their
algorithm converges to the chosen optimality criterion, we
can formally show that our algorithm converges to a local
minimum of the associated error function.

Generative approaches have also been developed for local di-
mensionality reduction and clustering. The approach in [11]
makes use of maximum likelihood factor analysis to model
local correlations between features.

[18] extends the single PCA model to a mixture of local
linear sub-models to capture nonlinear structure in the data.
A mixture of principal component analyzers model is derived
as a solution to a maximum-likelihood problem. An EM
algorithm is formulated to estimate the parameters.

3. BICLUSTERING OF GENE EXPRESSION
DATA

Microarray technology is one of the latest breakthroughs in
experimental molecular biology. Gene expression data are
generated by DNA chips and other microarray techniques,
and they are often presented as matrices of expression lev-
els of genes under different conditions (e.g., environment,
individuals, tissues). Each row corresponds to a gene, and
each column represents a condition under which the gene is
developed.

Biologists are interested in finding set of genes showing strik-
ingly similar up-regulation and down-regulation under a set
of conditions. To this extent, recently the concept of biclus-
ter has been introduced [6]. A bicluster is a subset of genes
and a subset of conditions with a high similarity score. A
particular score that applies to expression data is the mean
squared residue score [6]. Let I and .J be subsets of genes
and experiments respectively. The pair (I,J) specifies a
submatrix Ary; with a mean squared residue score defined
as follows:

1
H(I,J):m Z (aij—ai]—aji+ajj)2, (1)
i€l jeT
where a;g = ﬁziejai]‘, ar; = ﬁzielaiﬁ and arg =

page 2

1 .
TR > icr,jes 0ij- They represent the row and column means,

and the mean of the submatrix, respectively. The lowest
score H(I,J) = 0 indicates that the gene expression levels
fluctuate in unison. The aim is then to find biclusters with
low mean squared residue score (below a certain threshold).
We observe that the mean squared residue score is mini-
mized when subsets of genes and experiments (or dimen-
sions) are chosen so that the gene vectors (i.e., rows of the
resulting bicluster) are close to each other with respect to
the Euclidean distance. As a result, the LAC algorithm, and
other subspace clustering algorithms, are well suited to per-
form simultaneous clustering of both genes and conditions
in a microarray data matrix.

[19] introduces an algorithm (pCluster) for clustering similar
patterns, that has been applied to DNA microarray data of
a type of yeast. The pCluster model optimizes a criterion
that is different from the mean squared residue score, as it
looks for coherent patterns on a subset of dimensions (e.g.,
in an identified subspace, objects reveal larger values for the
second dimension than for the first).

4. PROBLEM STATEMENT

We define what we call weighted cluster. Consider a set of
points in some space of dimensionality N. A weighted cluster
C'is a subset of data points, together with a vector of weights
w = (wy,...,wn), such that the points in C are closely
clustered according to the L» norm distance weighted using
w. The component w; measures the degree of correlation of
points in C along feature j. The problem becomes now how
to estimate the weight vector w for each cluster in the data
set.

In this setting, the concept of cluster is not based only on
points, but also involves a weighted distance metric, i.e.,
clusters are discovered in spaces transformed by w. Each
cluster is associated with its own w, that reflects the cor-
relation of points in the cluster itself. The effect of w is
to transform distances so that the associated cluster is re-
shaped into a dense hyper-sphere of points separated from
other data.

In traditional clustering, the partition of a set of points is in-
duced by a set of representative vectors, also called centroids
or centers. The partition induced by discovering weighted
clusters is formally defined as follows.

Definition: Given a set S of D points x in the N-dimensional
Euclidean space, a set of k centers {ci,...,c}, ¢; € RN,
j=1,...,k, coupled with a set of corresponding weight vec-
tors {wi,...,wi}, w; € RY, j =1,..., k, partition S into
k sets {S1,..., Sk}

N N
Si = {x|O_wyi(wi—c;)*)'"? < O wii(wi—cu)®)/?, V1 # j},
=1 i=1

(2)
where w;; and c¢;; represent the ith components of vectors
w; and c; respectively (ties are broken randomly).

The set of centers and weights is optimal with respect to the
Euclidean norm, if they minimize the error measure:

k
E(C,W) = Zzwjieixji 3)

j=1i=1

subject to the constraints ZZV:1 wfl =1Vj. C and W are

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003

(N x k) matrices whose column vectors are c¢; and w; re-
spectively,i.e. C'=[ci...cx]and W = [wq...wy]. Xj; rep-
resents the average distance from the centroid c; of points
in cluster j along dimension i, and is defined as follows:

1
Xji == > (e — i)’
|55

x€S;

The exponential function in (3) has the effect of making the
weights w;; more sensitive to changes in Xj;;, and therefore
to changes in local feature relevance. This allows larger error
improvements as we adapt the values of weights and centers,
and therefore a faster computation to achieve spherically
shaped clusters (separated from each other) in the space
transformed by optimal weights (see Figure 1).

In the following we present an algorithm that finds a solution
(set of centers and weights) that is a local minimum of the
error function (3).

S. LOCALLY ADAPTIVE CLUSTERING AL-
GORITHM

This section describes our feature relevance estimation pro-
cedure that assigns local weights to features according to
the local correlation of data along each dimension. Our
technique progressively improves the quality of initial cen-
troids and weights, by investigating the space near the cen-
ters to estimate the dimensions that matter the most, i.e.
the dimensions along which local data are mostly correlated.
Specifically, we proceed as follows.
We start with well-scattered points in D as the k centroids:
we choose the first centroid at random, and select the others
so that they are far from one another, and from the first
chosen center. We initially set the values of weights to 1.
Given the initial centroids c;, for j =1,...,k, we compute
the corresponding sets S; as defined in (2), where wj; = 1Vj
and Vi. We then compute the average distance along each
dimension from the points in S; to c¢;. Let Xj;; denote this
average distance along dimension . The smaller Xj; is, the
larger is the correlation of points along dimension ¢. We use
the value Xj;; in an exponential weighting scheme to credit
weights to features (and to clusters):
N
wji = exp(—h x X;3) /(O (exp(=h x 2 x X)) (4)
=1

where h is a parameter that can be chosen to maximize
(minimize) the influence of X;; on w;;. When h = 0 we have
wj; = 1/N, thereby ignoring any difference between the Xj;.
On the other hand, when h is large a change in X;; will be
exponentially reflected in w;;. We empirically determine the
value of h through cross-validation in our experiments with
simulated data. We set the value of h to 9 in the experiments
with real data. The exponential weighting is more sensitive
to changes in local feature relevance [3] and gives rise to
better performance improvement. In fact, it is more stable
because it prevents distances from extending infinitely in
any direction, i.e., zero weight. This, however, can occur
when either linear or quadratic weighting is used.

The weights w;; enable to elongate distances along less im-
portant dimensions, i.e. dimensions along which points are
loosely correlated, and, at the same time, to constrict dis-
tances along the most influential ones, i.e. features along

page 3

which points are strongly correlated. Note that the tech-
nique is centroid-based because weightings depend on the
centroid.

The computed weights are used to update the sets S;, and
therefore the centroids’ coordinates. The procedure is iter-
ated until convergence is reached, i.e. no change in centers’
coordinates is observed.

The resulting algorithm, that we call LAC (Locally Adap-
tive Clustering), is summarized in the following.

Input: Set D of points x € RY, and the number of clusters
k.

1. Start with k initial centroids ci,c2,...,ck;

2. Set wj; = 1, for each centroid ¢;, j = 1,...,k and each
feature i =1,...,N;

3. For each centroid ¢;, j = 1,...,k, and for each data

point x:
e Set S; = {x|j = argmin; W Dist(c;,x)},
where W Dist(c;,x) = (Efil wii(cr — xi)z)l/z;

4. Compute new weights. For each centroid c;, j =
1,...,k, and for each feature i:

e Set X;; = Exesj (cji—:)?/|S;], where |S;| is the

cardinality of set S; (Xj; represents the average
distance of points in S; from c¢; along feature 7);

e Set wj; = exp(—h X Xﬂ)/(Zl]\il exp(—h x 2 x
X'

5. For each centroid ¢;, j = 1,...,k, and for each data
point x:

e Recompute S; = {x|j = argmin; W Dist(c;, x)};

. _ Zxxls; (%)
6. Compute new centroids. Set c; = T for
each j =1,...,k, where 15(.) is the indicator function

of set S;

7. Iterate 3,4,5,6 until convergence (i.e., no change in cen-
troids’ coordinates)

The sequential structure of the LAC algorithm is analogous
to the mathematics of the EM algorithm [7]. The hidden
variables are the assignments of the points to the centroids.
Step 3 constitutes the E step of the FM algorithm: it finds
the values of the hidden variables S; given the previous val-
ues of the parameters w;; and ¢;;. The following step (M
step) consists in finding new matrices of weights and cen-
troids that minimize the error function with respect to the
current estimation of hidden variables.

We can also prove the following [8]:

Theorem. The LAC algorithm converges to a local mini-
mum of the error function (3).

6. IMPLEMENTING LAC IN SQL

In the implementation of LAC in SQL we used the tables
shown in Table 1. Next we describe in detail each step of
our algorithm presented in Section 5, expressed in SQL.

In Figure 2 we give the query that populates table S(id, cid),
where id is the point id, and cid is the cluster id. This query

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003

INSERT INTO S

WITH T1 (id, cid, wd) AS (

SELECT DATA.id,

C.cid,

SQRT(W.x1*(C.x1-DATA.x1)**2+. .+W.xn*(C.xn-DATA.xn)**2)
FROM DATA, C, W

WHERE C.cid = W.cid

),

T2 AS (

SELECT Ti.id, MIN(wd) AS mwd
FROM T1

GROUP BY T1.id

)

SELECT T2.id, Ti1.cid

FROM T1, T2

WHERE T2.mwd = T1.wd AND T2.id = Ti.id ;

Figure 2: SQL: Assign points (DATA) to clusters (S), cal-
culating the weighted distances on the fly

INSERT INTO CARD_S
SELECT CID, COUNT(*)
FROM S

GROUP BY CID ;

Figure 3: SQL: Calculate the cardinalities of sets S;.

implements steps 3 and 5 of the LAC algorithm. The query
joins the dataset table DAT A, with the centroids’ table C'
and weights’ table W, in order to calculate the weighted
distances of each point to each cluster centroid. The result
of the join goes to the temporary table T'1. Then, in the
second table T2, for each point, we calculate the minimum
distance of the point at hand from all clusters. The final
result (i.e. table S) is given through a join of T'1 and T'2.
Table T'1 has size of kD, while T2 has a size of D (and
so does table S), where k is number of clusters and D is
the number of points. Note that we can reduce the space
used by the temporary tables by opening a cursor on table
DATA, and for each tuple, calculate the k£ distances, and
store the point, along with the cluster id corresponding to
the minimum distance, directly into table S. Thus, the space
requirement is the actual size of table S, i.e. D.

Figure 3 shows the query that computes the cardinalities of
sets Sj,7 = 1...k. The sets are stored in table S(id, cid).
The computation is straightforward: it is a count of rows in
S, grouped by the cluster id. The result is stored into table
CARD_S, and the values are used in steps 4 and 6 of LAC.

In Figure 4 we give the query that computes the average
distance of points in S; from ¢;. This query implements the
first part of step 4, where the values Xj; = Exesj (¢cji —

x;)?/|S;| are computed. The result set of this query is kept
into table X (cid,dq,...,dn, sum_exp). Column sum_exp is
calculated as a function of the n preceding columns, and it is
used in second part of step 4, where the weights are updated.
We chose to actually store this sum, in order to avoid having
long expressions in the computation of the weights. The
query joins tables C, DAT A and S on the cluster id and the
point id, and presents the result by grouping the resulting
rows on the cluster id.

The second part of step 4 of LAC is presented in Figure 5.
The query uses the results stored in table X. Note that

page 4

Table PK Columns Cardinality | Contents
DATA id rl,...,xn D data points
w cid zl,...,xn k weights

C cid zl,...,xn k centroids

S id, cid D sets S;

X cid dl,...,dn,sum_exp k avg distances
CARD_S cid card k card. of S;

Table 1: Tables’ descriptions

INSERT INTO X
WITH Ti(cid, si,..,sn) AS

(
SELECT S.cid ,
SUM((C.x1-DATA.x1)*%2),...,SUM((C.xn-DATA.xn)**2)

FROM C, DATA, S
WHERE C.cid = S.cid
AND S.id = DATA.id
GROUP by S.cid

)

SELECT Ti1.cid ,
s1/CARD_S.card,

sn/CARD_s.card, O
FROM T1, CARD_S
WHERE T1.cid = CARD_S.cid ;

UPDATE X

SET sum_exp = EXP(-h * X.d1) + ... + EXP(-h * X.dn) ;

Figure 4: SQL: Compute the distances Xj;

INSERT INTO W
SELECT X.cid,
EXP(-h * X.d1) / SQRT(X.sum_exp),

EXP(-h * X.dn) / SQRT(X.sum_exp)
FROM X;

Figure 5: SQL: Compute the weights (W)

parameter h is actually substituted by a scalar value, dur-
ing the dynamic invocation of the queries by our control
program.

In Figure 6 the query that computes the centroids is pre-
sented. This is step 6 of the LAC algorithm. The query
first joins tables DAT A, S and C, in order to compute the
sums of the attributes of points that belong to the same
cluster. This intermediate results goes to temporary table
SUM S, and has size k. Then, tables SUMS and CARD_S
are joined, in order to compute the final result, i.e. the coor-
dinates of the new centroids. Note that we cannot avoid the
second join (which is performed on small tables, anyway),
because all the free columns that appear in a SELECT clause
and are not involved in an aggregation function (SUM in our
case) have to appear in the GROUP BY clause. In our case,
we perform a GROUP BY on column S.cid only, so we can-
not use column CARD_S.card in the SELECT clause that
creates table SUMS. Hence the need for the second join
between tables SUM and CARD_S.

7. EXPERIMENTAL EVALUATION

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003

INSERT INTO C

WITH SUMS(cid, s1,..,sn) AS
(

SELECT C.cid, SUM(DATA.x1),...,SUM(data.xn)
FROM DATA, C, S

WHERE C.cid = S.cid

AND S.id = DATA.id

GROUP BY C.cid

)

SELECT SUMS.cid ,
s1/CARD_S.card AS new_x1,

sn /CARD_S.card AS new_xn
FROM SUMS, CARD_S
WHERE CARD_S.cid = SUMS.cid ;

Figure 6: SQL: Compute new centroids (C)

In this section we present an experimental evaluation of the
SQL implementation of LAC. The experiments were run on a
desktop PC having a P4 processor running at 1.6GH and 1G
of RAM. The hosting operating system was Linux Mandrake
8.1 (kernel ver. 2.4.17) and we we used DB2 v8.1.

We created synthetic datasets having dimensionality N =5
and we embedded k£ = 5 clusters. The points’ coordinates
spanned within [0,100] on each dimension. The cardinali-
ties of the datasets D were 100k, 500K and 1M tuples. Fig-
ure 7 shows the execution times per iteration. The algorithm
converges, on average, after 5 to 7 iterations. We can see
that the execution times scale linearly with the size of the
database. The algorithm’s error (fraction of misclassified
objects over total number of objects) for the three datasets
(having 100k, 500k and 1M tuples) was 6.16%, 6.09% and
6.5%, respectively.

In order to evaluate the performance of LAC with respect
to the dimensionality of the data, we generated a second set
of datasets having dimensionality NV equal to 10, 20 and 30.
We fixed the cardinality D to 100k tuples and we embedded
k = 5 clusters. The execution times per iteration, for these
datasets, is show in Figure 8. The algorithm’s error for the
three datasets was 8.4%, 4.16% and 4.06%, respectively.
Furthermore, in order to check the performance while vary-
ing the number of embedded clusters, datasets with k equal
to 5, 10 and 20 were used. The cardinality D was fixed
to 100k tuples, while the dimensionality /N of the data was
set to 5. Figure 9 depicts the execution time per iteration
for these sets of data. The algorithm’s error for the three
datasets was 6.16%, 4.26% and 3.77%, respectively.

The basic characteristic of microarray DNA expression data
is the large number of conditions, under which the probes
are done. In the form of a relation table, the genes corre-
spond to rows and the conditions to columns (attributes). In
order to examine the scalability of the SQL implementation

page d

600

500

400

300

Execution time (sec)

200

100

L L
0 100 500 1000
Num. of tuples (in thousands)

Figure 7: Synthetic datasets: time per iteration with varying
no. of tuples, N=5, k=5

140

120 b

100 -

80 —

Execution time (sec)
\

60 - —
40 b

20

o 5 10 15 20 25 30
Number of dimensions

Figure 8: Synthetic datasets: time per iteration with varying
no. of dimensions, D=100k, k=5

120
100 - /
80 -

60 - /

Execution time (sec)

40 -

20

L L L
0 5 10 15 20
Number of clusters

Figure 9: Synthetic datasets: time per iteration with varying
no. of clusters, D=100k, N=5

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003

160

140 |

120 |

100 [

80

Execution time (sec)

60

a0

20 |

o 12 51
Number of genes (in thousands)

Figure 10: Biological datasets: time per iteration with vary-
ing no. of genes, N=22

of LAC, we did the following: we used a DNA microarray of
gene expression profiles in hereditary breast cancer', which
has 3226 genes and 22 conditions, as a basis, and we repli-
cated it 4, 16 and 31 times, in order to get larger sets, having
approximately 12K, 51K and 100K tuples, respectively. We
ran LAC with k=4. The results show that within two bi-
clusters five conditions (having id’s 7,8,9,19,22 in the first
one, and 7,8,9,13,22 in the second one) receive considerably
larger weight than the others. The remaining biclusters con-
tain fewer genes, and all conditions receive equal weights.
This indicates that no correlation was found among those
conditions. We observe that different combinations of con-
ditions are selected for different biclusters, as also expected
from a biological perspective. Figure 10 presents the exe-
cution times per iteration for this set of experiments. We
observe that the algorithm scales up linearly with respect to
database size, i.e. number of genes.

8. CONCLUSIONS

We presented an algorithm that discovers clusters in sub-
spaces by different combinations of dimensions via local weight-
ings of features. This method avoids the risk of loss of infor-
mation encountered in global dimensionality reduction tech-
niques. We implemented our algorithm using SQL in order
to facilitate the discovery of clusters on datasets stored in

a DBMS. The experimental evaluation shows the scalability
of our algorithm.

9. REFERENCES

[1] C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and
J. S. Park. Fast Algorithms for Projected Clustering.
In Proc. ACM SIGMOD, 1999.

[2] P. Arabie and L. Hubert. An overview of combinato-
rial data analysis. Clustering and Classification. World
Scientific Pub., pages 5—63, 1996.

[3] L. bottou and V. Vapnik. Local Learning algorithms.
Neural Computation, 4(6):888-900, 1992.

[4] K. Chakrabarti and S. Mehrotra. Local dimensionality
reduction: A new approach to indexing high dimen-
sional spaces. In Proc. VLDB, 2000.

"http:/ /research.nhgri.nih.gov/microarray /NEJM_Supplement

page 6

[5] P. Cheeseman and J. Stutz. Bayessian Classification
(autoclass): Theory and Results, chapter 6. AAAT/MIT
Press, 1996.

[6] Y. Cheng and G. M. Church. Biclustering of expression
data. In Proc. ISMB, pages 93-103, 2000.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society,
39(1):1-38, 1997.

[8] C. Domeniconi. Locally Adaptive Techniques for Patern
Classification. PhD thesis, UC Riverside, Aug 2002.

[9] J. G. Dy and C. E. Brodley. Feature Subset Selection
and Order Identification for Unsupervised Learning. In
Proc. ICML, 2000.

[10] M. Ester, H. P. Kriegel, and X. Xu. A database interface
for clustering in large spatial databases. In Proc. KDD,
1995.

[11] Z. Ghahramani and G. E. Hinton. The EM Algorithm
for Mixtures of Factor Analyzers. Technical Report
CRG-TR-96-1, Dept. of Computer Science, Univ. of
Toronto, 1996.

[12] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Paz-
zani. Locally adaptive dimensionality reduction for in-
dexing large time series databases. In Proc. of ACM
SIGMOD, 2001.

[13] R. Michalski and R. Stepp. Machine Learning: An Ar-
tificial Intelligence Approach, chapter 'Learning from
observation: Conceptual Clustering’. IOGA Publishing
Co., 1983.

[14] R. T. Ng and J. Han. Efficient and Effective Clustering
Methods for Spatial Data Mining. In Proc. of VLDB,
1994.

[15] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali. A Monte Carlo algorithm for fast projective
clustering. In Proc. ACM SIGMOD, 2002.

[16] D. G. R. Agrawal, J. Gehrke and P. Raghavan. Auto-
matic Subspace Clustering of High Dimensional Data
For Data Mining Applications. In Proceedings of ACM
SIGMOD, pages 94-105, June 1998.

[17] A. Thomasian, V. Castello, and C. S. Li. Clustering and
singular value decomposition for approximate indexing
in high dimensional spaces. In Proc. CIKM, 1998.

[18] M. E. Tipping and C. M. Bishop. Mixtures of Princi-
pal Component Analyzers. Neural Computation, 1(2),
1999.

[19] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering
by pattern similarity in large data sets. In Proc. ACM
SIGMOD, 2002.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
An Efficient Data Clustering Method for Very Large
Databases. In Proc. ACM SIGMOD, 1996.

DMKDO03: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003 page 7

