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Abstract

A nonparametric Bayesian approach to co-clustering en-
sembles is presented. Similar to clustering ensembles, co-
clustering ensembles combine various base co-clustering re-
sults to obtain a more robust consensus co-clustering. To
avoid pre-specifying the number of co-clusters, we specify
independent Dirichlet process priors for the row and column
clusters. Thus, the numbers of row- and column-clusters
are unbounded a priori; the actual numbers of clusters can
be learned a posteriori from observations. Next, to model
non-independence of row- and column-clusters, we employ
a Mondrian Process as a prior distribution over partitions
of the data matrix. As a result, the co-clusters are not re-
stricted to a regular grid partition, but form nested par-
titions with varying resolutions. The empirical evaluation
demonstrates the effectiveness of nonparametric Bayesian
co-clustering ensembles and their advantages over traditional
co-clustering methods.

1 Introduction.

Ensemble methods have been a major success story
in machine learning and data mining, particularly in
classification and regression problems. Recent work
has also focused on clustering, where ensembles can
yield robust consensus clusterings [19, 20, 7, 6, 11].
In this paper we contribute to this line of research by
studying the application of ensembles to co-clustering,
the problem of simultaneously clustering the rows and
columns of a data matrix into row- and column-clusters
to achieve homogeneity in the blocks in the induced
partition of the data matrix.

Our approach to co-clustering ensembles is a non-
parametric Bayesian approach based on the Dirichlet
process and the Mondrian process. While nonparamet-
ric Bayesian methods have previously been used in co-
clustering [12], to allow the number of row clusters and
column clusters to be random and inferred from the
data, our work makes use of nonparametric Bayesian
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ideas to model co-clustering ensembles. In particu-
lar, we develop a model-based approach to ensembles
that explicitly models the way in which multiple co-
clusterings differ from each other and from a consensus
co-clustering.

One way in which multiple co-clusterings can arise
is via different local optima of a single base co-clustering
method. Rather than selecting one of these optima, our
approach explicitly recognizes the possibility that these
local optima may contribute distinct, complementary
perspectives on the co-clustering problem, in which case
all optima should contribute to the formation of a con-
sensus co-clustering. It is worth noting that this issue
arises in many problems in which there is combinatorial
structure, and our model-based approach to ensembles
may have applications beyond co-clustering.

Most co-clustering algorithms [4, 17, 18, 21] assume
that row- and column-clusters are variation indepen-
dent; i.e., individual co-clusters are obtained as the
product of row- and column-clusters. This partitions
the data matrix into a regular grid. This assumption
of variation independence is inappropriate in situations
exhibiting context-specific independence (for example,
one cannot represent the situation in which, for some
rows, a given set of columns is partitioned into several
clusters, whereas for other rows, the columns form a sin-
gle undifferentiated cluster). Recent work has explored
a nonparametric prior known as the Mondrian processes
that relaxes this assumption [15]. A sample drawn from
a two-dimensional Mondrian process is a random parti-
tion over a matrix that is not constrained to be a reg-
ular grid. In this paper we explore ensemble versions
of both kinds of base co-clustering method. Specifically
we develop (1) a Dirichlet process-based co-clustering
ensemble model (DPCCE), which assumes independent
Dirichlet process mixture priors for rows and columns;
and (2) a Mondrian process-based co-clustering ensem-
ble model (MPCCE) that places a Mondrian process
prior over the matrix partitions. For both the DPCCE
and the MPCEE, the number of blocks is not fixed a
priori, but is open-ended and inferred from the data.

This paper is organized as follows. We review
related work in Section 2 and introduce some necessary
background in Section 3. We then propose two new
nonparametric Bayesian co-clustering ensemble models



in Sections 4 and 5. Experimental results are presented
in Section 6, followed by our conclusions in Section 7.

2 Related Work.

Co-clustering is an active area of research. Dhillon et
al. [4] introduced an information-theoretic co-clustering
approach based on hard partitions. Shafiei et al. [17]
proposed a soft-partition co-clustering method called
“Latent Dirichlet Co-clustering.” This model, however,
does not cluster rows and columns simultaneously. A
Bayesian Co-Clustering (BCC) model has been pro-
posed in [18]. BCC maintains separate Dirichlet priors
for row- and column-cluster probabilities. To generate
an entry in the data matrix, the model first generates
the row and column clusters for the entry from their re-
spective Dirichlet-multinomial distributions. The entry
is then generated from a distribution specific to the row-
and column-cluster. Like the original Latent Dirichlet
Allocation (LDA) [3] model, BCC assumes symmetric
Dirichlet priors for the data distributions given the row-
and column-clusters. Shan and Banerjee [18] proposed
a variational Bayesian algorithm to perform inference.
In [21] the authors developed a collapsed Gibbs sam-
pling and a collapsed variational Bayesian algorithm to
perform inference.

While clustering ensembles have been explored by
researchers to provide robust solutions to the problem of
clustering [19, 20, 7, 6, 11], co-clustering ensembles have
received little attention. An exception is the projective
clustering method in [10], where the authors formulate
co-clustering ensembles as an optimization problem
which involves both data and feature clustering.

3 Background.

3.1 Dirichlet Process. The Dirichlet process (DP)
[5] is an infinite-dimensional generalization of the
Dirichlet distribution. Formally, let S be a set, Go a
measure on S, and ag a positive real number. The ran-
dom probability distribution G on S is distributed as
a DP with concentration parameter aq (also called the
pseudo-count) and base measure Gy if, for any finite
partition {Bj}1<k<k of S:

(G(B1), G(Ba), -+ ,G(Bk)) ~

DiI‘(OéoGQ(Bl), OLOGO(BQ)7 e ,OLQGo(BK))

Let G be a sample drawn from a DP. Then with
probability 1, G is a discrete distribution [5]. Further,
if the first N — 1 draws from G yield K distinct values
07, with multiplicities 1.5, then the probability of the
Nth draw conditioned on the previous N — 1 draws is

given by the Pélya urn scheme [2]:

0*
GN - { k’
9K+1 ~ Go,

The DP is often used as a nonparametric prior in
Bayesian mixture models [1]. Assume the data are
generated from the following generative procedure:

with prob + ke{l,---,K}

Nk
—1+ag’

. ag
with prob N=itag

G ~ DiI‘(Oz(),Go)
b.n ~ G

N
n=1

where the F(+]0,,) are probability distributions known
as mixture components. There typically are duplicates
among the #1.n; thus, multiple data points are gener-
ated from the same mixture component. It is natural
to define a cluster as those observations generated from
a given mixture component. This model is known as
the Dirichlet process mizture (DPM) model. Although
any finite sample contains only finitely many clusters,
there is no bound on the number of clusters and any
new data point has non-zero probability of being drawn
from a new cluster [13]. Therefore, DPM is known as
an “infinite” mixture model.

The DP can be generated via the stick-breaking
construction [16]. Stick-breaking draws two infinite
sequences of independent random variables, vy ~
Beta(1l,a9) and 0 ~ Gy for k = {1,2,---}. Let G
be defined as:

T1:N

k-1
(3.1) T = ka(l—vj)
(3.2) G = imd(@,’;)
k=1

where @ = (mi|k = 1,2,---) are mixing proportions
and §(0) is the distribution that samples the value
6 with probability 1. Then G ~ Dir(ag,Go). It
is helpful to use an indicator variable z, to denote
which mixture component is associated with x,. The
generative process for DPM model using the stick-
breaking construction is:

1. Draw v, ~ Beta(l,ap), k = {1,2,---} and calcu-
late 7 as in Eq (3.1).

2. Draw 6 ~ Go, k= {1,2,---}

3. For each data point n ={1,2,--- ,N}:

e Draw z, ~ Discrete()
e Draw x,, ~ F'(-[0} )



The most popular inference method for DPM is
MCMC [13]. Here we briefly introduce Gibbs sampling
for DPM when F(:[07 ) and Gy are conjugate. Con-
ditional on observations {z,}nef1,... n} sampled from
G and values {z, }neq1,... vy for the indicator variables,
the posterior density function for the parameter 6; for
the k' cluster is also a member of the conjugate family:

(33)  pOr{wn, zntneqr, . ny) = 9(0kIC) =

I, f(@n]65) = g(65] o)
JTIN, £ (@ |07) =n=1g(65]Co)db;

where 1 is the indicator function, f(x]6) is the den-
sity (or mass) function for F(-|0), g(0|¢p) is the density
function for Gy, and g¢(6;|¢;) is the posterior density
function, with parameter (}; obtained using the conju-
gate updating rule. Conditional on the next indicator
variable zy_1, the predictive distribution for the next
data point is given by:

(34) p(wNHxnyzn}nE{l,m,N}72N+1 = k)

/ F(en107)9(OF1CE) oY

can also be obtained in closed form. Having integrated
out the parameters, it is necessary to Gibbs sample
only the indicator variables. The conditional probability
for sampling the indicator variable for the i*"* data
point is given as follows. For populated clusters k& €

{Zn}ne{l,m ji—1,i+1,-,N}»

(3.5) p(2i = klzis {xn, 2ntneq1, - i-1i41, N})
ny’

s [ fal09(071G o

Here, ny* is the number of data points other than z;
assigned to the k'" cluster, and g(6;|¢; ™) is the poste-
rior density for the k" cluster parameter given all ob-
servations except x;. If 2 & {zn}ne(i, - im1,i41, N}
is a singleton cluster and k = z;, or if z; €
{#n}nef1, i-1,i+1,.. N} is not a singleton cluster and
k = N + 1, the predictive probability is:

(36) p(zl = kll’,, {xnv Zn}nE{L... sim 1,1, 7]\/v})
(67 N N .
x i [ failoiat6ico s

Eq (3.5) is the probability of assigning x; to the
kth existing cluster, while Eq (3.6) is the probability of
assigning x; to its own singleton cluster.

Additional details on DPM inference can be found
in [13, 14].

3.2 Mondrian Process. A Mondrian process M ~
MP(X, (a,A),(b,B)) on a 2-dimensional rectangle
(a, A) x (b, B) generates random partitions of a rectan-
gle as follows [15]: The parameter A, called the budget,
controls the overall number of cuts in the partition. At
each stage, a random cost E is drawn and compared
to the budget. If E exceeds the budget, the process
halts with no cuts; otherwise, a cut is made at random,
the cost is subtracted from the budget, and the process
recurses on the two sub-rectangles, each being drawn
independently from its own MP distribution.

The cost F of cutting the rectangle (a, A) x (b, B) is
distributed exponentially with mean equal to 1/(A—a+
B —b), the inverse of the combined length of the sides.
That is, for fixed A, a longer perimeter tends to result
in a lower cost. The parameter A\ can be viewed as a
rate of cut generation per unit length of perimeter. If a
cut is made, it has horizontal or vertical direction with
probability proportional to the lengths of the respec-
tive sides, and its placement is uniformly distributed
along the chosen side. After a cut is made, a new bud-
get N = A\ — F is calculated, and the sub-rectangles
are independently partitioned according to a Mondrian
process with rate \’. That is, if the cut splits the hor-
izontal side into (a,z) and (x, A), then the two sub-
rectangle processes are Mo ~ MP(X,(a,x), (b, B))
and Ms ~ MP(N,(x,A), (b, B)), respectively. Con-
versely, for a vertical cut into (b, ) and (z, B), the sub-
rectangle processes are Mo ~ MP(X, (a, A), (b,x)) and
M~ MP(A/a (aaA)a (:17, B))

The one-dimensional Mondrian process reduces to
a Poisson process. The MP shares with the Poisson
process the self-consistency property that its restriction
to a subspace is a Mondrian process with the same rate
parameter as the original Mondrian process. As with
the Poisson process, one can define a non-homogeneous
MP by sampling the cuts non-uniformly according to
a measure defined along the sides of the rectangle [15].
Here, we consider only the homogeneous MP.

Algorithm 1 samples a Mondrian process M with
rate A on a 2-dimensional space (a, A) x (b, B). Addi-
tional details on the Mondrian Process can be found in
[15].

4 Dirichlet
Ensembles.

4.1 DPCCE Generative Model. Following gen-
eral practice in the clustering ensemble literature, [19],
the DPCCE model does not specify a probabilistic
model for the original R x C' data matrix X , but rather
models the output of M base co-clusterings (@,,|m €
{1,2,--+- ,M}). The base co-cluster ¢,, partitions the
rows and columns of the data matrix into I,, row clus-

Process-based Co-clustering



Algorithm 1 Mondrian M ~ M P(X, (a, A), (b, B))
let N < A\ — F where E ~Exp(A—a+ B —10)
if M’ <0 then

return M <« {(a, A) x (b, B)}
end if
draw p ~ Bernoulli(%)
if p =1 then
draw x ~ Uniform(a, A)
let My < MP(XN,(a,x),(b,B))
let Mg + MP(N,(z,A), (b, B))
return M < M; UM,
else
draw x ~ Uniform(b, B)
let My < MP(XN,(a,A), (b, z))
let Mg + MP(N,(a,A), (z,B))
return M < M; UM,
end if

ters and .J,, column clusters. We assume that rows and
columns are clustered independently by the base clus-
terings, resulting in a grid-style partition. That is, all
entries in a given row (column) are assigned to the same
row (column) cluster. The base co-clusterings are orga-
nized into a R x C' x M array 17, where the entries
Yrem = (Y&, y<,) denote the row- and column-cluster
ID’s assigned by ¢,,. The indices y%, and 3, range
from 1 to I,,, and J,,, respectively.

According to the DPCCE model, the observations
Y are generated from independent row and column
Dirichlet process mixture models with pseudo-counts
a® and oY, and row and column base measures G
and G,Cn7 respectively. Figure 1 depicts the DPCCE
model. A stick-breaking process is used to generate
the row and column Dirichlet processes. The mixing
proportions 7 and 7¢ are generated as in Eq (3.1),
and the consensus cluster indicator variables zZ and
2¢ are drawn according to these mixing proportions.
The unique row and column parameters 6% and 67C
for each consensus row-cluster [ and column-cluster &
are generated as independent draws from symmetric T-
dimensional Dirichlet distributions GF and G¢ with
pseudo-counts B2 and BS, respectively. We assume
Ly, Jm < T; as T grows without bound with fixed total
pseudo-count, GE and GC become Dirichlet process
distributions. The row-cluster ID’s y%  are independent
draws from a T-dimensional discrete distribution with
parameter 51*713, where | = 2% is the row-cluster indicator
for row r. Similarly, the column-cluster ID’s y<,
are independent draws from a T-dimensional discrete
distribution with parameter g‘ZC’ where k = 2 is the
column-cluster indicator for row 7.

Formally, the generative process for DPCCE is:

Figure 1: The DPCCE models.

e Draw le ~ Beta(1,af), for i =1,2,--- ;00

. Set mlxture Welghts for consensus row-clusters
_Uz Ht ( —off), for 1 =1,2,--- ;00

. Draw vf ~ Beta(l,a%), for k =1,2,--- ,00

° Set mlxture Welghts for consensus column-clusters
¢ =v¢ Ht (1 =00, for k=1,2,-

e Draw parameters for consensus row-clusters QI*R ~

Dir(p%), for 1 =1,2,--- , 00

e Draw parameters for consensus column-clusters
0;¢ ~ Dir(BY), for k =1,2,-++ , 00

e For each row r:

R

row-cluster  z ~

— Draw  consensus -

Discrete(7%)
— For each base co-clustering ¢,,:
* Generate y&, ~ Discrete(tﬁj;*wlf), where [ =

R
Zp

e For each column c:

— Draw consensus column-cluster 2&  ~
Discrete(7)
— For each base co-clustering ¢,,:
* Generate y5,, ~ Discrete(6;C ), where k =

C

Zc

4.2 DPCCE Inference. We use the collapsed Gibbs
sampling method discussed in Sec. 3.1 for DPCCE
inference. As all rnodel parameters are marginalized
out, we sample only 2 and z&. We assume infinite T, so
that GE and GS, become D1r1chlet process distributions.

The conditional distribution for sampling 2z given

Y and all other indicator variables 277" is

(4.7) p(z =1V, 257 ’YR) o
NF”
R—1+af H V,



when the cluster index [ appears among the indices in
ZB=7 and

F= lli7 “R“,WR)

1+()(R H Yl

when the cluster index [ does not appear among the
indices in 27", Here, N is the number of rows
assigned to the [*" consensus row-cluster excluding the

r*" row, and NR is the number rows assigned to the

Yrm

same row-cluster as the r*"
TOW.
Similarly, the conditional distribution for sampling

2% given Y and all other indicator variables 2€7¢ is:

(4.9) p(ze

(4.8) (2

row by ¢, excluding the rt"

C _ k|? —Cﬁc,,YC)
NW H

C—-1+4aC
when the cluster index k appears among the indices in
Z€7¢ and

(4.10) p(z

Cﬁc

ycm

¢ =klY,z¢ ,70)

o
C-1+4aC H

when the cluster index k does not appear among the
7€7¢. Here, N¢ ' is the number of columns

Cﬁc

y(‘m

indices in 2
assigned to the k'" consensus column-cluster excluding
the ¢* column, and Nye ¢ is the number columns

cm

assigned to the same column-cluster as the c¢t"
by ¢m excluding the ¢ column.
Table 1 summarizes notation used throughout the

paper.

column

5 Mondrian
Ensembles.

5.1 MPCCE Generative Model. The Mondrian
Process-based Co-clustering Ensemble (MPCCE) model
generalizes the grid-style partitions of the DPCCE to
allow different resolutions in different parts of the data
matrix. The non-regular partitions generated by the
MP provide increased flexibility and parsimony.

A sample drawn from a two-dimensional Mondrian
Process partitions a rectangle using axis-aligned cuts, as
illustrated in Figure 2 (left). If we overlay this partition
on a data matrix, we can identify each block with a co-
cluster consisting of entries falling inside the block. The
model replaces the independent row clusters and column
clusters of the DPCCE model with a set of co-clusters.
It is more natural to deal with these co-clusters directly,

Process-based Co-clustering

Figure 2: Unpermuted Synthetic Data Matrix Sampled
from Mondrian Process (left) and Corresponding Grid
(right)

rather than with row- and column-clusters separately.
To achieve the same level of resolution with a grid-style
partition would require a much less parsimonious model,
as shown in Figure 2 (right).

The MPCCE generative process, depicted in Figure
3, puts a two-dimensional MP prior on partitions of the
data matrix. Following [15], we treat a MP prior as
generating a partition M over the unit square [0,1] x
[0,1]. Rows and columns of the data matrix are mapped
to vertical and horizontal coordinates of the unit square
through latent variables &, and 7.. The latent variables
E=(&|re{l,--- R}y and 7= (n.lc € {1,---,C}) act
like permutations of the rows and columns of the data
matrix. The partition M and the latent variables 5 and
177 determine a partition over the original data matrix.

As with DPCCE and standard practice in the
clustering ensemble literature and model the variables
Yrem that denote the co-cluster ID assigned to the entry
in row r and column ¢ by the m!”* base clustering ¢,,.
The co-cluster ID y,.c,,, ranges from 1 to J,,, the number
of co-clusters output by ¢,,. We assume that y,cp, is
sampled from a discrete distribution with parameter
é'mk, namely p(Yrem = Jm) = Omkj,., Where k is the
block of M corresponding to row r and column ¢, and
the parameter 5mk is sampled from a symmetric J,-
dimensional Dirichlet distribution.

Formally, the generative process for the base clus-
terings Y proceeds as follows:

e Draw a partition M ~ MP(),[0,1],[0,1]); let K
be the number of blocks in M

e Draw block parameters gmk ~ Dir(B,,), for m =
1,2,--- Mandk=1,2,--- K

e Draw latent row coordinates &, ~ Uniform|0, 1], for
r=1,2,---.R

e Draw latent column coordinates 7, ~ Uniform]0, 1],
forc=1,2,---,C

e For each row r and column c:



Table 1: Notation Description

Symbols  Description

R number of rows in the data matrix X
C number of columns in the data matrix X
M number of base co-clusterings
Om the m*" base co-clustering
Notation for DPCCE
I, number of row-clusters in ¢,
Im number of column-clusters in ¢,
yR the row-cluster assigned to the 7" row by ¢, y&, € {1,---, In}
v the column-cluster assigned to the ¢ column by ¢,,, v, € {1,--- ,J,}
Y defined as (Yrem|r € {1,--- ,R},ce{l,---,C},me{l,--- ,M})
9??; the discrete distribution of observing the row-clusters of ¢, in the [** consensus row-cluster
J,fnj the discrete distribution of observing the column-clusters of ¢,, in the k** consensus column-cluster
é}c* defined as (0f*|m € {1,2,--- , M})
9 defined as (0% |m € {1,2,--- , M})
./\/;Ifn’ the number of rows assigned to the 4,,"" row-cluster by ¢,
/\/'JCm the number of columns assigned to the j,,!" column-cluster by ©Om
NE the number of rows assigned to the I*" consensus row-cluster
NE the number of columns assigned to the k' consensus column-cluster
./\/lRﬁT the number of rows assigned to the I** consensus row-cluster excluding the r* row
NE™ the number of columns assigned to the k** consensus column-cluster excluding the ¢! column
N, ﬁ;r the number rows assigned to the same row-cluster as the r*"* row by ¢, excluding the 7" row
CT:n the number of columns assigned to the same column-cluster of the ¢*” column by ¢,,,
YCm excluding the ¢! column
Notation for MPCCE
Im number of co-clusters in ¢,
M a Mondrian sample, which is a Mondrian style partition over the unit square,

and assume there are K blocks in M

the co-cluster identity assigned to the entry (r,c) by the m!" base clustering ¢,,,
yrcm

Yrem S {17 e aK}

Y defined as (yrem|r € {1,--- ,R},ce{l,---,C},me {1,--- ,M})
Ok, the probability of assigning an entry in the k" block of M by ¢, to its jm!" co-cluster
7 defined as (0, |Jm € {1,2,--- , T }), which is drawn from a .J,,-dimensional
mk symmetric Dirichlet distribution with hyperparameter 3,,
Xﬁ the position of the A*" horizontal cut of the total Lz horizontal cuts in M
x? the position of the g** vertical cut of the total Lo vertical cuts in M
Ni the number of entries in the k" block of M
/\/,i/"m:jm the number of entries in both the k" block of M and the 5,," co-cluster of ¢y,
o the number of entries in the k' block of M, excluding the entries in the r*"* row
i the number of entries in the k" block of M, excluding the entries in the ¢'* column

A the number of entries in both the k' block of M and the jmth co-cluster of ¢,,,
kym=jm  excluding the entries in the r*" row

e the number of entries in both the k£t block of M and the jmth co-cluster of ¢,,,

k:y-m=im  excluding the entries in the ¢*" column
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&1 -{pron- @)

&

M

Figure 3: The Mondrian Process-based Co-Clustering
Ensemble Model

— Let k be the block (co-cluster) of M to which
(&-,mc) belongs

— For each base clustering ¢,,, draw yrem ~
Discrete(0,,x)

5.2 MPCCE Inference. We perform Markov Chain
Monte Carlo (MCMC) simulation on the posterior dis-
tribution over M, f_: 77, and g. The joint distribution of
observed base co-clustering results 17, hidden variable
M, E and 77, and model parameters g is:

R
A) = p(M|)) (H p(é}))

) (H 1 o msz)
- ¢ k=1m= '
(H M1 <ymm|e,M7gmm>) |

r=1c=1m=1

— —

(5.11) p(Y, M,&7,6]3,

u,’:]e

We can integrate out the model parameter 0 be-
cause of conjugacy:

(5.12) p(Y, M, €78, \)

pM|A) (Hp & >
(flm) <Hl,11r M)
i

Ny m—Jm))
Jm=1 7

Bm)

where A}, denotes the number of entries in the k%" block
of M, and N}"~7™ denotes the number of entries in
both the k" block of M and the jmth co-cluster of ¢,,.

We perform Gibbs sampling on the row and column
coordinates 5 and 77. Since &, and 7, have uniform prior
distributions, their posterior distributions are piece-wise
constant [15]. Define ¥® = (x®|h € {0, -+ ,Lg,Lp +
1}), where x{ = 0, xf < X751, X§R+1 = 1. The value
x5 is the position of the ht" horizontal cut of the total
Ly horizontal cuts in M. The conditional probability
that & falls in the interval (x77, X7y ) is:

(5.13p(xf < & < xRy | X, M, €7, 7,8, ))

(JoBm)
Oaia =i (,Hylr (B + N7
o ;;7" )
Y om=Jm
<TI0 - o )

Jm=1

Similarly, let Y¢ = <X§|g €{0,---,Lc,Lo+1}), where
xX§ =0, X? < x§+1, chﬂ = 1. The value ch is the
position of the ¢t" vertical cut of the total Lo vertical
cuts in M. The conditional probability that 7. falls in

the interval (Xg, X§+1) is:

(514)}?()(90 <Ne < X?+1|X E _’_‘Caﬁ /\) X
K Bim)
0 - (H 11 o 725

k=1m=1

(ﬁ m

k, Y- m—Jm)>

i |
AL s

In these equations, the superscripts —r and —¢ mean

that the rt"* row and ¢ column are excluded in the

respective counts. Accordingly, we have:

(5.15) O X B + NY ™.
Reversible jump MCMC (RIMCMC) [9] is
used to sample from the posterior distribution

p(/\/l|}7, E, 7, B, A). A state M consists of a tree of blocks
and a vector 5 of parameters. The parameters consist of
a cost Ej and a location yj of the cut to each non-leaf
block of the tree. The location yj ranges between zero
and 7y, where 73 is half the length of the block perime-
ter. If x is less than the width of the block, a vertical
cut is made at position xj along the width; otherwise,
a horizontal cut is made along the height of the block
at position equal to x minus the block width.

Each MCMC proposal either removes a pair of
sibling leaf blocks or adds a cut to a leaf block. When
a leaf block k is split into child blocks k' and k", the
parameter C is extended to (C,Ek,xk> When a split
is removed, the associated cost Ej and location xj
are removed from (5, Ey, xx) to obtain ¢, RIMCMC



maintains reversibility of moves by adding auxiliary
parameters so that moves occur between spaces of equal
dimensions. When proposing to add a cut, we augment
the current parameter C_,; and define a bijection between
the augmented parameter (@, u1,u2) and the proposed

parameter (i1 = (G, Eg, Xk ):

add

(5-16) 9t->t+1(<5t7u17u2>) = <5taEk7Xk>-

Similarly, when proposing to remove a cut, we augment
the proposed state 5:5+1 and define a bijection between
the current state C: and the augmented proposed state
(Cea1, u1, uz):

(517)g7 5725 (G) =

g:ir?-?-ﬁe(<<.t+1a Ek7 Xk>) =

The proposal distribution Q(M41; M;) chooses with
equal probability whether to add or remove a cut, and
uses a uniform discrete distribution to sample the block
at which to add or remove the cut. When a cut at block
k is being added, Q(M;y1;M;) proposes a location
Xk from a uniform distribution and a cost Ej from
an exponential distribution with parameter 7,. When
a cut at block k is being removed, Q(M;y1; M;) sets
the new parameter @+1 deterministically by removing

<Et+la Uy, u2>~

the cost Ej and location xj from the current state (,:;7
and the auxiliary parameters are then sampled from
a distribution g(u1,us). The parameter u; is sampled
from the same exponential distribution used to sample
the cost of a new cut at k, and the parameter usy is
sampled from the same uniform distribution used to
sample the location of a new cut at k.

Following [9], the proposal to remove a cut is
accepted if o drawn from Uniform(0,1) satisfies:

PMen |V, 67, 8,))
PMLIY & 77, B, \)

% Q(Mt;MtJrl)
Q(Mt+1; Mt)Q(Uh U2)

b

is the Jacobian of g{i”,}i’ie(ft) The

acceptance probablhty for adding a cut is obtained in a
similar manner. See [9] for details on RIMCMC.

(5.18)

a < min{l,

o OCir1, U1, us)

9G;

where ‘ 3(5t+17u17U2>

To calculate the acceptance ratio in Equa-
tion (5.18), we mneed to calculate two ratios
QM Mii1) pPMua [V ETB)  The first

Q(Mt+1;Mt)q(l7t+1) p(Mt\?7éﬁ7ﬂa)‘\) '. .
of these involves only the proposal distributions, and

is straightforward to calculate. The second of these,

the ratio of posterior probabilities of M1 and My, is
equal to the prior odds ratio times the likelihood ratio:

p(Mt+1|?,g’ﬁ>Bv)‘) _

PMY & 77, B,0)
pP(Mi1|A) L{Mi1)
p(Mi|A)  L{(My) ’

(5.19)

where L(M;11) and L(M;) are the likelihood of M,
and My, which are defined as:

(520)  L(Myyy) =
Ky
(IL I o
xjﬁl <5m;(ﬁig)ﬁ‘“>>7
(5.21)  L(M,) =
(knl nnl I O v Bf/vw

For a proposal to remove a cut of block & into blocks
k' and k”, the prior odds ratio is given by:

Wi
POk )P(Er )wpr wperr”

p(Mt+1|>‘) _

(5:22) =M

where wy, is the probability that sampling terminates
with no cut at block k; this happens when the cost Ej
exceeds the budget A\;. The cut cost Ej is generated
from an exponential distribution with parameter 7.
Thus, the probability of terminating with no split at
block k is given by:

(5.23) WE =

+oo
/ T, exp(—Tre)de = exp(—Tr k).
A

k

Similarly, Wgr = eXp(ka/ /\k/) and Wi = eXp(ka//)\k//).
Note that a block’s budget is equal to its parent’s
budget minus the cost of cutting the parent. Thus,
Al = Al = A\ — Ej; and \g can be computed recursively
from the budgets and cut costs of its ancestors.

A similar calculation gives the acceptance ratio for
adding a random cut to M; to generate Myy;. The
inference procedure for MPCCE is given in Algorithm
2.



Algorithm 2 Inference for MPCCE

Input A, 8 and 57; randomly initialize E and 77
t<0
M has no cut
budget<«— A
repeat
t—t+1
Propose M1 conditioned on M, by either adding
or removing a cut
Accept or reject M, according to Equation (5.18)
if reject then
Mypr — M,
else
Mg = My
end if
Gibbs sample E and 7 according to Equation (5.13)
and (5.14)
until Stopping criteria met
Output the final M, gand 7

6 Experiments.

6.1 Data. We conducted experiments on synthetic
and real data. Following [15], we synthetically gener-
ated non grid-style clusters by sampling from a Mon-
drian process on the unit square. We then generated
250 row and 250 column coordinates from a uniform dis-
tribution, and set the data value to the cluster ID for
the block at those coordinates. Finally, we permuted
the rows and columns randomly to form the final data
matrix. We also used two real datasets: (a) MovieLens!
is a movie recommendation dataset containing 100,000
ratings in a sparse data matrix for 1682 movies rated
by 943 users. (b) Jester? is a joke rating dataset. The
original dataset contains 4.1 million continuous ratings
of 100 jokes from 73,421 users. Following [18], we chose
1000 users who rated almost all jokes, discretized the
ratings, and used this dense data matrix in our exper-
iment. For both real datasets, we held out 25% of the
data for testing.

6.2 Methodology. We compared DPCCE and
MPCCE with other generative co-clustering ap-
proaches:  Latent Dirichlet Co-clustering (LDCC)
[18, 21], Dirichlet Process-based Co-clustering (DPCC)
[12], and Mondrian Process-based Co-clustering
(MPCC) [15]. LDCC requires specification of the
numbers of row- and column-clusters. For the syn-
thetic dataset, we varied the numbers of both row- and
column-clusters from 5 to 10. For MovieLens, we set the

Thttp:/ /www.grouplens.org/node/73
2http://goldberg.berkeley.edu/jester-data/

number of user clusters to 20, the number of occupation
categories, and the number of movie clusters to 19, the
number of genres. For Jester, we used 5 joke clusters
and 20 user clusters; this is the number of clusters
given in the data description. The pseudo-counts of
the DP priors for both rows and columns in DPCC and
DPCCE are set to 20. We ran DPCC and MPCC five
times with different random initializations, to generate
five base co-clustering results. We then ran DPCCE
and MPCCE based on the DPCC and MPCC results,
respectively. We repeated DPCCE and MPCCE five
times, each time with five different base co-clusterings.
For MPCCE and MPCC we set the budget A = 1,
and let pug be Lebesgue measure. We ran DPCC and
DPCCE for 3000 iterations, and MPCC and MPCCE
for 1000 iterations.

We evaluated the models using perplexity:
perp(X) = exp(—(logp(X))/N), where N is the
number of non-missing entries in X. TFor the two
real datasets, we report perplexity on both training
and test sets; for the synthetic data, we report only
training perplexity. If the chain mixes well and is run
sufficiently long, each sample of five DPCC or MPCC
results used to fit the DPCCE and MPCCE models
can be viewed as a sample from the DPCC or MPCC
posterior distribution, respectively. We therefore also
evaluated a model averaging approach, in which we
calculated the perplexity based on the average of the
five DPCC or MPCC likelihood results.

6.3 Results. We present two main experimental
comparisons: (a) perplexity comparisons on the syn-
thetic data and the training sets for the real datasets;
and (b) perplexity comparisons on the test sets for the
real datasets.

6.3.1 Perplexity Comparison on Training
Datasets. Figure 2 (left) shows the original non-grid
style synthetic data matrix. After permuting its rows
and columns, this matrix was input to the base co-
clustering algorithms for DPCCE and MPCCE. Figure
2 (right) shows the corresponding grid-style partition
of the original synthetic data matrix. Clearly, the
grid-style partition of DPCCE over-segments the data,
whereas the partition provided by MPCCE reflects the
actual data distribution.

Table 2 shows the perplexity results for the train-
ing data. Each entry shows an average perplexity over
five runs®, with the standard deviation of the average
shown in parentheses. The benefit of the non-grid parti-

SFor DPCC and MPCC, the estimate for each run is the
average of the results for the five base co-clusterings.



Table 2: Perplexity Comparison on Training Datasets

Synthetic MovieLens Jester
LDCC 4.782 (0.025) | 3.045 (0.026) | 18.896 (0.072)
DPCC 3.723 (0.026) | 2.797 (0.028) | 15.984 (0.073)
Model Avg. of DPCC | 3.687 (0.039) | 2.312 (0.040) | 14.223 (0.115)
DPCCE 3.573 (0.037) | 2.130 (0.033) | 13.677 (0.107)
MPCC 1.626 (0.023) | 2.473 (0.043) | 12.035 (0.088)
Model Avg. of MPCC | 1.486 (0.046) | 2.386 (0.051) | 10.968 (0.142)
MPCCE 1.255 (0.038) | 2.124 (0.037) | 9.785 (0.122)

tion is demonstrated by the improvement of MPCC and
MPCCE over LDCC, DPCC and DPCCE. The efficacy
of the ensemble approach is demonstrated by the im-
provement of MPCCE and DPCCE over MPCC and
DPCC, respectively. The model averaging estimates
perform better than their respective non-ensemble coun-
terparts, but not as well as the ensemble estimates. All
nonparametric approaches perform better than LDCC.
Note that for MovieLens, MPCCE performs only 2%
better than DPCCE, a difference that cannot be distin-
guished from sampling noise. This may indicate that
a grid structure of independent user and movie groups
provides a good fit to the MovieLens data. For the
Jester dataset, the perplexities are relatively high for
all models. This is due to the large number of missing
values in this dataset.

All experiments were run on a CentOS 5.5 server
running Linux on a 4-core CPU with 4GB memory.
The running time for 1000 iterations of MPCC was
approximately 4 hours on MovieLens and 3 hours on
Jester. For 1000 iterations of MPCCE, the running time
was about 6 hours on Movielens and 4 hours on Jester.
For DPCC and DPCCE, 3000 iterations ran in under 3
hours.

Figure 4 plots the log-likelihoods on the Jester
dataset for 5 MPCC runs and one MPCCE run ini-
tialized with iteration 1000 of the 5 MPCC runs. For
comparison, we also continued the MPCC runs for an-
other 1000 iterations. All chains appear to have reached
different local optima. The local optimum for MPCCE
has higher likelihood than all five MPCC local optima.
The Potential Scale Reduction Factor MCMC diagnos-
tic [8] for the 5 MPCC log-likelihood values plotted
in Figure 4 is 3.0043, which is also indicative of non-
convergence. The other MPCC and MPCCE runs fol-
lowed the same pattern. These results suggest that the
ensemble method finds superior local optima for sam-
plers that mix poorly. Note running MPCCE for 1000
iterations requires less computation time than continu-
ing the 5 MPCC runs for a second 1000 iterations, and
results in a superior local optimum.

6.3.2 Perplexity Comparison on Test Datasets.
Predictive performance was evaluated by measuring
perplexity on the test data for the two real datasets.
Table 3 shows the prediction comparison results. Again,
the results are reported as an average perplexity over
multiple predictions, with the standard deviation of
each average in parentheses.

Again, all nonparametric methods perform better
than LDCC; clustering ensembles perform better than
model averaging, which performs better than single-
run methods; and the MP methods perform better
than grid-style clustering. Statistical significance tests
indicate that the improvement due to the ensemble
method is much greater than expected from chance
variation. Paired t-tests of the hypothesis that the
mean perplexities are the same were significant at
p < 107 for MPCCE vs MPCC and for DPCC vs
DPCCE, on both the MovieLens and Jester data sets.
Although the differences remain smaller for MovieLens
than for Jester, the improvement in both MovieLens and
Jester due to the non-grid partitions of the MP exceeds
sampling error. That co-clustering ensembles perform
better than model averaging on both training and test
sets for all data sets is consistent with the hypothesis
that poor mixing of the MCMC algorithms for DPCC
and MPCC kept the chains near local optima of the
posterior distribution, and that the ensemble algorithms
can combine information from multiple local optima to
find a superior co-clustering.

7 Conclusion.

We have presented two nonparametric Bayesian co-
clustering ensemble models, one based on Dirichlet Pro-
cesses and the other based on Mondrian Processes. The
latter relaxes the usual co-clustering assumption that
row- and column-clusters are independent, providing
a way to model context-specific independence of row-
and column-clusters. The empirical evaluation demon-
strated that nonparametric clustering ensemble meth-
ods can improve both fit and predictive performance
over traditional co-clustering methods, and that the in-
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Figure 4: MPCC and MPCCE Likelihood Comparison

Table 3: Perplexity Comparison on Test Datasets

MovieLens Jester
LDCC 3.247 (0.052) | 23.743 (0.236)
DPCC 2.908 (0.055) | 20.174 (0.219)
Model Avg. of DPCC | 2.838 (0.079) | 19.165 (0.421)
DPCCE 2.707 (0.060) | 18.092 (0.458)
MPCC 2.793 (0.067) | 13.781 (0.263)
Model Avg. of MPCC | 2.738 (0.089) | 13.433 (0.379)
MPCCE 2.626 (0.084) | 12.036 (0.438)

creased flexibility of the Mondrian process can improve
both fit and predictive performance over independently
clustering rows and columns. The ability of ensemble
methods to incorporate complementary aspects of mul-
tiple local optima may have applications to other prob-
lems with combinatorial structure.
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