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1. The Vector Space Model in a Nutshell 4. Our Parallel Retrieval System 7. Improved Throughput
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- Documents and queries: feature vectors, “a d q - Hybrid partitioning: split into equal parts, - The standard for parallel search engines 1s index replication.

- Similarity score: cosine of enclosed angle, - Dense vectors/matrices: dimensionality reduction (LSI, COV), - Can a parallel program outperform multiple serial programs? Yes!

- Search: compute similarity and sort results, 4, - Implemented using MPI: supercomputer-grade middleware, - Parallel queries/serial programs vs. serial queries/parallel program:

dog
- Corpus matrix C: contains all documents, Cld d - In-memory system: avoids slow HDDs, )
1 2 time saved
- Compute similarities: s = C g for a given query g, cat [0.19 0.8 - Single-precision floating point: avoids the memory bottleneck, Y
| dog| 0.9 0.36
- Partition th\corp'us: split C row-wise or column-wise.
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2. Forms of Parallelism 5. Query Response Time 8. Summary
Index Replication Clustermg Test Environment Serial Base-Line | | | |
h‘ h‘ h‘ h‘ : ‘ _ 8 quad-core Xeon E5520 - Modern retrieval systems require dense matrix/vector algorithms,
answer queries 1n parallel limit search to similar clusters ) ?sziri%gl}ldzng;tv%flf fgﬁ iIC{AM’ - Exploiting the memory hierarchy 1s crucial for high speed-up,
Document Partitioning Feature Partitioning 10 Gbps, - Hybrid partitioning delivers super-linear speed-u
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- parallel merge-sort parallel matrix-vector product Document Partitionin o HybI‘i d Partitionin o - Short query response time improves user satistaction,
Hybrld Pgr tltloglng‘ l Hybrid W,lth Cluste'rlng ' I = Super-linear speed-up 1improves throughput over replication,
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. The Memory Hierarchy 6. Improved Response Time 9. Work in Progress

SIZE VS. Speed - Hybrid partitioning exploits the memory hierarchy, - Add clustering - conduct the parallel search within clusters,

- Delivers super-linear speed-up over serial, in-memory system, - New middleware on top of MPI for persistent parallel services,

- Disk-based systems are not considered here. - Corpus analysis and feature weighting,

- Functional decomposition into components - pipelining parallelism,

- - Thread-level parallelism for enhanced utilization,

- More components needed for a full search engine,
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- GPGPU éoﬁlputing - CUDA or OpenCL numeric kernels.




