Parallel Information Retrieval for Dense Vectors

Tobias Berka and Marian Vajtersic
University of Salzburg, Austria
tobias.berka(@gmx.net

1. The Vector Space Model in a Nutshell 4. Our Parallel Retrieval System 7. Improved Throughput

. t} e . o -

- Documents and queries: feature vectors, “a d q - Hybrid partitioning: split into equal parts, - The standard for parallel search engines 1s index replication.

- Similarity score: cosine of enclosed angle, - Dense vectors/matrices: dimensionality reduction (LSI, COV), - Can a parallel program outperform multiple serial programs? Yes!

- Search: compute similarity and sort results, 4, - Implemented using MPI: supercomputer-grade middleware, - Parallel queries/serial programs vs. serial queries/parallel program:

dog
- Corpus matrix C: contains all documents, Cld d - In-memory system: avoids slow HDDs,)
1 2 time saved
- Compute similarities: s = C g for a given query g, cat [0.19 0.8 - Single-precision floating point: avoids the memory bottleneck, Y
| dog| 0.9 0.36
- Partition th\corp'us: split C row-wise or column-wise.
| Tl
. visually: 1 '(_ ‘_) ™ > e :
| . = L A ﬁ
2. Forms of Parallelism 5. Query Response Time 8. Summary
Index Replication Clustermg Test Environment Serial Base-Line | | | |
h‘ h‘ h‘ h‘ : ‘ _ 8 quad-core Xeon E5520 - Modern retrieval systems require dense matrix/vector algorithms,
answer queries 1n parallel limit search to similar clusters) ?sziri%gl}ldzng;tv%flf fgﬁ iIC{AM’ - Exploiting the memory hierarchy 1s crucial for high speed-up,
Document Partitioning Feature Partitioning 10 Gbps, - Hybrid partitioning delivers super-linear speed-u
. ' - e W = - Random corpus: 1024 features, yOHED 5 P P P>
I _
and D=10°...10° documents. . - -

- parallel merge-sort parallel matrix-vector product Document Partitionin o HybI‘i d Partitionin o - Short query response time improves user satistaction,
Hybrld Pgr tltloglng‘ l Hybrid W,lth Cluste'rlng ' I = Super-linear speed-up 1improves throughput over replication,
'? "'+ -I R f”k { i | -*
" S e . - BMPI problematic as middleware for persistent parallel services.

ik

res and documents parallel search within clusters

e "‘;: . iy

. The Memory Hierarchy 6. Improved Response Time 9. Work in Progress

SIZE VS. Speed - Hybrid partitioning exploits the memory hierarchy, - Add clustering - conduct the parallel search within clusters,

- Delivers super-linear speed-up over serial, in-memory system, - New middleware on top of MPI for persistent parallel services,

- Disk-based systems are not considered here. - Corpus analysis and feature weighting,

- Functional decomposition into components - pipelining parallelism,

- - Thread-level parallelism for enhanced utilization,

- More components needed for a full search engine,

~ index réﬁlic’atgd document partitioned hybrid partitioned
«index on disk index in memory cache-friendly

s

- GPGPU éoﬁlputing - CUDA or OpenCL numeric kernels.

