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Improving Recognition of Antimicrobial Peptides
and Target Selectivity through Machine Learning

1

and Genetic Programming

Daniel Veltri, Uday Kamath, and Amarda Shehu

Abstract—Growing bacterial resistance to antibiotics is spurring research on utilizing naturally-occurring antimicrobial peptides
(AMPs) as templates for novel drug design. While experimentalists mainly focus on systematic point mutations to measure the effect on
antibacterial activity, the computational community seeks to understand what determines such activity in a machine learning setting.
The latter seeks to identify the biological signals or features that govern activity. In this paper, we advance research in this direction
through a novel method that constructs and selects complex sequence-based features which capture information about distal patterns
within a peptide. Comparative analysis with state-of-the-art methods in AMP recognition reveals our method is not only among the top
performers, but it also provides transparent summarizations of antibacterial activity at the sequence level. Moreover, this paper
demonstrates for the first time the capability not only to recognize that a peptide is an AMP or not but also to predict its target selectivity
based on models of activity against only Gram-positive, only Gram-negative, or both types of bacteria. The work described in this paper
is a step forward in computational research seeking to facilitate AMP design or modification in the wet laboratory.

Index Terms—Antimicrobial peptide recognition, Gram-positive, Gram-negative, feature construction, feature selection, evolutionary
computing, genetic programming, evolutionary algorithms, machine learning
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INTRODUCTION

THE U.S. Center for Disease Control estimates that more
than two million people in the U.S. are diagnosed with
antibiotic-resistant infections every year. With some sug-
gesting an era of untreatable infections has arrived [1], there
is renewed focus on pursuing novel antibacterials [2]. The
discovery of anti-pathogen peptides in the innate immune
system of many organisms has been met with great enthusi-
asm. The effectiveness of these antimicrobial peptides
(AMPs) in killing even resistant bacteria has spurred signifi-
cant research in the last two decades on characterizing
AMPs and understanding how they can be effectively
employed to combat even multi-drug resistant bacteria [3].
Experimental and computational studies devoted to
answering the open question of what governs antibacterial
activity in AMPs have generally proceeded orthogonally. In
the experimental community, the focus has been largely on
template-based studies (where known AMPs are modified
and tested against bacterial cultures in the wet laboratory)
and systematic virtual screenings of peptide libraries [3].
Such studies, though narrow in scope, have advanced
knowledge by elucidating what biological properties
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correlate with antibacterial activity. For instance, studies of
interactions with bacterial membranes rule out the employ-
ment of a universal sequence motif and instead have led to
fundamental determinants or features, such as residue com-
position, charge, length, secondary structure, hydrophobic-
ity, and amphipathic character [4]. Though laborious and on
a case-by-case setting, wet-lab studies are expected to reveal
more features that contribute to antibacterial activity [3].

Computational research has focused on AMP recogni-
tion as a means of understanding what features relate to
activity. Techniques from machine learning are applied,
seeking to test the predictive power of a given set of
features in the context of supervised classification. Meth-
ods of choice include support vector machines (SVM),
hidden Markov models (HMMs), artificial neural net-
works (ANN) and logistic regression (LR) [5], [6], [7], [8],
[9], [10], [11]. Features vary, from those elucidated by
wet-lab studies which characterize the entirety or part of
a peptide, to simple ones based on amino acid composi-
tion [7], [8], and to averaged whole-peptide physicochem-
ical profiles built on known amino acid properties [9].
Recently, wet-lab studies have begun to use some of these
classifiers with limited success as an initial screening
mechanism for new AMP sequences [12].

As Table 1 summarizes, the recognition accuracy of
machine learning methods ranges from the upper 70 to
the lower 90 percent. Direct comparisons are difficult due
to the use of different training and testing datasets. Some
high performers fall short on more recent challenging
datasets [11]. The consensus is that performance has stag-
nated, and the community is shifting its attention to con-
structing effective features [13]. This is non-trivial, not
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TABLE 1
Summary of Current Methods and Their Performance
on AMP Recognition
MCC
Algorithm Training  Validation  Testing AMP
Dataset Dataset Dataset Database

HMM [5] 0.98 AMPer
HMM [14] 0.88 RANDOM
ANN [15] 0.60 CAMEL
DA [16] 0.75 0.74 CAMP
RF [16] 0.86 0.86 CAMP
SVM [16] 0.88 0.82 CAMP
SVM [6] 0.84 AntiBP2
ANFIS [8] 0.94 APD2
ANN [8] 0.85 APD2
SVM [9] 0.80 APD2
FKNN [17] 0.73 0.84 APD2
BLR [10] 0.78 APD2
BLR [11] 0.79 0.82 CAMP

Acronyms are as follows: HMM (hidden Markov model), ANN (artificial neu-
ral network), DA (discriminant analysis), RF (random forest), SVM (support
vector machine), ANFIS (artificial neural fuzzy interface system), FKNN
(fuzzy k-neural network) and BLR (binary logistic regression). Performance is
measured via MCC, a standard measure described in Section 2. There are vari-
ous databases now for AMPs, and the one used by methods to construct a
training dataset is indicated in column 3.

only because wet-lab knowledge is limited, but also
because AMPs have high sequence, structural, and mech-
anism-of-action diversity [4].

In this paper we propose a novel method for feature con-
struction and selection to improve the state-of-the-art in
AMP recognition. The proposed method does so through
novel sequence-based features that are able to capture and
encode information about both local and distal parts of a
peptide sequence. Our focus on such features is motivated
in part by our synthesis of detailed biological studies on the
behavior and mechanism of action of characterized AMPs.
A growing number of biological studies increasingly point
to the fact that different parts of an AMP sequence may be
used for different purposes. Flexible termini may be impor-
tant to disrupt membranes, and specific hydrophobic
regions may serve as anchors to initiate interactions [18].
Based on this biophysical insight, what makes an AMP a
potent antibacterial is probably not just an average hydro-
phobicity score or the presence of some specific sequence
motifs. Therefore, we propose here features that capture the
contribution from different parts of a peptide sequence and
serve as complex but transparent descriptors of antibacterial
activity. We are additionally motivated by our recent work
on DNA analysis, where features able to capture distal
information about a genetic sequence seem more effective
at various recognition problems on DNA [19], [20].

In essence, in this paper we attempt to uncover the
underlying “grammar” of AMPs. The gist of the idea is to
allow the construction of non-trivial features beyond com-
position-based ones. In the latter, the only description of a
sequence is in the form “it contains these many counts of
this k-mer or motif” (where k is the number of consecutive
amino acids recorded in a motif). By using motifs as a foun-
dational building block, we design here complex features as
boolean combinations through the usage of the operators
{AND, OR, NOT}. This allows for a grammar-based process

(founded upon predicate logic) of feature construction.
Motifs and sequence positions play the role of terminals,
while boolean operators and other powerful constructs play
the role of non-terminals. The representation of such fea-
tures allows for using an evolutionary algorithm (EA) based
on Genetic Programming to explore the potentially vast
space of such complex features in search of those that dis-
criminate between AMPs and non-AMPs in a supervised
classification setting. We name this algorithm EFC for Evo-
lutionary Feature Construction.

We note that EAs based on Genetic Programming, such as
the EFC algorithm proposed here, are particularly effective
at searching large feature spaces and in the process putting
together complex features. If one were to approach this pro-
cess through other generative models, such as HMMs, the
explosion in the number of states and transitions between
states would make the HMM unwieldy, and its training very
difficult, given the scarcity of peptides with characterized
and confirmed antibacterial activity in the wet laboratory.

The method we propose in this paper follows the EFC
algorithm with the fast correlation-based filter selection
(FCBF) algorithm. We use FCBF here, first presented in [21],
to reduce an EFC-constructed feature set to a smaller infor-
mative one with low redundancy, which is desirable when
faced with scarce positive instances. The two algorithms are
combined in what we refer to as our EFC-FCBF method. A
thorough list of experiments show that the EFC-FCBF fea-
tures offer significant improvements in AMP recognition
over the state of the art. Our testing of these features is per-
formed in the context of supervised classification via LR.
More importantly, the features provide intuitive summari-
zations of AMP activity at the sequence level that can addi-
tionally allow for informative design or modification of
novel AMPs in the wet laboratory.

A prior proof-of-concept demonstration of the capability
of the proposed method was presented in [22]. In this paper
we broaden and strengthen the analysis of the EFC algo-
rithm and the features that it reports. More importantly, we
extend the applicability beyond recognition of AMPs versus
non-AMPs, as is currently the standard in machine learning
research on AMPs. We demonstrate here for the first time
that a carefully-constructed feature set that captures distal
information is capable of capturing biological signatures
specific to AMP target selectivity against Gram-positive
(GP) and Gram-negative (GN) bacteria. The ability to map
an AMP to the class of bacteria it can kill is crucial to further
advance not only a more detailed understanding of antibac-
terial activity but also the ability to modify and render pep-
tides more potent against a specific class of bacteria in the
wet laboratory. To aid the community and further spur
machine learning research on AMPs, we make all code,
data, results, and analysis accompanying this paper avail-
able online at: http://cs.gmu.edu/~ashehu/?q=OurTools.

2 METHODS

We first describe the reduced alphabet we employ to repre-
sent a peptide sequence. We then summarize the EFC
algorithm used to construct features and the FCBF algo-
rithm used to obtain a reduced feature set. We proceed to
describe our validation of such features in the context of
supervised binary classification via LR and the performance
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TABLE 2
The Mapping between the Four Letter Alphabet
Employed Here to the Standard Amino Acids

Amino Acid Mapping Notes
ADKE A Trends small and
RNTSQ for special turns
CFLI C Non-polar
VMYWH and/or aromatic
G G Flexible

P T Rigid

measurements employed. Finally, we discuss how the
above approach was applied to Gram-specific datasets to
find relevant feature sets and display them using decision
trees. All references to Weka [23], a publicly-available pack-
age for machine learning, are for Version 3.7.

2.1 Reduced Alphabet for a Peptide Sequence

EFC builds complex features over motifs or k-mers drawn
from a peptide sequence. If the k-mers are drawn from a
sequence represented by a 20-letter alphabet to designate
the 20 standard amino acids, the feature space can be pro-
hibitively large. Even when keeping track of k-mers only,
20" features can be constructed. Building more complex fea-
tures by stacking boolean operators on k-mers results in a
combinatorial explosion of the size of the feature space. In
order to reduce the size of this space, we employ a reduced
alphabet to represent peptide sequences. As a first step in
this paper, we make use of the GBMR4 alphabet of only
four letters, originally proposed in [24] for protein fold
assignments. While any four unique letters can be selected
for the GBMR4 alphabet, we choose to employ A, C, G, T.
Table 2 shows the mapping between the letters in this
alphabet to the standard amino acids.

2.2 Evolutionary Feature Construction
We summarize here the main ingredients of the EFC algo-
rithm employed for feature construction.

EFC is an EA originally presented in [19] for DNA
sequence analysis. Here we adapt the algorithm to handle
peptide sequences as follows. The algorithm makes use of a
generalized representation of sequence-based features as
Genetic Programming trees. The leaf nodes are k-mers over
the GBMR4 alphabet. Here we limit k£ between 1 and 8. Oper-
ators are used to combine these building blocks into more
complex features. Four operators are employed in this work:
matches, matchesAtPosition, matchesAtPosition WithShift, and
matchesCorrelatingPosition. This allows for building composi-
tional features (which capture only the presence of a motif
anywhere in a sequence), positional features (which capture
the presence of a motif at a specific sequence position), posi-
tion-shifted features (that provide a tolerance upstream and
downstream for positional features) and correlated features
(which match a position-shifted feature upstream or down-
stream from another motif), respectively. Boolean operators
(AND, OR, NOT) additionally enable the construction of
more complex features as illustrated in Fig. 1.

As an EA, EFC makes use of the concept of a population,
which is a set of feature trees that evolve over a fixed

- L
MatchesAtPosition Jll MatchesAtPosition

Fig. 1. This conjunctive (correlational) feature encodes the co-occurrence
of two motifs and is an example of features constructed by the EFC
algorithm.

number of generations. The initial population of n features
is carefully constructed to contain a variety of tree shapes
with maximum depth D. Rather than keep a fixed popula-
tion size over each generation, EFC uses an implosion mech-
anism, reducing the population size by r% over the
previous generation to avoid convergence pitfalls. The top
(fittest) ¢ features of each generation are copied into a “hall
of fame” set. The hall of fame contributes m features, drawn
at random, to serve as parents in the next generation.

The parents are subjected to reproductive operators to
obtain child features in a generation. As in [19], both muta-
tion and crossover are employed. The mutation operator is
performed with probability p, whereas crossover with prob-
ability 1 — p. Bloat, or the growth of overly-complex aggre-
gate features through reproductive operators which do not
provide additional gains in discriminatory power, is con-
trolled through parent selection as in [19].

Features in a generation are evaluated (and compared)
via a fitness function Fitness(f). The function makes use of
a labeled (training) dataset of AMPs and non-AMPs as in:

Fitness(f) = % |Csp — C_y|. Here f refers to a feature,

Cy yand C_ ; are the number of positive (AMP) and nega-
tive (non-AMP) training sequences that contain feature f,
respectively, and C, is the total number of positive training
sequences. This fitness function tracks the occurrence of a
feature only in AMPs, as non-AMPs may not share relevant
features. This simple fitness function penalizes non-discrim-
inating features (those equally found in positive and nega-
tive training sequences). It is important to note that the
same training dataset is used both to evaluate the fitness of
a feature during EFC and select informative features from
the hall of fame at the completion of the EFC algorithm.
Any testing dataset is reserved and used only for the final
evaluation of the performance of the features in the context
of supervised classification.

2.3 Filter-Based Feature Selection

After termination of the EFC algorithm, the features in the
hall of fame are submitted to a feature selection algorithm
to obtain a smaller set of relevant features. The FCBF algo-
rithm presented in [21] is employed for this purpose. The
algorithm uses the concept of entropy from information
theory to maximize the relevance between features and
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classes in the training dataset while minimizing correlation
amongst features. This provides a set of highly-relevant fea-
tures with low redundancy. The particular implementation
used here is the FCBF option from Weka.

2.4 Evaluation of Features and Performance
Measurements

Selected features are evaluated in the context of supervised
classification through LR. Weka’'s implementation of LR is
employed with the regularization parameter set to
0.00000001. In this paper, we choose to demonstrate results
obtained using LR, as LR provides a smooth probabilistic
transition between two classes in addition to controlling for
overfitting [25].

The performance of the LR model is evaluated through
standard measures in machine learning, such as area under
the receiver operating characteristic curve (auROC) and
area under the precision recall curve (auPRC). The latter is a
better indicator of performance on imbalanced datasets.
Both measurements are based on the notions of TP, FP, TN,
and FN, which correspond to the number of true positives,
false positives, true negatives, and false negatives. Given a
particular confidence threshold, instances predicted with
confidence above the threshold can be considered correctly
labeled. The true positive rate (TPR = TP/(TP + FN)), also
known as specificity, and false negative rate (FNR = FN/
(FN + TN)), also known as 1-specificity, are computed as
one varies this threshold from 0.0 to 1.0. In an ROC, TPR is
plotted as a function of FNR. The auROC is a summary
measure that indicates whether prediction performance is
close to random (0.5) or perfect (1.0). In addition to detailing
specificity (SP) and sensitivity (SN), Matthews Correlation
Coefficient MCC is employed in our evaluation of features

and is defined as: TPIN_TP-TN _.
\/(TP+FP)(TP+FN)(IN+FP)(IN+FN)

In our detailed analysis of features obtained by EFC-
FCBF, we employ an information gain (IG) analysis. Briefly,
for a given dataset D, with classes C;, where i ranges from 1
to k, entropy I is given by:

k
I(D) = =Y P(C;, D) - log (P(C;, D)).

i=1

For a feature f taking on values(f) different values in D, the
weighted sum of its expected information (over splits of the
dataset D according to the different values of f into D,
subsets, with v ranging from 1 to values(f)) is given by

values v
Infoy(D) = = =i

a feature f over a dataset D is then given by IG(D, f) =
I(D) — Infos(D).

(Dy). The information gainfor

2.5 Recognizing Target-Specific AMPs

The EFC-FCBF method and the LR classifier are used here to
test the baseline ability of constructed features to discrimi-
nate between AMPs and non-AMPs. The results of this
experiment are compared to other state-of-the-art methods
on AMP recognition. In addition to this baseline setting,
which is currently the standard in machine learning
research on AMPs, we pursue a new setting. We demon-
strate the ability to construct features specific to AMPs that

target Gram-based classes of bacteria. For this purpose,
three additional datasets are created based on AMP activity
specific against Gram-negative, Gram-positive or both types
of bacteria (GB). On each of these three new datasets, the
entire method is run in order to obtain informative features.
However, the classifier used to evaluate the performance of
features is not limited to LR. We additionally investigate
tree-based classifiers. The first reason for doing so is that
comparison of LR coefficients for individual features across
models can suffer from hidden heterogeneity in the under-
lying data [26], [27]. Another reason is that tree-based classi-
fiers naturally lend themselves to nice visualizations of the
importance of features. We consider the J48 (C4.5) algo-
rithm [28], Logistic Model Trees [29] (LMT), RF [30] and
Random Tree (RT) classifiers in Weka. Since the J48 algo-
rithm outputs a single decision tree that can be easily visual-
ized and interpreted, we select J48 to visualize and analyze
features in greater detail.

3 RESULTS

3.1 Implementation Details

All experiments are performed on an Intel 2X quad-core
machine with 3.2 Ghz CPU and 8 GB of RAM. EFC is writ-
ten in Java. Since EFC is stochastic, it is run 30 times per
experiment, and average results with standard deviations
are reported in this paper. One run of EFC takes about 1
hour of CPU time. The maximum motif length in EFC is set
to k =8 in all the runs, as smaller maximal values yielded
slightly lower performance. The other parameters in EFC
are set as follows: n=10,000, D=5, »r=10, G =30,
¢ =500, and m = 100. The mutation and crossover opera-
tors are performed with probability 0.3 and 0.7, respec-
tively. Weka is used to apply FCBF to EFC-obtained
features in the hall of fame and select a subset of 40 features
after an EFC run. The method is run with numToSelect=—1
and using the SymmetricalUncertAttributeSetEval option.
FCBF typically takes 5-10 minutes of CPU time. The
final predictive model is then built with LR using Weka’s
logistic classifier.

A detailed feature analysis of AMP datasets specific to
Gram-based bacterial classes is performed using EFC-FCBF
as above. Average results with standard deviations are
reported in this setting after replicating the experiment
three times. In addition to LR, predictive models are also
evaluated using four tree-based classifiers in Weka using
the following default settings: J48 with con fidenceFactor =
0.25 and minNumObj = 2, LMT with min NumInstances = 15
and fastRegression = True, RF with numTrees = 100 and
numFeatures = logs(nFeatures) + 1, and RT with KValue =
logs(nFeatures) + 1. Each method typically takes 1 min or
less of CPU time.

3.2 Experimental Setting
We conduct a comparative performance analysis in two dis-
tinct experimental settings.

The first setting is on the baseline AMP recognition prob-
lem. Two experiments are reported here. The first demon-
strates the advantage of employing complex features
(capable of capturing both local and distal relationships in a
peptide sequence) as opposed to simple composition-based
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Metric

. auPRC (x100%)
. auROC (x100%)
. MCC

5- kmer-SVM 6- kmer SVM 7- kmer-SVM 8- kmer—SVM EFC- FCBF

Method

Fig. 2. Performance comparison on 10-fold CV between EFC-FCBF and k-mer SVM on various performance measurements. Specific values are as
follows, 5-kmer-SVM: auPRC = 79%, auROC = 81%, MCC = 0.54; 6-kmer-SVM: auPRC = 79%, auROC = 79%, MCC = 0.46; 7-kmer-SVM:
auPRC = 78%, auROC = 78%, MCC = 0.40; 8-kmer-SVM: auPRC = 70%, auROC = 72%, MCC = 0.36; EFC-FCBF: auPRC = 94% (+30%),
auROC = 95% (+£40%), MCC = 0.76 (+0.01). Standard deviations are given in parentheses for EFC-FCBF (as EFC is stochastic, we show average

performance of the method).

features. Superior performance is demonstrated in the con-
text of 10-fold cross-validation (CV) on a benchmark data-
set. In the second experiment, we use a different training
and testing benchmark dataset and compare our EFC-FCBF
method to several other publicly-available methods for
AMP recognition. After demonstrating comparable perfor-
mance to some of the top performers, we demonstrate how
our results can be further improved by combining our
sequence-based features with physicochemical ones.
This specific setting demonstrates how a wet laboratory
researcher could combine our sequence-based features with
their additional domain-specific knowledge of AMPs to
generate even better predictive models. We then examine
the biological relevance of the top 10 features obtained by
our EFC-FCBF method.

The second experimental setting goes beyond AMP rec-
ognition and demonstrates the ability to recognize target-
specific classes of AMPs. Specifically, we focus on AMPs
only active against GN, GP or both (GB) bacterial types. The
analysis uses the above EFC-FCBF pipeline but applies it
separately to new GN, GP and GB-specific AMP datasets.
Due to dataset size limitations for the GN and GP positive
datasets, we pair each set with a training negative dataset to
generate a large initial set of features, and a testing negative
dataset to aid in reducing this to a core set of high perform-
ers. As the positive datasets stay the same, all performance
evaluations are reported in the context of 10-fold CV. The
use of tree-based classifiers allows us to visualize how sub-
sets of features differ based on GN, GP and GB-specific
AMP activity.

3.3 Comparison of EFC-FCBF with k-mer SVM
Dataset. We employ here the benchmark dataset provided
by Fernandes in [8], which contains 115 AMP and 116 non-
AMP sequences. Due to its small size, we evaluate perfor-
mance in the context of CV. In this dataset, sequences range
from 10 to 100 amino acids. AMPs share < 50 percent
sequence identity, are from a variety of AMP classes, and
are all selected from the APD2 database [31]. The set of non-
AMPs has the same sequence identity and length cutoffs
applied, but members are sampled from the Protein Data
Bank (PDB) [32]. Further screening is used to restrict sam-
ples to intracellular proteins. Details can be found in [8].
Experimental setup. All peptides in the training dataset are
first converted to the GBMR4 alphabet. Our EFC-FCBF

method is compared on this dataset to k-mer SVM. The lat-
ter is freely available at the Rdtsch Lab Galaxy Server
(https:/ / galaxy.cbio.mskcc.org) under the “SVM Toolbox.”
We use the spectrum kernel, together with other default set-
tings, except for the number of CVs, which we set to 10. We
run the k-mer SVM method with different values of k
between 5-8.

The EFC-FCBF method is applied using a maximal motif
length of k = 8 (other parameters are set to the values listed
above). Peptide sequences are represented as binary feature
vectors of 40 dimensions (with a 0 denoting the absence and
1 the presence of a particular feature in a sequence; 40 corre-
sponds to the 40 features selected by FCBF). The LR imple-
mentation from Weka is used to train and apply the final
predictive model. The entire process of running EFC to
obtain a hall of fame, running FCBF to select 40 features
from it, and then building an LR model is repeated 30 times
(given that EFC is stochastic) to obtain average performance
results. We note the features selected in each run remain rel-
atively consistent in rank, with the top 10 not changing
across runs. As validation is performed using 10-fold CV,
the 30 runs of EFC-FCBF are applied to each fold separately.

Performance comparison. Performance is shown in Fig. 2 in
terms of auPRC, auROC, and MCC. The results show that
EFC-FCBF clearly outperforms k-mer SVM on all the perfor-
mance measurements. In particular, an improvement of
more than 14 percent is obtained on auROC and auPRC.
These results suggest that the quality of the features
obtained by EFC-FCBF is much higher than that of (compo-
sitional) spectrum k-mer features. Combining distal infor-
mation affords higher classification performance.

3.4 Comparison of EFC-FCBF with Other Servers
Dataset. A more recent benchmark dataset is provided by
Xiao et al. in [17]. This contains 770 AMPs and 2,405 non-
AMPs in the training dataset and 920 AMPs and 920 non-
AMPs in the testing dataset. The negative examples are
selected from the UniProt database [33]. The selection
ensures that pairwise sequence identity amongst selected
non-AMPs is limited to < 40 percent. UniProt keywords
are used to limit the cellular location of selected non-AMPs
to the cytoplasm; effectively, removing extracellular pepti-
des. Additional details can be found in [17].

Experimental setup. Performance of EFC-FCBF is mea-
sured on the Xiao testing dataset to four methods (SVM, RF,
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Fig. 3. Performance comparison on the Xiao testing dataset between EFC-FCBF and various methods available online as prediction servers for
AMPs. The “EFC+307-FCBF” method refers to the addition of 307 physicochemical features which can be seen to improve performance. Specific
values are as follows, CAMP-SVM: auPRC = 53%, auROC = 64%, MCC = 0.43; CAMP-RF: auPRC = 76%, auROC = 73%, MCC = 0.40;
CAMP-ANN: auPRC = NA, auROC = 80%, MCC = 0.61; CAMP-DA: auPRC = 76%, auROC = 81%, MCC = 0.49; iAMP-2L: auPRC = NA,
auROC = 95%, MCC = 0.90; EFC-FCBF: auPRC = 95% (+£12%), auROC = 96% (£30%), MCC = 0.73 (£0.07). EFC+307-FCBF: auPRC = 98%
(£50%), auROC = 95% (+£20%), MCC = 0.86 (+0.02). Standard deviations are given in parentheses for EFC-FCBF and EFC+307-FCBF (as EFC is

stochastic, we show average performance of the method).

ANN, and DA) provided as part of the CAMP AMP-Predic-
tion Server Release 2 [16] (available at: http://www.camp.
bicnirrh.res.in/predict) and to one other method, iAMP-2L,
provided through Xiao’s own server at: http://www.
jci-bioinfo.cn/iAMP-2L. Since neither CAMP nor iAMP-2L
are trained for peptides encoded in the GBMR4 alphabet,
the testing set submitted to these methods is left in the stan-
dard 20-letter amino acid alphabet. EFC-FCBF uses the
GBMR4 alphabet encoding.

Performance comparison. Performance is shown in Fig. 3 in
terms of MCC, auROC, and auPRC. Average values are
reported for EFC-FCBF over 30 runs, with standard devia-
tions shown. For methods which provide continuous pre-
diction values, we report auPRC. Otherwise, “NA” is
shown when methods only report a binary (AMP or non-
AMP) prediction. EFC-FCBF is shown to outperform all the
learned models provided by the CAMP AMP-Prediction
Server on the Xiao testing dataset for most of the perfor-
mance measurements, including MCC, auROC, and auPRC.
This is not surprising, as the features employed by these
models are a mixture of compositional and physicochemical
ones and do not encode distal information. The comparison
with the iAMP-2L server shows that EFC-FCBF on its own
remains competitive but only performs better on auROC. It
is important to note that the features employed by the
iAMP-2L server combine correlational pseudo-amino acid
counts with a fuzzy logic-based algorithm, which explains
the closer performance to EFC-FCBF.

Better performance is obtained by EFC-FCBF when
physicochemical features are added to the pool of
sequence-based ones prior to feature selection by FCBF.
The physicochemical features consist of 8 whole peptide
features and 299 peptide-averaged ones. The 8 whole-
peptide features originally proposed in [7], have been
previously used to train machine learning models and
have been shown effective in AMP recognition [7], [8],
[10], [11]. The other 299 peptide-averaged features cap-
ture information, such as average peptide hydrophobic-
ity, and other physicochemical information across 299
amino acid attributes extracted from the AAlndex data-
base [34] (the database documents 544 attributes, but only
299 remain when removing attributes with more than 80
percent correlation). These latter features have also been
used to classify AMPs through SVM [9].

We designate this setup, when the 307 physicochemical
features are included with sequence-based ones prior to
feature selection, as “EFC+307-FCBF” and show its per-
formance in Fig. 3. Better performance is obtained by EFC
+307-FCBF over iAMP-2L for the auROC performance
measurement. ROC curves drawn in Fig. 4 additionally
show that EFC+307-FCBF and iAMP-2L are the top two
performers. These results demonstrate that there is some
orthogonal information in physicochemical features not
captured directly in sequence-based ones (possibly lost
due to the reduced alphabet), and the best performance
can be obtained when combining both.

3.5 Information Gain Analysis of Top Features
We provide a more detailed analysis of the top 10 fea-
tures consistently selected by FCBF over 30 different halls

0.75+

ivity

0.50 -

Sensiti

EFC+307-FCBF me—
iAMP-2L
CAMP - SVM = = =
CAMP - RF
CAMP - D, -——
CAMP - ANN = ==

0.25+

0.00

0.50
1-Specificity

Fig. 4. ROCs on the Xiao testing set are shown. Since the CAMP ANN
and iAMP-2L methods only provide binary predictions, their curves are
generated using the ROCR package [35]. Percent area under the curves
are as follows: EFC+307-FCBF 98 percent, iAMP-2L 95 percent, CAMP-
SVM 64 percent, CAMP-RF 73 percent, CAMP-DA 81 percent, and
CAMP-ANN 80 percent.
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TABLE 3
The Top 10 EFC+307-FCBF Features are Ranked Here by Their Information Gain, Shown in Column 2
Rank Info. Gain Feature Source Feature Description
1 0.1965 EFC: Position-Shift GGGA at position 37 £+ 3
2 0.1956 AAlndex: FAUJ880112 Negative charge [36]
3 0.1438 AAlndex: FINA910104 Contribution to helix termination [37]
4 0.1361 AAlndex: YUTK870103 Activation Gibbs energy at pH 7.0 [38]
5 0.1201 EFC: Position-Shift CA at position 53 £ 3
6 0.1161 One of 8 features from [7] In vitro peptide aggregation from Tango Server [39]
7 0.0884 EFC: Position-Shift CA at position 27 £ 3
8 0.0882 EFC: Global Motif CCCG at any position
9 0.0812 AAIndex: GEOR030101 Helix linker propensity [40]
10 0.0663 AAIndex: AURR980118 Normalized residue freq. at C” helix termini [41]

The source of the feature is shown in column 3, and a description of the feature is provided in column 4. Amino-acid position numbers start with 0 for the

first residue and motifs are shown in GBMR4 format as detailed in Table 2.

of fame (independent runs of EFC, where constructed fea-
tures are evaluated over the Xiao training dataset, adding
the physicochemical features prior to feature selection).
Table 3 shows the IG of these features over the Xiao test-
ing dataset.

Features with rank 2 and 6 in Table 3 reproduce dis-
coveries made by computational and wet laboratory stud-
ies [7], [8], [18]. Charge (the feature with rank 2) is
considered to be important for attracting AMPs toward
their target bacterial membranes [18], [42]. It is also
thought that aggregation of peptides at the membrane
surface (captured in the feature with rank 6) may contrib-
ute to many of the pore-forming abilities of helical
AMPs [43]. As a major portion of AMPs in both the train-
ing and testing sets are helical, it is not surprising that
many helix-related features such as those with rank 3, 9
and 10 are also selected in the top 10.

Sequence-based features constructed by EFC, indicated
by an “EFC” prefix in Table 3, provide novel information.
Three of such features in the top 10 are Position-Shift fea-
tures, which essentially capture the presence of a specific
sequence motif at a specific position, with some tolerance.
Features with rank 1 and 7 capture the C-termini of AMPs.
It is interesting to note that the position of the motifs cap-
tured in these features indicate the characteristic length of
AMPs in the training dataset (where average peptide length
was 32 amino acids).

More importantly, the feature with rank 1 captures a
consecutive segment of flexible amino acids followed by a
small amino acid found in special turns. Such a feature,
found on the C-terminus, may capture an important bio-
logical signal that AMPs use to form pores as they attack
the membrane surface [18], [44]. The feature with rank 7
captures a non-polar or aromatic amino acid followed by
a small amino acid towards the C-terminus. The rank 5
feature captures the same but for longer AMPs, possibly
pointing to a biological signal important for the mecha-
nism of action in certain AMPs.

3.6 Identification of Gram-Specific AMP

Feature Sets

Our final experimental setting investigates for the first time
the ability of machine learning methods to extend recogni-
tion beyond the typical AMPs versus non-AMPs and recog-
nize target-specific classes of AMPs.

Datasets. We employ three separate positive datasets
obtained from the APD2 AMP database. A GB (n = 1, 103),
GP (n=271) and GN (n = 128) dataset are each obtained
by choosing respectively “Gram+/Gram-", “Gram+ ONLY”
and “Gram- ONLY” under the “Antimicrobial Activity” data-
base search option. For the negative dataset in each of these
three settings we use the Xiao non-AMP training (n = 2,405)
and the Xiao non-AMP testing (n = 920) datasets. Our experi-
ments below are cross-validation experiments.

3.6.1 Performance Summary

For each of the three separate settings, the positive (GP, GN,
or GB) dataset is paired with the Xiao negative (non-AMP)
training dataset. All unique hall-of-fame features obtained
after repeating the EFC method three times are combined
together to obtain a large feature set. These features are
combined with the 307 physicochemical ones described
above and reduced by the FCBF algorithm. This results in
82 features for GP, 91 for GN, and 54 for the GB set. The
resulting reduced features are evaluated in a 10-fold CV set-
ting, using LR as the classifier. Performance is summarized
in Fig. 5. Across datasets, auPRC values range from
80.5-92.4 percent, auROC values range from 90.3-92.6 per-
cent, and MCC values range from 0.58-0.69.

The performance of the features in each of the three
settings is similarly high when the Xiao negative training
dataset is replaced by the testing dataset. On the GP

hikh

Gram-Positive Gram-Megative Gram-Bath
Dataset Applied to EFC+307-FCBF Method
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i auPRC (x100%)
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Fig. 5. Average recognition performance of EFC+307-FCBF features
using LR and 10-fold CV on three separate Gram-specific AMP datasets,
each combined with the Xiao training set of non-AMPs. A total of 86 fea-
tures were used for the GN set, 77 features for the GP set and 48 fea-
tures used with the GB set. Specific values are as follows, GP:
auPRC = 92% (£2.1%), auROC = 93% (+1.0%), MCC = 0.59 (£0.01).
GN: auPRC = 81% (£15.9%), auROC = 90% (+0.01%), MCC = 0.58
(£0.02). GB: auPRC = 91% (£3.3%), auROC = 93% (£0.1%), MCC =
0.69 (£0.01). Standard deviations for EFC+307-FCBF are given in
parentheses (as EFC is stochastic, we show average performance of
the method).
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TABLE 4
Results Are Reported Using auPRC, auROC,

and MCC in the Context of 10-Fold CV

auPRC (%) auROC (%) MCC
Meth. GP|GN|GB  GP|GN|GB  GP|GN|GB
LR 98.1/934(983  97.1|84.4(98.6 0.900.72|0.89
J48 935|91.9(96.7 92.1|81.1/97.9 0.87|0.76 | 0.94
RF 98.9(95.3(99.5 98.6/90.4]99.6 0.88]0.73]0.95
LMT  97.6|927]99.5 96.8|849]99.6 0.88]0.75]0.96
RT 90.1/89.0/93.1  89.5|80.4|952 0.80]0.61|0.90

Classifiers are run using default settings. The number of features selected by
RF and RT for each AMP dataset: GP =5, GN = 4 and GB = 5. Bold font is
used to highlight best performance on a specific metric per column.

setting, the 10-fold CV performance by LR and a decision
tree (J48) classifier yields auPRC values of 98.1 and 95.2
percent, auROC values of 97.7 and 93.7 percent and MCC
values of 0.930 and 0.876 for LR and J48, respectively. On
the GN setting, auPRC values of 95.6 and 94.5 percent,
auROC values of 91.0 and 88.4 percent, and MCC values
of 0.846 and 0.822 are obtained for LR and J48, respec-
tively. On the GB setting, auPRC values of 98.4 and 95.9
percent, auROC values of 98.5 and 97.3 percent, and MCC
values of 0.884 and 0.942 are obtained for LR and J48,
respectively.

Applying FCBF on these new datasets (where the Xiao
training dataset is replaced by the Xiao testing dataset)
reduces the feature sets for each of the three settings even
further to 21 for GP, 10 for GN, and 16 for GN. LR and tree-
based classifiers above are then applied using these reduced
feature sets in each of the three settings, and the perfor-
mance of each classifier in a 10-fold CV setting is shown in
Table 4.

307

After this performance summary, we conduct a
detailed analysis of the reduced features obtained for
each of the target-specific AMP datasets. First, the fea-
tures are analyzed in terms of their information gain. Sec-
ond, the importance of features for each dataset is
visualized through a decision tree (J48 implementation in
Weka) and interpreted in detail in order to obtain infor-
mation on shared features and features tailored to specific
bacterial classes.

3.6.2 Detailed Analysis of Gram-Positive Reduced
Feature Set

The information gain of each of the features in the GP
reduced feature set is shown in Table 5. Next, the impor-
tance of features is additionally visualized through a deci-
sion tree. The J48 algorithm in Weka was used to produce a
single decision tree for all GP AMPs and the complete Xiao
testing dataset, which is shown in Fig. 6.

Fig. 6 shows that EFC-based features dominate the top of
the tree, recognizing 221 of 271 AMPs in the dataset before a
physicochemical feature first appears at level 9. Specifically,
the first feature (ranked second by IG) looks for the motif
AC at position 8 & 3 and motif CGA anywhere else on the
peptide and accounts for 111 AMPs in the dataset. A survey
of AMPs captured by this feature in the APD2 reveals that
they are broad in scope in terms of both family and struc-
ture. 16 out of the 25 temporin-family AMPs in the GP set
are accounted for, but the remaining 95 AMPs are listed
under 76 different AMP names or families. In terms of pep-
tide structure, 78 are listed as ‘unknown’ while the remain-
ing fall under ‘helix’ (17), disulfide bond ‘bridge” (10), ‘beta’
(5) and ‘combine helix and beta structure’ (1). Overall, phys-
icochemical features tend to promote helical or flexible
structures. While the J48 tree only utilizes 12 out of the

TABLE 5
The 21 EFC+307-FCBF Features Used in the GP Reduced Feature Set are Ranked Here by Their Information Gain,
Shown in Column 2

Rank IG Source Description

1 0.252  AAlndex: AURR980106 Normalized positional residue frequency at helix termini N1 [41]
2 0.225  EFC: Global Motif AND Position-Shift CGA at any position and AC at position 8 £ 3

3 0.170  AAlndex: YUTK870103 Activation Gibbs energy of unfolding pH 7.0 [38]
4 0.132  One of 8 features from [7] In vitro peptide aggregation from Tango Server [39]
5 0.099 AAIndex: MAXF760105 Normalized frequency of ¢; [45]

6 0.096  EFC: Position-Shift GCC at position 9 + 3

7 0.094  EFC: Motif AND Motif CACC and TA at any positions

8 0.084  EFC: Position-Shift AGC at position 3 + 3

9 0.071  EFC: Position-Shift CAG at position 8 + 3

10 0.057  EFC: Match Position CCA at position 5

11 0.057  EFC: Position-Shift CTCC at position 4 £+ 3

12 0.038  EFC: Position-Shift GGC at position 28 £ 3

13 0.036  EFC: Position-Shift AAAA at position 33 + 3

14 0.029  AAlndex: KARP850103 Flexibility parameter for two rigid neighbors [46]
15 0.014  EFC: Position-Shift CGT at position 9 & 3

16 0.002  EFC: Global Motif GTACACA at any position

17 0.002  EFC: Position-Shift GCCTGA at position 1 £+ 3

18 0.002  EFC: Position-Shift TATCAT at position 10 + 3

19 0.002  EFC: Position-Shift TTATT at position 7 & 3

20 0.002  EFC: Position-Shift TGCCAA at position 44 + 3

21 0.002  EFC: Global Motif TCTCAT at any position

The source of the feature is shown in column 3, and a description of the feature is provided in column 4. Amino acid position numbers start with 0 for the

first residue, and motifs are shown in GBMR4 format as detailed in Table 2.



308 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO.2, MARCH/APRIL 2017

Gram-Positive Bacteria
AMP Dataset

Fig. 6. A binary decision tree based on a reduced set of 21 features generated from a dataset of AMPs active against Gram-positive bacteria is shown
here. The tree was generated using the J48 (C4.5) classifier in Weka using all GP AMPs and the full Xiao testing dataset (7P = 271, TN = 920);
some features were not utilized by the classifier. Passing a GBMR4-encoded query peptide through the tree starting at the top will classify it as either
an AMP or Non-AMP. Nodes in blue represent feature evaluations directing the query to a left or right branch based on a cutoff value (shown in white
ovals). Terminating leaves in green classify a query as an AMP, while those in red represent a Non-AMP. Numbers in black and red represent the
number of instances which stop at a given leaf and respectively assign it a correct or incorrect label.

21 selected features listed in Table 5, the unused features
appear important for recognition by other classifiers.

3.6.3 Detailed Analysis of Gram-Negative Reduced
Feature Set

Initially, 19 features were selected after running FCBF to
reduce the size of the full GN feature set. However, further
analysis showed that nine of these features could be
removed without impacting classification performance
using LR in the context of 10-fold CV. The information gain
of these remaining 10 features in the GN reduced feature set
is shown in Table 6.

The importance of features is additionally visualized
through a decision tree. The J48 algorithm in Weka was
used to produce a single decision tree using all GN AMPs
and the complete Xiao testing dataset, which is shown in

Fig. 7. The overall structure of the decision tree appears sim-
ilar to the tree for the G P dataset, with EFC features domi-
nating the upper levels of the tree and accounting for 62 out
of 128 AMPs before the first physicochemical feature is
encountered at level 6. The top feature (ranked third by IG)
looks for the motif CGA at position 10+ 3 and a check of
the AMPs captured by this feature in the APD2 shows they
are broad in scope for family with structure mostly
unknown. Four out of the nine microcin-family AMPs in
the GN set are recognized but the remaining 20 AMPs are
listed under 19 different names or families. A survey of pep-
tide structure shows 19 listed as ‘unknown,” two labeled
disulfide bond ‘bridge” and two having a ‘beta’ structure.
Similar to the G'P case, physicochemical features again pro-
mote helical or non-rigid structures. While the J48 tree only
utilizes nine out of the 10 selected features listed in Table 6,
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TABLE 6

The 10 EFC+307-FCBF Features Used in the GN Reduced Feature Set are Ranked Here by Their Information Gain,
Shown in Column 2

Rank IG Source Description

1 0.097 AAlIndex: RICJ880104 Relative preference value at N1 of alpha helix [47]
2 0.082 AAlIndex: RACS820101 Average relative fractional occurrence in A0(i) [48]
3 0.072 EFC: Position-Shift CGA at position 10 £ 3

4 0.065 AAlIndex: KARP850103 Flexibility parameter for two rigid neighbors [46]
5 0.063 EFC: Position-Shift GCC at position 13 + 3

6 0.053 EFC: Position-Shift GCA at position 9 3

7 0.026 EFC: Match Position CAC at position 3

8 0.021 EFC: Position-Shift GGC at position 13 £ 3

9 0.012 EFC: Match Position TC at position 3

10 0.009 EFC: Global Motif GGGGGG at any position

The source of the feature is shown in column 3, and a description of the feature is provided in column 4. Amino-acid position numbers start with 0

for the first residue, and motifs are shown in GBMR4 format as detailed in Table 2.

Gram-Negative Bacteria

AMP Dataset

<=0.92 >0.92

=1

Fig. 7. A binary decision tree based on a reduced set of 10 features generated from a dataset of AMPs active against Gram-negative bacteria. The
tree was generated using the J48 classifier in Weka using all GN AMPs and the full Xiao testing dataset (TP = 128, TN = 920); some features were
not utilized by the classifier to build the tree. Passing a GBMR4-encoded query peptide through the tree starting at the top will classify it as either an
AMP or Non-AMP. Nodes in blue represent feature evaluations directing the query to a left or right branch based on a cutoff value (shown as white
ovals). Terminating leaves in green classify a query as an AMP while those in red represent a Non-AMP. Numbers in black and red represent the
number of instances which stop at a given leaf and respectively assign it a correct or incorrect label.
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TABLE 7
The 16 EFC+307-FCBF Features Used in the GB Reduced Feature Set are Ranked Here by Their Information Gain,
Shown on Column 2

Rank IG Source Description

1 0.653 One of 8 features from [7] ~ Peptide Length

2 0.304 AAIndex: KLEP840101 Net charge [49]

3 0.299 AAIndex: AURR980107 Normalized positional residue frequency at helix termini N2 [41]
4 0.231 One of 8 features from [7]  In vitro peptide aggregation from Tango Server [39]

5 0.212 EFC: Position-Shift GC at position 0 + 3

6 0.162 AAlIndex: GEOR030101 Linker propensity from all dataset [40]

7 0.160 EFC: Position-Shift CG at position 5 + 3

8 0.156 EFC: Position-Shift CCAA at position 5+ 3

9 0.077 EFC: Position-Shift AGC at position 8 + 3

10 0.035 EFC: Position-Shift AGCC at position 15 + 3

11 0.028 EFC: Motif AND Motif AAAA and TACA at any positions

12 0.021 EFC: Position-Shift GGC at position 11 £ 3

13 0.013 EFC: Match Position TC at position 3

14 0.011 EFC: Position-Shift CGA at position 44 & 3

15 0.006 EFC: Correlate Positions AT at position 1 and TC within 3 positions before/after
16 0.001 EFC: Global Motif TGCCG at any position

The source of the feature is shown in column 3, and a description of the feature is provided in column 4. Amino-acid position numbers start
with 0 for the first residue, and motifs are shown in GBMR4 format as detailed in Table 2.

the unused feature appears important for recognition using
other classifiers. While the letter T (proline, a helix-breaker)
occurs the least in motifs across all datasets, it is interesting
to note it occurs only once in the GN reduced feature set.

3.6.4 Detailed Analysis of Gram-Both
Reduced Feature Set

The information gain of each of the 16 features in the GB
reduced feature set is shown in Table 7. The importance of
features is also visualized through a decision tree. The J48
algorithm in Weka was used to produce a single decision
tree using all of the GB AMPs and the complete Xiao testing
dataset and can be seen in Fig. 8.

Unlike the previous two cases, peptide length appears as
a first feature and separates two major subtrees. If a query
peptide is > 51 residues long, it encounters a subtree more
similar to those produced by the GP and GN datasets, with
EFC features dominating higher levels and physicochemical
features at lower ones. For peptides < 51 residues long, the
subtree is a mixture of non-EFC features and EFC features
which target residues at the N-terminus. While the J48 tree
only utilizes 13 out of the 16 selected features listed in
Table 7, the unused features appear important for recogni-
tion using other classifiers. We caution that length is a fea-
ture that needs to be considered carefully, as an AMP
peptide can contain shorter fragments which are themselves
antimicrobial [50]. Removing length as a feature generates a
decision tree with a topology more similar to the other data-
sets and EFC features at higher levels (data not shown). In
this case the feature CG at position 0 + 3 takes the top posi-
tion and recognizes 416 of the 1,103 AMPs. The feature
GGC at position 11 + 3, absent from the tree in Fig. 8, also
gets incorporated at a position that recognizes one AMP but
misclassifies two non-AMPs.

4 CONCLUSION

In this paper we propose a new method, EFC-FCBF, for
deducing complex, yet easily interpretable, sequence-based

features for AMP recognition. We employ an evolutionary
feature construction algorithm to generate novel sequence-
based features capable of encoding the presence of distal
motifs within an AMP sequence. We select highly informative
yet non-redundant features using the fast correlation-based
filter selection algorithm. We use logistic regression to evalu-
ate these features in the context of supervised classification.
Our results show that the computed features are highly
informative and discriminating. Detailed comparisons with
other state-of-the-art methods on AMP recognition show
EFC-FCBF to be among the top performers. We demonstrate
that there is orthogonal information in the inclusion of physi-
cochemical features. Including them for selection by FCBF
improves the performance of the method. This setting illus-
trates how a wet-lab researcher can combine our sequence-
based features with domain-specific knowledge of AMPs to
generate even better predictive models. A detailed analysis
shows that top features reproduce existing knowledge on
important biological signals for AMP activity, as well as
advance knowledge by discovering new biological signals.
Additional analysis using datasets of AMPs which selec-
tively kill Gram-positive, Gram-negative, or both classes of
bacteria is also shown in this paper. Reduced feature sets to
model each case separately are identified from larger
groups of initial features. We show that good performance
is maintained even with fewer features in the context of
supervised classification using both LR and a number of
tree-based classifiers. The provided decision trees demon-
strate how a peptide may be classified for each model. It can
be observed that in all cases (particularly if the length feature
is removed for the Gram-positive case) that EFC features
quickly identify a majority of AMPs at the upper levels of
the trees. Physicochemical features help discriminate at the
lower levels and tend to classify as AMPs peptides which
are helical and/or flexible. While our detailed analysis in
Section 3.6 focuses on understanding the features employed
by the decision trees in each setting (Gram-positive, Gram-
negative, or both), in Table 8 we show the features
that seem to be shared among the three settings. It is
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Fig. 8. A binary decision tree based on a reduced set of 16 features generated from a dataset of AMPs active against both Gram-positive and Gram-
negative bacteria. The tree was generated using the J48 classifier in Weka using all GB AMPs and the full Xiao testing dataset (7P = 1,103,
TN = 920). Some features were not utilized by the classifier to build the tree. Passing a GBMR4-encoded query peptide through the tree starting at
the top will classify it as either an AMP or Non-AMP. Nodes in blue represent feature evaluations directing the query to a left or right branch based on
a cutoff value (shown as white ovals). Terminating leaves in green classify a query as an AMP while those in red represent a Non-AMP. Numbers in
black and red represent the number of instances which stop at a given leaf and respectively assign it a correct or incorrect label. We note, while
no AMPs with a length less than 11 were included in this dataset, some are listed in the CAMP and APD2 databases. Accordingly, adding
additional rules to the < 10 branch of the “Peptide Length” node denoted by « may further improve classification performance on datasets considering

shorter AMPs.

unsurprising that most overlapping features occur with
Gram-positive AMPs, as AMPs in this set act on a broader
range of bacterial targets.

The use of EFC-FCBF can be expanded in a number of
interesting directions. Rather than constructing features for
modeling AMPs according to classes of bacteria they attack,

TABLE 8
Mutual Features Found between the GP, GN, and GB Models
are Shown

Feature GP GN GB
AAAA ° °
AGC ° °
CGA o o o
GCC ° °
GGC o ° °
TC ° °
In vitro peptide aggregation ° °
AAIndex: KARP850103 ° °

Features are listed as rows and described in column 1, while the presence or
absence in a dataset is indicated in columns 2-4. The presence of two e symbols
in the same row indicate features between datasets are either identical, or have
shifted positions that overlap. A box filled with o indicates an identical motif
but with non-overlapping positions. For example, the motif GGC in row 6
occurs at overlapping positions for GN and G B but at a non-overlapping posi-
tion in the GP feature set. Motifs joined by boolean operators in Tables 5, 6
and 7 are considered here as separate features to allow this simplified analysis.

the approach could be extended to consider AMPs known
to work against bacteria with specific membrane lipid com-
positions. Another option could be to break AMPs into
groups based on their mechanism of action (membrane
pore formation, interference with DNA replication, etc.).
Other directions of research include the investigation of
more refined alphabets to gage the level of detail needed to
obtain more powerful summarizations of AMP activity.

As demonstrated in this paper, there are many opportu-
nities to further assist wet-lab researchers interested in
directing the design or modification of novel AMP targets
of interest with computational models. As more AMPs are
characterized and added to databases in the future, we
hope that larger sample sizes will aid the computational
community in designing more advanced models capable of
assisting with specific bacterial threats.

To this end, to assist the broad community of computa-
tional and wet-lab researchers as well as further spur
machine learning research on AMPs, we make all code and
data related in this paper freely available online, at: http://
cs.gmu.edu/~ashehu/?q=OurTools.
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