
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

Multiscale characterization of protein
conformational ensembles
Amarda Shehu,1 Lydia E. Kavraki,1,2,3* and Cecilia Clementi3,4*

1 Department of Computer Science, Rice University, Houston, Texas 77005

2 Department of Bioengineering, Rice University, Houston, Texas 77005

3 Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030

4 Department of Chemistry, Rice University, Houston, Texas 77005

INTRODUCTION

A protein molecule can modulate its biological function and assume diverse

functional states through large-scale motions at equilibrium.1,2 The relevance of

different equilibrium conformations for protein function makes their characteri-

zation an important goal in experimental and computational research.3–7

Characterizing equilibrium conformations in silico is particularly challenging

due to the vast high-dimensional space available to a protein chain. Recently

proposed methods use experimental data to guide the search for relevant protein

conformations.6 Other methods focus the search around an experimental

structure.7,8

In this work, we propose a multiscale approach to characterize the conforma-

tional space available to a protein at equilibrium. We refer to the proposed

method as MuSE for Multiscale Space Exploration. The goal of MuSE is to com-

plement current computational approaches to the structure prediction and the

dynamics aspect of protein folding. The proposed method aims not to provide a

high accuracy prediction of one single structure; rather, it focuses computational

resources on obtaining a broad view of the equilibrium conformational space,

with possibly multiple equilibrium states, starting solely from the amino-acid

sequence. The equilibrium conformations obtained by MuSE can then serve as

starting points to be further refined or used in simulation and experiment.

To efficiently obtain a large set of equilibrium conformations, MuSE proceeds

in two stages: first obtaining a broad view of the entire conformational space at a

coarse-grained level of detail, then narrowing a refined exploration to selected

low-energy regions in the space. In the end, this two stage exploration yields con-

formational ensembles associated with different minima in the energy landscape

corresponding to a protein system. The lowest energy ensembles provide good

candidates for a protein’s functional states. The ensembles obtained when apply-

ing MuSE to three different proteins overall capture the populated functional

states of these proteins at equilibrium.

The coarse-grained exploration in the first stage uses a Monte Carlo Simulated

Annealing (MC-SA) scheme to generate conformations. The choice of a physi-
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ABSTRACT

We propose a multiscale explora-

tion method to characterize the

conformational space populated by

a protein at equilibrium. The

method efficiently obtains a large

set of equilibrium conformations

in two stages: first exploring the

entire space at a coarse-grained

level of detail, then narrowing a

refined exploration to selected low-

energy regions. The coarse-grained

exploration periodically adds all-

atom detail to selected conforma-

tions to ensure that the search

leads to regions which maintain

low energies in all-atom detail. The

second stage reconstructs selected

low-energy coarse-grained confor-

mations in all-atom detail. A low-

dimensional energy landscape asso-

ciated with all-atom conformations

allows focusing the exploration to

energy minima and their confor-

mational ensembles. The lowest

energy ensembles are enriched

with additional all-atom conforma-

tions through further multiscale

exploration. The lowest energy

ensembles obtained from the appli-

cation of the method to three dif-

ferent proteins correctly capture

the known functional states of the

considered systems.
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cally-robust coarse-grained model is crucial to the success

of the method, and it is the focus of much research.9–19

The coarse graining approach used in this work is based

on the Associative Memory Hamiltonian with Water

(AMW) model developed in the Wolynes group12 to

evaluate the energy of generated conformations. It is

worth pointing out that the AMW model used during

the coarse-grained exploration contains no native struc-

ture information about the specific protein system under

consideration.

Within the MC-SA scheme, conformations are gener-

ated by assembling backbone fragments from a database

of protein structures. This fragment assembly approach is

usually used in structure prediction methods.20–24 The

MC-SA exploration is multiscale as all-atom detail is

periodically added to few generated coarse-grained con-

formations to ensure that the coarse-grained exploration

leads to regions which maintain low energies in all-atom

detail.

In the second stage, low-energy coarse-grained confor-

mations are systematically reconstructed in all-atom

detail. A nonlinear dimensionality reduction technique,

Scalable Isomap (ScIMAP), is used to obtain a few global

coordinates that span the space of all-atom conforma-

tions.25 The global coordinates allow defining a low-

dimensional pseudo free-energy landscape associated

with all-atom conformations. The conformational ensem-

bles corresponding to the energy minima in this land-

scape are enriched with additional low-energy all-atom

conformations generated with the Protein Ensemble

Method (PEM).7 PEM switches between coarse-grained

and all-atom detail to efficiently explore the equilibrium

all-atom conformational space around a given reference

conformation.

The two-stage multiscale exploration is a key ingredi-

ent of the success of MuSE. The combination of the

coarse-grained with the all-atom exploration boosts the

exploration capability. In the end, this multiscale explora-

tion allows MuSE to obtain several all-atom conforma-

tional ensembles with associated pseudo free energies

that allow comparing the relevance of the ensembles at

equilibrium.

Applications of MuSE to three different proteins show

strengths and shortcomings of the proposed method.

Specifically, the multiscale exploration used in MuSE

allows to efficiently generate different conformational

ensembles that reproduce well the functional states in the

proteins studied, namely, calbindin D9k, calmodulin, and

adenylate kinase.

However, as discussed in the Materials and Methods

section, some of the approximations required to effi-

ciently obtain a broad view of the conformational space

relevant for the native state have an effect on the final

results; the analysis of such approximations will require

further investigation in order to significantly improve

this approach. For instance, as it is detailed later, the

strategy used to select coarse-grained conformations to

pass from higher to lower temperature in the MC-SA

scheme may introduce nonuniform bias in the sampling

of the conformational space.

Other approximations, including the coarse-grained

energy function, the mapping of generated conformations

from coarse-grained to all-atom detail, and the clustering

of the generated conformations, may introduce addi-

tional bias in the exploration of the conformational space

and affect the final results. At this stage, inherent biases

and approximations such as the above are difficult to dis-

entangle and deconvolute from the final analysis. A care-

ful investigation of these issues goes beyond the scope of

the present article and will be addressed in future work.

Because of the aforementioned biases, the statistics

associated with the final ensembles generated by MuSE

may significantly deviate from either the canonical or

microcanonical ensemble statistics, on which one can

reliably define thermodynamics functions. For this rea-

son, we refer to the final energy landscape we associate

to the protein systems as ‘‘pseudo’’ free-energy landscape,

where the ‘‘pseudo’’ attribute indicates that it can provide

only a qualitative estimate of the possible free energy

minima, and it should not be interpreted quantitatively.

In the following Materials and Methods section, we

present the method and the approximations made in the

multiscale exploration in more detail. The Results section

shows that obtained ensembles overall capture the well-

known functional states of the considered proteins. These

ensembles provide robust starting points to characterize

functional motions by means of further experimental or

simulation techniques.26,27 We remind the reader that

MuSE should be considered as a first attempt at address-

ing the difficult problem of extracting diverse conforma-

tional ensembles relevant for the protein native state,

without using any a priori information on the native

structure. It is clearly not the final solution to the prob-

lem; as discussed in the Discussion and Conclusion sec-

tion, further improvements on accuracy and efficiency

are the subject of ongoing and future research.

MATERIALS AND METHODS

The goal of MuSE is to obtain all-atom conformational

ensembles accessible to a protein at equilibrium. Explor-

ing the conformational space in all-atom detail is a

daunting task even for relatively short proteins (�100

aas). MuSE proceeds in two stages to efficiently explore

such a space.

In the first stage, the exploration gradually focuses

from the entire conformational space to low-energy

regions. An MC-SA scheme explores the space through

many Monte Carlo (MC) simulations at decreasing tem-

peratures. Conformations are generated by assembling

3-aa fragments (trimers) compiled over a nonredundant
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subset of the PDB. A coarse-grained level of detail is

maintained, modeling only backbone heavy atoms and

side-chain Cb atoms. Bond lengths and angles are kept

fixed in equilibrium values. Generated conformations are

accepted or rejected with the Metropolis criterion, using

a coarse-grained energy function to evaluate the energy

of a conformation. The MC simulations are launched

from carefully selected ‘‘seed’’ conformations which guide

the exploration to regions of the coarse-grained space

that are also low-energy in all-atom detail. The selection

involves switching between coarse-grained and all-atom

detail on a few conformations. This multiscale explora-

tion yields in the end a large number of low-energy

coarse-grained conformations that are suitable starting

points for further refined exploration of emerging low-

energy regions.

In the second stage, all-atom detail is introduced to

low-energy coarse-grained conformations obtained from

the first stage. Energies are minimized with an all-atom

energy function and implicit solvent model. A low-

dimensional energy landscape is associated with the all-

atom space, revealing conformational ensembles associ-

ated with energy minima in the landscape. Regions asso-

ciated with the minima are then explored in detail by

using PEM, a multiscale method that switches between

different levels of detail to efficiently generate low-energy

all-atom conformations. The final result is a large ensem-

ble of all-atom conformations corresponding to the

energy minima. The two stages of MuSE are described

next. Implementation details follow.

Stage 1: exploration of a coarse-grained
conformational space

The coarse-grained conformational space of a protein

is explored by iterating over the following steps: (i) select

coarse-grained conformations (seeds) from which to start

the exploration; (ii) from each seed, initiate several MC

simulations to generate more coarse-grained conforma-

tions; (iii) analyze generated conformations to select

seeds for the next iteration. This iterative scheme is

implemented as an MC-SA, where the effective MC tem-

perature is lowered after every iteration.

The MC-SA scheme gradually lowers the MC tempera-

ture k times, from a high value T0 down to room tem-

perature Tk 5 300 K. At higher temperatures, uphill

movements in the underlying energy landscape are

accepted with high probability, allowing crossing energy

barriers and obtaining a broad view of conformational

space. As temperature is lowered, downhill movements

become prevalent and focus the search in local minima.

The cooling schedule is detailed in Supporting Informa-

tion. At each temperature Ti (0 � i � k), ns seed confor-

mations are chosen. At each temperature, several MC

simulations are launched from each selected seed.

The choice of seeds is critical to the success of the

MC-SA exploration. At the beginning, no information is

yet available on the coarse-grained conformational space.

Therefore, initial seeds for the MC simulations at the

highest temperature T0 are obtained by randomly apply-

ing �28 perturbations to the (/ 5 21208, w 5 1208)
backbone dihedral angles of an extended chain.

During the MC-SA exploration, low-energy coarse-

grained conformations generated at the previous (higher)

temperature are selected as seeds for the next (lower)

temperature. In particular, for each lower temperature

Ti11, seeds are selected as follows. Conformations gener-

ated at a previous temperature Ti are collected in an en-

semble XTi
. A structural analysis is first performed over

XTi
to select nc low-energy conformations that are either

obtained very often during the MC-SA or are geometri-

cally distinct. These nc conformations represent

nc ‘‘basins’’ in the coarse-grained space. The basins are

mapped to an all-atom space by adding all-atom detail

to the nc conformations with the side-chain addition

method proposed in Heath et al.28 The nc resulting all-

atom conformations are then energetically minimized

with an all-atom energy function and implicit solvation

model. In the end, ns out of the nc conformations are

chosen that remain low in energy also in all-atom detail

(see Supporting Information). The all-atom detail is then

stripped off the ns chosen seeds to continue the MC-SA

exploration in the coarse-grained space.

Several parallel MC simulations are launched from

each seed conformation selected as described earlier. The

MC simulations launched from a particular seed differ

from one another in the confinement of generated con-

formations around different values of the radius of gyra-

tion (Rg), that is, the average distance of atoms from the

center of mass. The confinement is enforced through an

energetic penalty in the coarse-grained energy function

described below. Confining different MC simulations to

search inside spheres of different radii allows discretizing

the conformational space available to a protein and effec-

tively expediting the exploration.

Low-energy conformations that capture a protein in

different functional states may have different radii of

gyration. For the proteins considered in this work, which

undergo large-scale functional motions, it is not reasona-

ble to bias the exploration to a single and prefixed con-

finement radius. To allow for large-scale motions, MuSE

considers a large set of values for the confinement radius.

These values are determined a priori through ns long

MC simulations. These preliminary simulations are car-

ried out from slightly perturbed extended conformations

at the highest temperature T0 without any confinement.

The distribution of Rg values of the generated conforma-

tions is discretized to determine m Rggoal
values (details in

Supporting Information). These m values are then used

in the MC-SA as follows: at each temperature Ti, from

each of the ns seeds, m MC simulations are launched in

Multiscale Search for Protein Conformations
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parallel, each one confining generated conformations by

one of the m Rggoal
values.

Each MC simulation starts from a seed conformation

and lasts for a total of NMC cycles. A cycle consists of

N 2 2 moves, where N is the number of amino acids in

a protein chain (there are at most N 2 2 trimers on

such a chain). Each move involves choosing a trimer ran-

domly over the chain. The local database of trimer con-

figurations (compiled over PDB protein structures as

detailed in Supporting Information) is queried with the

amino-acid sequence of the trimer. A configuration (six

backbone dihedral angles) is selected randomly over the

ones available for the trimer in the database. The selected

configuration that is proposed to replace the trimer con-

figuration in the current conformation is accepted or

rejected with the Metropolis criterion.

A coarse-grained energy function is used to evaluate

the energy of the conformation resulting after each move.

Because trimer configurations are compiled over PDB

structures, local terms are not included in the energy

function. The energy is a linear combination of the non-

local terms ELennard-Jones, EH-Bond, Econtact, Ewater, Eburial,

ERg
. In particular, the ERg

term implements the energetic

penalty (Rg 2 Rggoal
)2 if a conformation’s radius of gyra-

tion Rg is above Rggoal
.

It is important to point out that the Econtact, Ewater,

and Eburial terms, implemented as in the AMW energy

function,12 allow considering water-mediated interac-

tions in coarse-grained conformations. The Cb positions

that are needed to evaluate these three terms are com-

puted from the backbone of a conformation as in Milik

et al.29 These three terms are crucial components of the

coarse-grained energy function to guide the MC-SA

exploration in the coarse-grained space. Description of

the rest of the terms of the energy function together with

further details on the length of an MC simulation and

the update of the MC temperature in response to the

number of accepted conformations during the simulation

can be found in Supporting Information.

Stage 2: exploration in an all-atom
conformational space

The first stage allows efficiently sampling a large num-

ber of coarse-grained conformations. Conformations

obtained during the lowest three temperatures in the

MC-SA are considered, and their energy distribution is

evaluated. Among them, conformations with energy no

higher than one standard deviation from the average

energy are selected and used as starting points in the sec-

ond stage of MuSE to explore the all-atom conforma-

tional space.

All-atom detail is added to the lowest-energy coarse-

grained conformations as in Heath et al.28 Each all-atom

conformation is then energetically minimized with the

AMBER ff03 energy function30 and the Generalized

Born implicit solvation model.31 Out of the resulting all-

atom conformations, only those with energies no higher

than 100 kcal/mol from the global minimum energy are

retained. This cutoff discards conformations with negligi-

ble Boltzmann probabilities at equilibrium.

The all-atom conformations are projected on a low-

dimensional landscape through ScIMAP, a nonlinear

dimensionality reduction technique proposed25 and

tested by our labs.32,33 Pseudo free-energy values are

calculated as a function of the ScIMAP coordinates to

yield a low-dimensional energy landscape. The ‘‘pseudo’’

attribute is a warning that thermodynamic quantities

computed on the final ensembles obtained by MuSE can

be significantly affected by the nontrivial biases intro-

duced in the search, as detailed in the Discussion and

Conclusion. The obtained pseudo free-energy landscape,

however, provides a qualitative view of the relevant

regions of the conformational space. Minima emerging in

the pseudo free-energy landscape provide good candi-

dates for conformational ensembles that are possibly rele-

vant at equilibrium. The lowest-energy conformations

associated with the minima are chosen as reference to

further explore the conformational space around the

minima. This focused exploration of the minima is

implemented through PEM, a multiscale method pro-

posed and tested in Shehu et al.7,8,34 to explore the all-

atom conformational space around a given conformation

(details in Supporting Information).

Implementation details

All simulations have been performed on 2.2 GHz

AMD64 Opteron CPUs. The MC-SA lowers temperature

k 5 14 times. An MC simulation of 2000 cycles takes

between 1–4 h on a single CPU for the protein sequences

considered in this work. At each temperature and from

each of the ns 5 5 seed conformations, m 5 11 MC sim-

ulations are launched (1 unconfined and 10 with differ-

ent Rggoal
values). Implementations with ns > 5 seeds have

been considered for the broader exploration that would

be obtained. The number of generated conformations,

however, becomes too large for storage and time

demands, whereas the results remain consistent with

those presented here.

In total, 5 3 11 5 55 MC simulations are run (in par-

allel) at each temperature on different CPUs. A total of

14 3 55 3 2000 5 1, 540, 000 coarse-grained conforma-

tions are generated in 14–56 h on 55 CPUs. For the cal-

bindin D9k, CaM, and ADK proteins considered in this

study, 45,363, 54,820, and 48,394 conformations, respec-

tively, are selected from the first stage and handed off to

the second stage. The second stage selects 29,290, 33,166,

and 29,424 all-atom conformations, respectively, that

meet the 100 kcal/mol cutoff described earlier. The PEM

exploration around each energy minimum yields on aver-

age 2000 low-energy all-atom conformations. The all-

A. Shehu et al.

840 PROTEINS



atom energy minimizations are the most computational

demanding in PEM, bringing the total time of the second

stage to 2–4 weeks on 50 CPUs for the results presented

here.

RESULTS

We present results obtained from the application of

MuSE to three increasingly long proteins that are known

to undergo large-scale functional motions. We first

briefly describe the protein systems chosen for this study

and then discuss the results obtained for each of them.

Calbindin D9k

The first protein selected for our study is the 76-aa

sequence of calbindin D9k, a protein that transports

Ca21, Mg21, and Mn21 ions.35,36 Calbindin D9k is an

EF-hand protein, a four-helix bundle with two helix-

loop-helix EF-hand motifs. The N-terminus EF-hand

contains helix H1, metal-binding loop L1, and helix H2.

The C-terminus EF-hand contains helix H3, metal-bind-

ing loop L2, and helix H4. A linker region links the

EF-hands.

Figure 1(a2) superimposes 160 experimental structures

available for calbindin D9k in the PDB. There are differ-

ences among these structures in the network of Van der

Waals (vdw) contacts and hydrogen bonds. In particular,

contacts between helices H1 and H4 and between H2

and H3 are formed with widely varying probabilities,

indicating these helices can fluctuate away from each

other. A wide range of contact probabilities also indicate

that the linker and loops L1 and L2 are highly mobile.

These 160 structures capture calbindin D9k in different

functional states. Comparison of the metal-free (apo),37

Ca21-,38 Mg21-, and Mn21-binding36 states reveals that

the internal structures of the helices remain largely

unperturbed. On the other hand, L1, L2, and the linker

act as hinges to pack the helices more tightly in the

Mg21- and the Mn21-binding states. It is reasonable to

assume that these functional states coexist at equilib-

rium with different probabilities depending on ion

concentrations.39

Calmodulin

The second protein considered is the 144-aa sequence

of calmodulin (CaM), an EF-hand protein that binds cal-

cium and regulates over 100 target proteins, such as

kinases, phosphodiesterases, calcium pumps, and motility

proteins.40–42 CaM resembles a dumbbell structure

where the terminal domains are linked through a flexible

a-helix. The termini are in a trans orientation from each

other on either side of the central linker.

At least three functional states of CaM have been

observed in the experiment. Differences among these

states are mostly due to a partial unfolding around resi-

due 77 in the central a-helix linker. Further bending of

the linker around this point brings the terminal domains

in contact with each other. Figure 1(b) superimposes

three X-ray structures that capture CaM in its main func-

tional states. The apo state, PDB code 1cfd,43 is shown

in magenta; the calcium-binding state, PDB code

1cll,44,45 is shown in blue; the collapsed peptide-binding

state, PDB code 2f3y,46 is shown in green.

The terminal domains are very similar in structure

(least RMSD—lRMSD—between them is 1.0 Å). The

central helix is fully formed in the calcium-binding state,

partially unfolds in its middle in the apo state, and bends

in the collapsed state, bringing the domains in contact.

Transitions between the apo and collapsed states have

been observed in experiment and simulation.27,47

Collapsed states have been reported in a few molecular

dynamics (MD) studies.48,49

Adenylate kinase

The third protein considered in this study is the 214-

aa sequence of adenylate kinase (ADK), a phosphotrans-

ferase enzyme that maintains energy balance in cells by

catalyzing the reversible reaction Mg21 � ATP 1 AMP

() Mg21 � ADP 1 ADP.50 The enzyme has a CORE

domain and AMP- and ATP-binding domains. The sub-

strate-binding domains undergo large-scale motions to

independently bind substrates, giving rise to four func-

tional states: the apo state, where both substrate-binding

domains are open, the collapsed state, where both are

closed, and two intermediate states, where one of the

domains is open and the other is closed.

Figure 1(c) superimposes four X-ray structures of

ADK. The structure drawn in magenta, PDB code

4ake,51 shows ADK in its apo state. The collapsed state,

PDB code 2aky,52 is shown in blue. The two intermedi-

ate states, PDB codes 1dvr53 and 2ak3,54 are, respec-

tively, shown in orange and green. The AMP-binding

domain is open and the ATP-binding domain is closed in

1dvr, whereas the ATP-binding domain is open and the

AMP-binding domain is closed in 2ak3.

Transitions of ADK between the apo and collapsed

states have been observed both in experiment and simu-

lation.55–57 Although the free energy difference between

the apo and collapsed states has been reported to be neg-

ligible at room temperature, the two intermediate states

of ADK have been associated with higher energies.57 As

such, ADK is an ideal system to test the performance of

MuSE.

Generation of conformational ensembles

The analysis presented here focuses on 29,290, 33,166,

and 29,424 lowest-energy all-atom conformations

obtained from applying MuSE on calbindin D9k, CaM,

Multiscale Search for Protein Conformations
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and ADK, respectively (details in Materials and Meth-

ods). These conformations are projected onto a lower-

dimensional space by using the ScIMAP nonlinear

dimensionality reduction technique25 (details in Sup-

porting Information) to extract a few global coordinates

that best distinguish among conformations.

The ScIMAP analysis reveals that two global coordi-

nates capture more than 70% of the structural variability

in the ensemble of conformations of each protein. The

low-dimensional landscapes presented below are obtained

with 3000 landmarks, 50 nearest neighbors, and using

lRMSD for nearest neighbor calculations (as discussed in

Supporting Information). Pseudo free-energy calculations

on the low-dimensional landscapes highlight energy min-

ima for each protein. The conformational space around

these minima is further explored by using PEM,7,8,34 as

described in Materials and Methods.

Three main results emerge from the analysis of the

energy landscapes obtained for the three proteins: (i) on

calbindin D9k, the two energy minima obtained capture

well the difference in packing of EF-hand helices in the

various functional states; (ii) on both CaM and ADK, the

energy minima are in correspondence to known func-

tional states; (iii) higher-energy ensembles are also

observed in our study. Interestingly, these ensembles for

CaM have been reported on a few MD studies and may

Figure 1
(a1) Helices H1-H4 in magenta and loops L1 and L2 are labeled over the PDB structure 4icb of calbindin D9k. (a2) 160 PDB structures are

superimposed over one another. X-ray structures and first structures of NMR ensembles are in opaque. Additional structures of an NMR ensemble

are in transparent. (b) CaM PDB structures are superimposed over one another: 1cfd is in magenta, 1cll in blue, and 2f3y is in green. (c) ADK

PDB structures are superimposed over one another: 4ake is in magenta, 2ak3 in orange, 1dvr in green, and 2aky in blue. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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correspond to (yet) unobserved metastable collapsed

functional states.

Analysis of generated conformational
ensembles of calbindin D9k

Figure 2(a) shows the pseudo free-energy landscape of

calbindin D9k as a function of the first two global coordi-

nates revealed by ScIMAP for the ensemble of conforma-

tions obtained by MuSE. Energy values are color-coded

in a red-to-blue spectrum that denotes high-to-low

values.

The experimental structures of calbindin D9k are

projected on the landscape and shown as black circles.

The two lowest energy minima are labeled A and B in

Figure 2(a). The experimental structures, when pro-

jected on the 2D landscape, cluster around minimum

A. The energetic separation between A and B is �3

kcal/mol. Given unavoidable approximations in empir-

ical energy functions and the approximations used in

MuSE, the two minima can be considered energetically

equivalent.

The conformational ensembles corresponding to min-

ima A and B are shown in Figure 2(a1,b1), respectively.

The lowest-energy conformations within each ensemble,

shown in opaque in Figure 2(a1,b1), have an lRMSD of

2.36 and 5.14 Å from PDB structure 4icb (Ca21-binding

state), respectively. The lRMSD lowers down to 1.89 and

2.59 Å, respectively, when the local-global alignment

(LGA) tool is used.58 The lower values result from the

fact that LGA localizes structural differences between two

conformations (LGA is used to assess the similarity

between predictions and targets in structure predic-

tion.59). Both ensembles in Figure 2(a1,b1) capture the

overall fold of calbindin D9k. The helices are well-formed,

whereas the L1 and L2 loops and linker region are very

mobile. The main difference between the two ensembles

is in the packing of the EF-hand helices: tighter packing

is observed in the ensemble in Figure 2(a1). In particular,

the distance between central residues in the L1 and L2

loops has an average of 12.69 Å in the ensemble in Fig-

ure 2(a1) and an average of 14.33 Å in the ensemble in

Figure 2(b1). For comparison, this average is 11.33 Å in

PDB structure 4icb. The tighter packing in the ensemble

associated with minimum A is in good agreement with

what is observed in the Mg21- and Mn21-binding

states.36 On the other hand, looser packing is observed

in the apo and the Ca21-binding states,37,38 consistent

with what is observed in the ensemble associated with

minimum B.

The lowest-energy conformations of the ensembles cor-

responding to minima A and B are used as references to

further explore the conformational space through PEM.

The PEM-generated ensembles, shown in Figure 2(a2,

b2), reproduce the structural features that distinguish

minima A and B and corroborate the results obtained

from the coarse-grained exploration.

The conformational ensembles associated with minima

A and B can be further characterized by considering the

network of vdw contacts and hydrogen bonds. Probabil-

ities of contacts and hydrogen bonds formation are meas-

ured as Boltzmann averages over each of the ensembles.

These probabilities are shown by the color-coded maps

in Figure 2(a3,b3). Darker colors denote higher probabil-

ities. For comparison, the bottom halves of these maps

show the formation probabilities measured by averaging

over the 160 experimental structures of calbindin D9k.

Two amino acids are defined in contact if the Euclidean

distance between two of their heavy atoms is �4.5 Å. A

hydrogen bond is considered formed if the OH distance

is less than 2.4 Å and the maximum NHO angle for the

hydrogen bond alignment is 2.44 rad.60

The high similarity between the top and bottom halves

of the map in Figure 2(a3) indicates that the conforma-

tional ensemble associated with minimum A captures the

main interactions present in the experimental structures.

In particular, interactions between loops L1-L2, H1-H2,

and H3-H4 occur with high probability. This result con-

firms the tight packing of the helices that characterizes

conformations associated with minimum A. On the other

hand, Figure 2(b3) shows that some of these interactions

occur rarely in the ensemble associated with minimum B

as a result of the looser packing that characterizes confor-

mations associated with minimum B.

Analysis of generated conformational
ensembles of calmodulin

The pseudo free-energy landscape of CaM lowest-

energy conformations generated by MuSE is shown as a

function of the first two global ScIMAP-obtained coordi-

nates in Figure 3(a). Energy values are color-coded in a

red-to-blue spectrum to denote high-to-low values. Three

low-energy minima emerge, labeled A, B, and C in Figure

3(a). The first global coordinate separates A from B and

C, whereas the second coordinate separates C from A

and B. The projection of PDB structure 1cll (drawn in

blue) on this landscape falls near minimum A, that of

1cfd (in magenta) falls near B, and that of 2f3y (in

green) falls near C. Energy differences among the minima

are <1 kcal/mol.

The conformational ensembles corresponding to min-

ima A, B, and C are shown in Figure 3(a1–c1), respec-

tively. The main feature in the ensemble corresponding

to minimum A is a well-formed a-helix in the linker, as

in PDB structure 1cll. The helix is partially unfolded in

the ensemble corresponding to minimum B, as in PDB

structure 1cfd. The linker bends further in the ensemble

corresponding to minimum C, as in PDB structure 2f3y.

The three ensembles show that the terminal domains
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Figure 2
(a) Red-to-blue color spectrum in 2D landscape obtained for calbindin D9k denotes high-to-low energy values. Black circles show projections of

PDB structures over the landscape. The projection of PDB structure 4icb is drawn in magenta. The lowest energy minima are labeled A and B.

Conformational ensembles corresponding to A and B are shown in (a1) and (b1), respectively. Conformations are superimposed in transparent over

lowest-energy one drawn in opaque. (a2) and (b2) show ensembles obtained with PEM from each lowest-energy conformation. (a3) and (b3) show

contacts and hydrogen bonds measured over enriched conformational ensembles corresponding to A and B (top half) when compared with contacts

and hydrogen bonds averaged over the PDB structures (bottom half). Darker shades denote higher probabilities. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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Figure 3
(a) Red-to-blue color spectrum in 2D landscape obtained for CaM denotes high-to-low energy values. The lowest energy minima are labeled A, B,

and C. PDB structures are projected on the landscape: 1cfd in magenta, 1cll in blue, and 2f3y in green. (a1), (b1), and (c1), respectively, show

ensembles corresponding to minima A, B, and C. Conformations are superimposed in transparent over lowest-energy ones drawn in opaque. (a2),

(b2), and (c2) show the respective conformational ensembles obtained with PEM from each of the lowest-energy conformations. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]
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exhibit some mobility while largely preserving their sec-

ondary structures.

The lowest-energy conformations in ensembles A, B,

and C are shown in opaque in Figure 3(a1–c1). These

conformations have LGA lRMSDs of 2.572, 2.201, and

2.792 Å from PDB structures 1cll, 1cfd, and 2f3y, respec-

tively. The lowest-energy conformations are used as refer-

ences to further search in all-atom detail the conforma-

tional space around the minima. The PEM-generated

ensembles, shown in Figure 3(a2–c2), reproduce well the

structural differences among the minima and further

support the conformational diversity captured from the

coarse-grained exploration.

Figure 3(a) shows that minimum B is broader than A

and C. The corresponding conformational ensemble in

Figure 3(b1) provides an explanation: the partial unfold-

ing of the helix linker in this ensemble allows access to a

large configurational space. Figure 3(a) also shows that

minima A, B, and C are not isolated from one another.

Conformations bridging A and B exhibit the helix linker

gradually unfolding in its middle, whereas conformations

bridging B and C further bend the linker. The conforma-

tions bridging the minima may provide transitions between

the three main functional states of CaM. Conformations

mediating between the calcium-binding and collapsed states

have been observed in 20-ns MD simulations.48

In addition, inspection of MuSE-obtained conformations

reveals higher-energy collapsed ensembles not (yet)

observed in experiment (shown in Supporting Informa-

tion). Similar collapsed structures have been observed in

MD simulations when CaM is depleted of a calcium ion.49

Formation probabilities of vdw contacts and hydrogen

bonds are measured over each ensemble associated with

the minima and are shown by color-coded maps in Fig-

ure 4(a3–c3). The bottom halves of the maps show con-

tacts and hydrogen bonds measured over PDB structures

1cll, 1cfd, and 2f3y, respectively. Darker colors denote

higher probabilities. The maps associated with the

ensembles corresponding to minima A, B, and C largely

reproduce those of PDB structures 1cll, 1cfd, and 2f3y,

respectively. Figure 4(a3) shows additional rare interac-

tions between the terminal domains that arise as the

domains move closer to a linker that bends slightly with-

out unfolding in minimum A. Similar interactions are

present in Figure 4(b3), as the linker unfolds in mini-

mum B. Figure 4(c3) shows that this interdomain cou-

pling becomes more prevalent as the linker bends further

in minimum C. Such coupling has been observed in MD

studies.48

Analysis of generated conformational
ensembles of adenylate kinase

Figure 5(a) shows the pseudo free-energy landscape

associated with MuSE-generated ADK conformations as a

function of the two global coordinates obtained from

ScIMAP. Color-coding energy values in a red-to-blue

spectrum that denotes high-to-low values reveals two

energy minima, labeled A and B in Figure 5(a). The ener-

getic difference between the minima is �1.3 kcal/mol.

The four X-ray structures of ADK that capture this

protein’s functional states are projected and drawn on

the landscape in Figure 5(a) in different colors: the pro-

jection of PDB structure 4ake is shown in magenta, 1dvr

is in orange, 2ak3 is in green, and 2aky is in blue. Fig-

ure 5(a) shows that, when projected on the pseudo free-

energy landscape, 4ake, which captures ADK in its apo

state, falls near minimum A, and 2aky, which captures

the enzyme in its collapsed state, falls near minimum B.

The conformational ensembles corresponding to min-

ima A and B are shown in Figure 5(a1,b1), respectively.

The main features in the ensemble in Figure 5(a1) are

open AMP- and ATP-binding domains, as in 4ake. Both

domains are closed in the ensemble in Figure 5(b1), as in

2aky. The lowest-energy conformations in each ensemble,

shown in opaque in Figure 5(a1,b1), are within 2.95 and

3.27 Å LGA lRMSD from PDB structures 4ake and 2aky,

respectively.

The lowest-energy conformations in each minimum

are used as references for PEM to further explore the

conformational space around A and B. The obtained

ensembles, shown in Figure 5(a2,b2), reproduce the apo

and collapsed states of ADK, further supporting the

structural features associated with the predicted minima.

Additional analysis is provided by considering the

network of vdw contacts and hydrogen bonds. Fig-

ure 5(a3,b3) juxtapose formation probabilities of contacts

and hydrogen bonds measured over the ensembles associ-

ated with minima A and B to contacts and hydrogen

bonds in PDB structures 4ake and 2aky. The maps asso-

ciated with the conformational ensembles, respectively,

reproduce the maps associated with the PDB structures.

The intermediate functional states of ADK, where one

terminal domain is open and the other closed, are not

obtained as energy minima. These intermediate states are

associated with energy barriers in the transition between

the apo and collapsed states.57 The higher energies asso-

ciated with these intermediate states disqualify conforma-

tions representative of these states from being selected

for further exploration in MuSE. Instead, the lower-

energy apo and collapsed states of ADK prevail in the

landscape offered by MuSE as relevant at equilibrium.

Folding simulations like the one in57 could be used to

launch MD trajectories and capture the intermediate

states as ADK transitions between the apo and collapsed

states obtained by MuSE.

DISCUSSION AND CONCLUSION

The application of a multiscale strategy to explore the

conformational space reproduces well the known

functional states of the three considered proteins. On
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Figure 4
The top halves of the maps in (a3), (b3), and (c3) show contact and hydrogen-bond formation probabilities measured over the conformational

ensembles associated with minima A, B, and C. The bottom halves of these maps show contacts and hydrogen bonds in PDB structure 1cll in (a3),

1cfd in (b3), and 2f3y in (c3). Darker shades denote higher probabilities. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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Figure 5
(a) Red-to-blue color spectrum in 2D landscape obtained for ADK denotes high-to-low energy values. The lowest energy minima are labeled A and

B. PDB structures are projected on the landscape: 4ake in magenta, 2ak3 in orange, 1dvr in green, and 2aky in blue. (a1) and (b1), respectively,
show the conformational ensembles corresponding to A and B. Conformations are superimposed in transparent over lowest-energy ones drawn in

opaque. (a2) and (b2) show conformational ensembles obtained with PEM from each lowest-energy conformation. (a3) and (b3) show contacts

and hydrogen bonds measured over enriched conformational ensembles corresponding to A and B (top half). The bottom halves show contacts and

hydrogen bonds in PDB structure 4ake in (a3) and 2aky in (b3). Darker shades denote higher probabilities. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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calbindin D9k, the obtained free energy minima capture

the variation in the packing of EF-hand helices. One

minimum is associated with a tighter packing, as also

observed in the Mg21- and the Mn21-binding states. The

other minimum shows a looser packing, consistent with

the apo and Ca21-binding states. On CaM, the three

obtained free energy minima reproduce the three docu-

mented functional states. The two free energy minima

obtained for ADK capture well the apo and collapsed

states of this protein.

Intermediate functional states are not directly observed

for ADK. The higher energy of these states probably dis-

cards their conformations in the first stage of MuSE.

However, by capturing the apo and collapsed states,

MuSE could be further enhanced by simulation studies

as in Lu and Wang.57 MD trajectories could provide

details on states mediating the transition of a protein

between the main functional states associated with the

free energy minima obtained with MuSE.

The selection of seed conformations, the multiscale

search for these seeds, the parallel simulations launched

from selected seeds in the first stage, and the coarse-

grained energy function used during this stage (see Mate-

rials and Methods for details) are all critical components

that together guide the exploration to relevant regions in

the all-atom conformational space. It is reasonable, how-

ever, to expect the exploration to reach a scalability bot-

tleneck when considering longer protein chains (�300

aas). High-dimensional conformational spaces associated

with longer proteins than the ones considered in this

work may require using different seed selection strategies,

loosening some of the energetic cutoffs, and possibly

using coarser representations than the one used in the

first stage. Realistic coarse-grained energy functions need

to be devised for even coarser representations. Alterna-

tively, multiple levels of coarse-graining could be used for

the exploration of a larger high-dimensional space.

As already mentioned earlier, as an exploration-based

approach, MuSE may contain internal biases that are not

trivial to disentangle and deconvolute in the final ensem-

ble statistics. The selection of seeds presents a potentially

biasing factor in the exploration towards specific confor-

mational subspaces. In addition, even if the specific seed

selection strategy resulted in a uniform sampling of the

equilibrium conformational space, other approximations

can produce different biases. For example, switching

from the coarse-grained AMW model to the all-atom

model introduces another potential bias. For this reason,

the free energies estimated on the final ensembles are

referred to as pseudo free energies.

Analysis of the conformational ensembles obtained in

this work reveals additional higher-energy ensembles of

collapsed conformations. Similar collapsed conformations

have been reported, for instance, for CaM, in MD studies

but not (yet) in experiment. One cannot rule out, however,

that the presence of these conformations may be due to the

approximations present in the empirical energy functions

or approximations used in the method. Multiple energy

functions and representations can be used in the future to

improve predictions obtained by the method.

A different explanation for the presence of additional

conformational ensembles may be offered by considering

the difference between thermodynamics and kinetics.

MuSE is thermodynamic in nature. The estimation of

timescales to access different conformational ensembles is

an obvious direction for future work that can improve

accuracy and strengthen the connection with experiment.

The MuSE method presented here is a promising first

step towards obtaining a picture of the conformational

diversity of proteins at equilibrium. The results obtained

by MuSE can serve as a robust starting point to charac-

terize functional motions in proteins, either in combina-

tion with more refined computational methods or with

experiments. Obviously, the fact that MuSE overall cor-

rectly captures the diverse equilibrium conformational

states in the three proteins considered here is not a guar-

antee that the method will have similar success in gen-

eral, on different proteins. The application and testing of

the method on a broader range of protein systems will

help to identify weaknesses and shortcomings, and better

characterize the statistical biases introduced by the multi-

scale search. These issues, as well as improvements on

efficiency and scalability, are part of our ongoing and

future research.
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38. Svensson LA, Thulin E, Forsèn S. Proline cis-trans isomers in cal-

bindin D9k observed by X-ray crystallography. J Mol Biol 1992;

223:601–606.

39. Linse S, Jonsson B, Chazin WJ. The effect of protein concentra-

tion on ion binding. Proc Natl Acad Sci USA 1995;92:4748–

4752.

40. Manalan AS, Klee C. Calmodulin. Adv Cyclic Nucleotide Protein

Phosphorylation Res 1984;18:227–278.

41. Means AR. Molecular mechanisms of action of calmodulin. Recent

Prog Horm Res 1988;44:223–262.

42. O’Neal KT, DeGrado WF. How calmodulin binds its targets:

sequence independent recognition of amphiphilic a-helices. Trends

Biochem Sci 1990;15:59–64.

43. Kuboniwa H, Tjandra N, Grzesiek S, Ren H, Klee CB, Bax A. Solu-

tion structure of calcium-free calmodulin. Nat Struct Biol 1995;2:

768–776.

44. Babu YS, Bugg CE, Cook WJ. Structure of calmodulin refined at
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ulin structure refined at 1.7 Å resolution. J Mol Biol 1992;228:

1177–1192.

46. Fallon JL, Halling DB, Hamilton SL, Quiocho FA. Structure of cal-

modulin bound to the hydrophobic IQ domain of the cardiac

Ca(v)1.2 calcium channel. Structure 2005;13:1881–1886.

47. Finn BE, Evenäs J, Drakenberg T, Waltho JP, Thulin E, Forsèn S.
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