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ABSTRACT Characterizing protein flexibility
is an important goal for understanding the physical-
chemical principles governing biological function.
This paper presents a Fragment Ensemble Method
to capture the mobility of a protein fragment such
as a missing loop and its extension into a Protein
Ensemble Method to characterize the mobility of an
entire protein at equilibrium. The underlying ap-
proach in both methods is to combine a geometric
exploration of conformational space with a statisti-
cal mechanics formulation to generate an ensemble
of physical conformations on which thermodynamic
quantities can be measured as ensemble averages.
The Fragment Ensemble Method is validated by
applying it to characterize loop mobility in both
instances of strongly stable and disordered loop
fragments. In each instance, fluctuations measured
over generated ensembles are consistent with data
from experiment and simulation. The Protein En-
semble Method captures the mobility of an entire
protein by generating and combining ensembles of
conformations for consecutive overlapping frag-
ments defined over the protein sequence. This
method is validated by applying it to characterize
flexibility in ubiquitin and protein G. Thermody-
namic quantities measured over the ensembles gen-
erated for both proteins are fully consistent with
available experimental data. On these proteins, the
method recovers nontrivial data such as order pa-
rameters, residual dipolar couplings, and scalar
couplings. Results presented in this work suggest
that the proposed methods can provide insight into
the interplay between protein flexibility and func-
tion. Proteins 2006;65:164-179. o 2006 Wiley-Liss, Inc.
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INTRODUCTION

Experimental and simulation studies have established
that proteins are not rigid molecular objects™ % but instead
exhibit internal motions that are often essential for their
function.>® As a flexible molecule, a protein may populate
a large ensemble of different structures. In particular, loop
fragments are oftentimes highly mobile even in generally
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stable proteins. Such mobile loops are not easily character-
ized by X-ray crystallography as they may introduce
significant disorder in a protein crystal. In fact, partially
resolved protein structures are reported in these cases,
with the loop fragment missing.

Finding a physically relevant conformation for a missing
loop fragment in a given protein structure is an important
problem in automated crystallographic protein structure
determination, homology modeling,®” and ab initio struc-
ture prediction®? (this problem is known as loop modeling;
alternative names include loop/fragment completion, gap
completion, loop closure, or fragment fitting). The problem
involves generating a peptide conformation whose N- and
C- terminal residues attach to the fixed anchor residues of
the two protein segments at the ends of the loop. However,
proposing a single peptide conformation fails to address
the mobility of the missing loop. In light of the high
variation of loop structures in proteins, one or few confor-
mations may not adequately represent the diversity in the
ensemble of conformations assumed by a mobile missing
loop.

Loops are not the only flexible fragments in a protein. An
entire protein can undergo conformational changes that
may be essential to its biological function.?'® Compound-
ing evidence from experiment, simulation, and theory
indicates that the characterization of protein functions,
such as enzymatic reactions, ligand binding, and protein/
protein interactions, requires considering a protein native
state as a dynamical ensemble of conformations rather
than one single structure.?->1°
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MODELING PROTEIN CONFORMATIONAL ENSEMBLES

In this work we address both the problem of modeling
mobile loops and the characterization of flexibility of an
entire protein at equilibrium conditions. Motivated by
recent computational techniques for studying protein flex-
ibility,**~13 the presented work aims to provide a complete
characterization of equilibrium fluctuations in proteins.

We propose the Fragment Ensemble Method (FEM) to
address equilibrium mobility in the loop modeling prob-
lem. Given an incomplete protein structure and the amino
acid sequence of the missing loop, the proposed method
generates an ensemble of low-energy loop conformations
that complete the given protein structure. The method
combines a statistical mechanics formulation with an
efficient exploration of conformational space,'*~17 exploit-
ing analogies between proteins and robots'®° to model a
loop fragment as an open kinematic chain. FEM is based
on a multi-scale approach. Many backbone-resolution loop
conformations are first generated to satisfy the geometric
and energetic constraints imposed by the given protein
structure. These conformations are then structurally and
energetically refined to obtain an ensemble of low-energy
atomistic-resolution loop conformations. We validate the
proposed method by using it to characterize loop structure
and mobility in instances of both strongly stable and
completely disordered loops. In all instances studied,
fluctuations measured over a generated ensemble fully
agree with experimental and simulation data.

FEM is not limited to applications on missing loops but
can generate an ensemble of physical conformations for
any fragment in a protein. We exploit this capability and
extend this method into the Protein Ensemble Method
(PEM) to characterize mobility over an entire protein.
PEM generates ensembles of conformations for consecu-
tive overlapping fragments defined over a protein se-
quence and combines results from ensembles of neighbor-
ing fragments. We validate this method by applying it to
obtain a complete characterization of the structural flexibil-
ity of two proteins (ubiquitin and protein G) under equilib-
rium conditions. We show that for both proteins thermody-
namic quantities measured over the generated ensembles
are fully consistent with available experimental data.

Presented applications of the proposed methods indicate
the potential of this work in obtaining valuable informa-
tion on the interplay between protein flexibility and func-
tion. By characterizing fluctuations around a protein struc-
ture at an atomistic level of detail, the presented work can
help design targeted wet-lab experiments and simulations
to further improve our understanding of the physical-
chemical principles governing biological function.

This article is organized as follows. We first provide
more context for the loop modeling problem through a brief
review of related work in the “Current Methods for Model-
ing Missing Loops” section below. The proposed methods
are described in Materials and Methods. In Results we
analyze ensembles generated by FEM for loops in chymo-
trypsin inhibitor 2 (CI2), the variable surface antigen
(VIsE), and a-lactalbumin («a-Lac) (loops of length 12, 20,
and 26 residues, respectively). We show that there is good
agreement between thermodynamic quantities measured
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over each ensemble and corresponding data from experi-
ment and simulation. In Results we also validate the
proposed PEM by analyzing protein ensembles generated
for ubiquitin and protein G. We show that thermodynamic
quantities measured over each ensemble correlate remark-
ably well with Nuclear Magnetic Resonance (NMR) data
such as order parameters, residual dipolar couplings, and
three-bond scalar couplings. We conclude with a summary
and discussion of future work.

Current Methods for Modeling Missing Loops

FEM explores the equilibrium mobility of a missing
protein fragment by dealing with the core problem of
fitting a generated fragment conformation with a given
protein structure. Driven by applications in X-ray crystal-
lography, homology modeling, and ab initio structure
prediction, existing work'*2°~34 focuses on fitting a gener-
ated loop conformation to model an unknown loop.

Database methods?1:2%29:30 gearch for candidate loops
that satisfy constraints on length and geometry in homolo-
gous proteins available in structural databases such as the
Protein Data Bank (PDB).3® Recently, the limited loop
diversity in the PDB is addressed through a divide and
conquer approach?® or by constructing missing loops from
short protein fragments sampled from structural librar-
ies.?* Database methods can model loops of up to 15
residues long.?°

Ab initio methods either sample from a discrete set of
conformational parameters or adapt efficient robotics-
inspired sampling algorithms to model loops of arbitrary
length. Loop conformations can first be sampled from a
discretized solution space through an exploration that is
biased toward more populated regions of the (¢, ) map?’
and then refined through molecular dynamics simula-
tions,?° Monte Carlo searches with simulated annealing,?®
genetic algorithms,?® dynamic programming,?? bond scal-
ing with relaxation,?* or multi-copy searches.?® Robotics-
inspired ab initio methods employ a probabilistic sampling
framework.?® Loop conformations are first sampled ignor-
ing the constraints and later enforcing them through
gradient descent,®” or the satisfaction of constraints is
integrated in the sampling process.® In the latter case, a
loop conformation that satisfies the constraints on its
termini is found by solving an inverse kinematics (IK)3°
problem.

Methods that solve an IK problem to model missing
loops exploit the fact that steering a terminal residue of
the loop so that it assumes the pose of the corresponding
fixed anchor is very similar to controlling motions of a
robot arm so that the robot hand/gripper assumes a
specified target position and orientation. By modeling the
polypeptide chain of a missing loop as an open kinematic
chain,'® the problem of attaching the terminal residues of
a loop to their corresponding fixed anchors can be posed as
an IK problem: solve for the degrees of freedom (DOFs) of
the kinematic chain so that a terminal anchor of the loop
assumes its target pose.

Robotics-inspired techniques®®“° that employ exact IK
solvers to enumerate all solutions'®*!~** can do so on
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subchains of no more than 6 DOFs. More recently, this
limitation has been pushed to 9 DOFs.*® Currently, only
optimization-based IK solvers*®*” can deal with an arbi-
trary number of DOFs. Two such methods, random tweak*®
and cyclic coordinate descent,*” iteratively solve a system
of equations until the constraints on the loop termini are
satisfied. Due to a linear time complexity in the number of
DOFs, numerical stability, and the ability to allow exter-
nal constraints on the DOFs with predictable behavior,
cyclic coordinate descent has become the method of choice
in modeling missing loops of arbitrary length.3~33

MATERIALS AND METHODS

We first provide in section “Overview of Proposed Meth-
ods” a brief overview of the main ingredients of FEM and
PEM. These methods are detailed in sections “A Method
for Addressing the Equilibrium Mobility of a Missing
Fragment” and “From Local to Global: A Method for
Combining Local Fluctuations to Explore Protein Equilib-
rium Ensembles,” respectively. An analysis of their robust-
ness is presented in section “Measuring Robustness to
Different Approximations.” Finally, useful implementa-
tion details are provided in section “Implementation De-
tails.”

Overview of Proposed Methods

Since the proposed FEM is generally applicable to any
protein fragment and not just a loop, we describe it
hereafter in terms of generating an ensemble of physical
conformations for a protein fragment. Given an incomplete
protein structure and the amino acid sequence of the
missing fragment, FEM generates an ensemble of physical
fragment conformations that fit with the given protein
structure through essentially a three-step multi-scale ap-
proach:

(1) Backbone Geometric Exploration: The conformational
space available to the backbone of a missing fragment
is explored to generate fragment conformations that fit
with a given protein structure without introducing
steric clashes (details are found below). The obtained
conformations are passed on to step (2).

(2) Side-chain Exploration for a Fixed Backbone: The
configurational space available to the side chains of a
fragment is explored to add all-atom detail to each
fitted fragment conformation without introducing colli-
sions (details are found below). The obtained conforma-
tions are passed on to step (3) for energetic refinement.

(3) All-atom Energy Refinement: The conformations ob-
tained are subjected to an extensive energy minimiza-
tion that seeks stabilizing interactions between atoms
of the fitted fragment and the rest of the protein
(details are found below). Each fragment conformation
is retained in the ensemble if the corresponding com-
pleted protein conformation has energy lower than a
given cutoff value.

Steps (1) through (3) of FEM allow us to efficiently
generate a large ensemble of fragment conformations
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whose corresponding completed protein conformations are
physically relevant. A statistical mechanics formulation is
employed to weight each generated conformation accord-
ing to its Boltzmann probability. Such statistical weight-
ing, detailed in section “Obtaining an Ensemble of Physi-
cal Fragment Conformations,” leads to the definition of a
statistical ensemble which allows us to measure thermody-
namic quantities as ensemble averages for direct valida-
tion with data from experiment and simulation studies.

Additionally, we extend the proposed FEM into PEM,
which allows us to study the flexibility of an entire protein.
PEM, detailed in section “From Local to Global: A Method
for Combining Local Fluctuations to Explore Protein Equi-
librium Ensembles,” consists of three steps:

(1) A window is slided over a protein sequence to define
consecutive overlapping fragments.

(2) FEM is applied to obtain an ensemble of low-energy
conformations for each fragment.

(3) Ensembles of consecutive overlapping fragments are
combined to define a statistical ensemble of physically
relevant conformations for the entire protein. Protein
fluctuations measured over this ensemble are tested
against available experimental data.

We now describe both methods in detail.

A Method for Addressing the Equilibrium Mobility
of a Missing Fragment

FEM generates and fits fragment conformations to
obtain an ensemble that represents the equilibrium confor-
mational diversity of a missing fragment. A generated
fragment conformation is fitted with a given protein
structure by solving an inverse kinematics®® problem. The
formulation of this problem requires that we first define a
missing fragment.

Let the residues of a protein from the N- to C- terminus
be numbered 1 to n. We say that a fragment [n4, n,] of the
protein is missing if atomic coordinates are available only
for residues from I to n, and residues from n, to n. We
define the missing fragment [n,, n,] as the polypeptide
chain consisting of residues from n, to n,, including n, and
ny. Finding a conformation for the missing fragment
involves generating coordinates for all atoms of its polypep-
tide chain. Doing so in a way that fits the fragment with
the given protein structure requires that the coordinates of
residues n; and ny in the fragment conformation be as
those of residues n,; and n, in the given protein structure.
In this sense, residues n; and n, are “duplicated”: those in
the given protein structure are fixed and so referred to as
stationary or fixed anchors; those in the fragment move as
one tries to find new coordinates for the fragment’s atoms
and are referred to as mobile anchors.

Modeling an unknown fragment involves finding coordi-
nates for its residues so that its mobile anchors attach to
the stationary anchors in the given protein structure.
Attaching a mobile anchor to its stationary counterpart
means translating the mobile anchor so that one of its
backbone atoms assumes its target position in the station-
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Fig. 1. a: The mobile anchors in two different polypeptide chains for

the CI2 VAL53-ASP64 loop fragment, drawn in grey, are not attached to
the stationary anchors drawn in black. b: Mobile anchor n; is attached to
its corresponding stationary anchor through rigid body transformations. c:
Rotations of the dihedral bonds of the fragment steer the other mobile
anchor n, towards its target pose in the stationary anchor.

ary anchor, and orienting the anchor so that all its N, C_,
and C backbone atoms properly align with their counter-
parts in the stationary anchor residue. A mobile anchor is
said to have reached its target pose when it assumes its
target position and orientation in space.

The problem of modeling an unknown fragment typi-
cally consists of two steps: (1) obtain initial coordinates for
the atoms of the polypeptide chain of the fragment; and (2)
modify the fragment conformation so the mobile anchors
finally assume their target poses in the stationary an-
chors.

The first step can be addressed in different ways. In this
work, a biologically relevant polypeptide chain for an
unknown fragment such as a missing loop is initially
obtained from a sequence-homologous protein structure
selected from the PDB.?® Any missing atom information is
completed through the PSFGEN*® package (structures
reported in the PDB commonly miss hydrogen or side-
chain atoms). A large set of different conformations of the
polypeptide chain of the fragment are then obtained by
modifying the chain’s dihedral angles, as described in Step
(1) below. Conformations obtained in this way do not
generally fit with the given protein structure, as illus-
trated in Figure 1(a) for a loop, since the mobile anchors n,
and n, may not be attached to their stationary counter-
parts. Indeed, fragment conformations depend in a non-
trivial way on the amino acid sequence of the fragment and
the environment provided by the rest of the protein.

The second step is the core of the problem. One mobile
anchor of the fragment, such as n, in Figure 1(b), is easily
attached to its stationary counterpart through rigid body
transformations, a translation and two rotations to align
the backbone atoms of the mobile anchor to their station-
ary counterparts in the fixed anchor. As illustrated in
Figure 1(c), the resulting fragment conformation needs to
be modified so as to attach the remaining mobile anchor n,,
to its stationary anchor. This problem is often referred to
as “closing the fragment” or “closing the loop” in the
context of loop modeling. It is solved in the Backbone
Geometric Exploration step, which takes as inputs the
given protein structure and the polypeptide chain of the
missing fragment already attached to one fixed anchor and
outputs fragment conformations that fit with the given
protein structure.

PROTEINS: Structure, Function, and Bioinformatics

Step (1): Backbone geometric exploration

We start by stripping away all but backbone atoms off
the polypeptide chain obtained for the missing fragment.
Working with a coarse resolution allows us to make direct
use of analogies between proteins and robots'®1° that are
often exploited to adapt powerful robotic space exploration
methods to the study of protein systems.*~'7 In keeping
with these analogies, we model the backbone chain of a
fragment as an open kinematic chain, where a protein’s
atoms are equivalent to robotic links and rotatable bonds
connecting atoms to joints connecting links. We employ the
idealized geometry model, where the bond lengths and
bond angles are kept fixed in their equilibrium values. The
only DOF's employed at this stage are the ¢, ¢ backbone
dihedral angles starting at residue n; + 1 and ending at
residue ny, — 1.

Many different initial conformations for the backbone of
the fragment are generated by sampling values for these
DOFs uniformly at random in [—,w]. Considering only
the backbone reduces the dimensionality of the sampled
conformational space and allows for an efficient explora-
tion. Each sampled initial conformation is closed through
the cyclic coordinate descent (CCD) algorithm*? already
employed in loop modeling.?~®® Qur implementation of
CCD follows closely that in Canutescu and Dunbrack.®!

The CCD algorithm closes each generated fragment
conformation by solving the following IK problem: Given
the positions of the backbone atoms of the stationary
anchor n,, assign values to the DOFs of the kinematic
chain modeling the fragment so that the backbone atoms
of the mobile anchor n, assume their target positions in
the stationary anchor. CCD recasts this problem as a
minimization problem. Given one particular DOF (back-
bone dihedral angle) of the kinematic chain, the algorithm
analytically finds the value yielding the minimum dis-
tance between residue n, of the fragment and its target
pose in the given protein structure. CCD proceeds in
cycles. At each cycle it iterates over all DOF's according to a
prespecified order, updating each DOF one at a time, until
the resulting pose of the mobile anchor is within a cutoff
distance e from the target pose. Details can be found in
Canutescu and Dunbrack.®*

Each conformation closed with CCD depends on the
initial fragment conformation sampled. The dependence of
CCD on an initial conformation is a useful feature that we
exploit to generate many different fragment conformations
that complete a given protein structure without introduc-
ing steric clashes (see the Supplementary Material for
pseudocode-level details of the Backbone Geometric Explo-
ration). The completed structure is deemed collision-free if
its energy is below a maximum energy value E,, ... (Param-
eters are introduced to keep the description of the methods
general. Values to these parameters are empirically deter-
mined and listed in section Implementation Details, be-
low).

We also investigate the potential dependence of CCD on
the order the DOFs are updated in each CCD cycle. We
explore two CCD implementations corresponding to two
different orders: one where the DOFs are sequentially
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ordered from the N- to the C- terminus (as employed in
loop modeling®'—33) and another where the DOFs are
randomly permuted in each CCD cycle. A comparison of
two sets of closed fragment conformations, each generated
with a particular CCD implementation, allows us to
conclude that the order in which CCD modifies the DOFs
does not significantly affect the properties of the final
ensemble of conformations generated (see Results for the
analysis and Supplementary Material for details).

Step (2): Side-chain exploration for a fixed backbone

The Backbone Geometric Exploration step generates
many different backbone-resolution conformations for a
missing fragment. Since it only modifies the backbone of a
fragment, the side chains of the polypeptide chain of the
fragment are not in their optimal configurations in each
generated backbone conformation. Therefore, values for
the dihedral angles of these side chains are sampled
uniformly at random in [—,m] to explore multiple side-
chain configurations. For each backbone conformation, the
side-chain dihedral space is explored until an all-atom
fragment conformation is found whose corresponding com-
pleted protein conformation C is collision-free.

Step (3): Energetic refinement of a modeled
fragment

To render interactions between atoms of a fragment
conformation and the rest of the protein favorable, each
completed protein conformation C is subjected to extensive
energy minimization. Energy is measured by physical
force fields such as CHARMM™*® or AMBER.?° We design
the energetic refinement of C to attribute unfavorable
interactions mainly to a fragment’s atoms, since the
conformation corresponding to the given protein structure
is considered feasible.

To achieve this goal, we interleave two strategies that
mainly explore fluctuations of a closed fragment to mini-
mize the energy of C while maintaining the given protein
structure. The first, closure-constrained backbone refine-
ment, inspired by Lotan et al.’? and van den Bedem et
al.,?® modifies the backbone dihedrals of a fragment during
minimization. The second, closure-constrained conjugate
gradient descent relaxes the idealized geometry model and
allows all atoms’ coordinates to change as dictated by the
force field for crucial interactions of the fragment with the
rest of the protein. While exploring small fluctuations of
the given protein structure, this strategy attributes most
of the mobility to the fragment’s atoms.

Since both minimization strategies are local searches
that may converge to local minima, they serve as relax-
ation steps for each other. If after N steps of the closure-
constrained conjugate gradient descent, the improvement
in energy is less than a cutoff value m, this indicates failure
to escape from a local minimum of the energy landscape.
Therefore, the minimization switches to the closure-
constrained backbone refinement which can further mini-
mize energy. The two strategies interleave with each other
for a maximum of N,,, minimization steps, testing after

max

every N steps whether to terminate the minimization (if
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the improvement in energy is less than a convergence
value ).

Closure-constrained backbone refinement. Since the
Backbone Geometric Exploration uses m = 2(n, — n; — 1)
dihedral DOF's to satisfy three positional and three orien-
tational constraints of the mobile anchor n,, the subspace
defined by the remaining m — 6 redundant DOFs, the
self-motion manifold,?! is explored as in Lotan et al.?? and
van den Bedem et al.?® to minimize the energy of a
completed protein conformation while keeping the frag-
ment anchored. The self-motion manifold is explored
through a steepest descent which at each step updates the
backbone dihedral angles of the fragment so as to mini-
mize the energy of the completed conformation C (details
provided in the Supplementary Material).

Closure-constrained conjugate gradient descent. A conju-
gate gradient descent is performed on the energy land-
scape defined by the pseudo-energy function E = Ej,.. fea
+ Somi ¢ pagnenKs, | 5(C) — #(Cpu) |4 where % indi-
cates the three-dimensional position of atom i during
minimization and C,,,, refers to the conformation corre-
sponding to the rest of the protein structure. Minimizing
the second term as well as the energy (measured in the
first term) ensures that more mobility is asked of the
fragment’s atoms for stable interactions with the given
protein structure. The extent to which an atom i outside
the fragment moves away from its position in C, ., depends
on the strength of interactions between atoms of the
fragment and C,.,, is modeled through the damping con-
stant K. This constant is empirically determined for each
protein in this study.

Obtaining an ensemble of physical fragment
conformations

Steps (1) through (3) of FEM yield many all-atom closed
fragment conformations of low energy. Closed fragment
conformations whose corresponding completed protein con-
formations are of energy no higher than a cutoff value of 20
kcal/mol from a reference energy (when a reference energy
is not available, the minimum-energy completed conforma-
tion is used instead) are deemed physically relevant and
are added to an ensemble (), ,, of physical fragment
conformations. We point out that fragment conformations
can be generated independently from one another and so
their computation is easily distributed. The issue of en-
semble convergence, that is, how many fragment conforma-
tions need to be generated to obtain a reliable equilibrium
ensemble, is discussed in detail in the Supplementary
Material.

Probability of a local fluctuation. A statistical mechan-
ics formulation is employed to weight each conformation

C € Oy, 0,) With energy E(C) according to its Boltzmann
E(C)=Epy

probability P(C) = P, ®r  where P, and E, , are the
probability and the energy of C,,;, T, is the room tempera-
ture (300 K), and R is the gas constant. The reference
probability P, can be arbitrarily set equal to 1 as the
calculation of average quantities is independent of the
actual value of P, . A cutoff value of 20 kcal/mol for E(C) —
E, rallows to discard generated conformations that do not
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contribute to thermodynamic averages measured over the
ensemble of completed conformations (conformations where
this cutoff is higher than 20 kcal/mol have an extremely
low Boltzmann probability (<10~ '®) at room temperature
Ty). The Boltzmann average (X)), ., of a measurable
quantity X; at a given position i (such as, for instance, the
value of the root-mean-square deviation—-RMSD-for a
given residue) is computed over all conformations {C} of
the ensemble (), ,,; associated with fragment [n,, n,] as:

_E(C)=Erf
ECeuLm,MJe RTo X;(C)
<Xi>[n1,nz] = VA

E(C)—Erer
where Z = 3ccq,. € Flv isthe partition function associ-

ated with the ensemble Q,,, ..

From Local to Global: A Method for Combining
Local Fluctuations to Explore Protein Equilibrium
Ensembles

Since FEM, described in the above section, generates an
ensemble of physical conformations for any protein frag-
ment, we employ it as a component in PEM to capture
equilibrium fluctuations over an entire protein. We de-
scribe here the steps of this method in detail.

Step (1): Defining consecutive overlapping
fragments

Fragments are first defined by sliding a window of [
residues along the polypeptide chain of the protein, with
significant overlap of 8/ = [ residues between two consecu-
tive fragments. By using a significant overlap 8/ between
two consecutive windows (3] = [) it is possible to character-
ize the flexibility of an entire protein self-consistently. Let
us assume an initial window size of [, residues is selected.
If significant discrepancies arise on the fluctuations at a
given position as obtained from different overlapping
windows (the comparison of the fluctuations at a given
position as obtained from different windows is performed
after discarding the first few and last residues in each
windows, as they are clearly constrained to be fixed in our
algorithm), then it means that the finite size of the window
significantly distorts the fluctuations of the fragment of
interest; therefore, the size of the sliding window must be
increased by a finite number of residues dI to become [ =
lo + dI. Window size and overlap between neighboring
windows are incremented by five residues until full consis-
tency is reached in the fluctuations obtained from the
analysis of overlapping windows enclosing each residue.
The final window size and overlap are chosen so that no
artificial constraints are introduced by the finite size of the
window and so that fluctuations of neighboring overlap-
ping fragments can be combined together to characterize
the flexibility of the whole protein [see Fig. 3(a2,b2)].

Steps (2, 3): Obtaining and combining fragment
ensembles

An ensemble of relevant conformations for each of the
defined fragments is generated as described in section
“Obtaining an ensemble of physical fragment conforma-
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tions,” above. Obtained fragment ensembles are combined
to provide information on the flexibility of the whole
protein. Any measurable quantity X;, for a given residue i,
is obtained as a weighted average over the equilibrium
ensembles of fragments overlapping in residue i. For
example, if a window of size 30 and overlap of 25 is used,
residue 19 is contained in fragments [1, 30], [5, 35], [10,
40], and [15, 45]. Therefore, any averaged quantity for this
residue can be obtained independently over these four
fragment ensembles as

<X19>[1,3O]7<X19>[5,35],<X19>[10,4O], and <X19>[15,45]~

When fragment length and extent of overlap are large
enough to cover the size of a typical fluctuation for the
protein under study, averages computed over different
overlapping ensembles yield self-consistent results [as it is
in our case, see Fig. 3(a2, b2)]. The average value (X;) is
then defined by averaging over all the different fragment
ensembles embracing residue i,{[n,n5l| i € [n,n,]}, as
follows:

<Xl> _ E <Xi>[n1,n2]ul)w(i,[nlan2])

{[n1,n2]|i€[n1,n2]}

where N = 3,1 oiiernonW(,[nq,n,5]) is the normaliza-
tion factor. The purpose for the weighting function
w(i,[nq,n5]) is to downplay the finite-size effects introduced
by the finite length of each fragment. Since the terminal
residues of each fragment are attached to the reference
protein structure through the CCD algorithm, the motion
of these and a few neighboring residues is artificially
restricted, and hence their contribution to the total aver-
age needs to be either discarded or strongly reduced. Two
different weighting schemes are used to correct for this
effect: (1) five residues from either end of each fragment
are discarded in the calculation of the ensemble averages,
that is w(i,[n,n,]) = 0 if, min{fi — n4|,i — ny} < 5 and
w(i,[ny,n,]) =1 otherwise; (2) a Gaussian distribution is
used to progressively decrease the contribution of the
residues closer to the fragments ends, that is w(i,[n,n,])

1/AiN2
= e’E(F) , where Ai = i — (n; + ny)/2| measures the
distance of residue ¢ €[nq,ny] from the central residue
(ny + ny)/2 in fragment [n,,n,]). The parameter o is set to
/2.

Measuring Robustness to Different Approximations

The weighting scheme is one approximation made by
PEM. Here is a comprehensive list of all approximations
we identify to measure their effects on the equilibrium
mobility captured:

1. The order in which the DOF's are progressively updated
in the CCD routine. The associated error is estimated
by computing differences between averages obtained
from two independently generated ensembles: one where
the DOF's are ordered sequentially from the N- to the C-
terminus, the other by selecting the DOF's in random
order (discussed in detail in the Supplementary Mate-
rial).
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2. The inaccuracy of the energy force field employed. The
associated error is estimated by repeating the ensemble
generation with two different force fields, CHARMM?*®,
and AMBER®®, and measuring the differences between
corresponding thermodynamic averages measured over
each ensemble.

3. The finite-size effects introduced by the definition of
fragments and the nature of the CCD algorithm. Differ-
ences between averages obtained from the two different
weighting schemes described above provide an estimate
for the associated error.

4. The interleaving procedure used in the minimization of
obtained conformations. The associated error is esti-
mated by computing differences between averages ob-
tained from two generated ensembles: one employing
the interleaving minimization and the other employing
the closure-constrained conjugate gradient descent only.

The errors associated with these approximations are
incorporated in the error bars for ensemble averages of
NMR data such as order parameters, residual dipolar
couplings, and three-bond scalar couplings. The small
error bars (as shown in Figs. 3 and 5) allow us to conclude
these approximations do not significantly affect the equilib-
rium mobility captured for the proteins employed in this
work. In particular, the small size of the error bars
indicates that the developed PEM is robust against these
approximations. Thus, the results obtained in different
fragments can be combined to produce a global picture of
fluctuations over an entire protein.

Implementation Details
Backbone geometric exploration

In our implementation of the CCD algorithm, the maxi-
mum number n,,,. of CCD cycles is 500. The closure
criterion is € = 0.001 A. The E,,.. employed is empirically
valued at 5000 kcal/mol.

All-atom energy refinement

The maximum number of minimization steps, the fre-
quency of testing whether the convergence criterion has
been met, and the actual definition of convergence are all
empirically determined quantities that work well for all
the proteins used in this work: N,,, .. = 1000, N = 300, n =
2 kcal/mol, and p. = 20 kcal/mol. Due to the complexity of
approximating the self-motion manifold and our numeri-
cal computation of the CHARMM gradient, the steepest
descent employed in the closure-constrained backbone
refinement to explore motions on the self-motion manifold
is limited to 50 steps. In the closure-constrained conjugate
gradient descent, in CI2, a-Lac, ubiquitin, and protein G,
where interactions between atoms of a fragment and of
C,.; are strong, K, = 10. In other systems such as
VIsE, K; = 100.

Conjugate gradient descent

This algorithm is implemented through the OPTCG
procedure in the OPT++ nonlinear optimization pack-
age.?® The pseudo-energy function employed in the closure-
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constrained conjugate gradient descent and the CHARMM
energy function employed in the equilibration of PDB
structures are objective nonlinear functions whose first
derivatives can be computed analytically. Therefore, they
are modeled as NLF1°2 objects in the OPTCG procedure.

Window size and overlap

The window size and overlap employed on applications
of PEM to proteins in this work are 30 and 25 residues,
respectively. This window size and overlap suffice to
obtain full consistency in fluctuations obtained from the
analysis of different overlapping windows enclosing each
residue [shown in Fig. 3(a2, b2)].

Employed packages

Missing atoms of a polypeptide chain are filled in with
the PSFGEN“® package. Given a file that specifies types
and charges of atoms in amino acids and a PDB file with
the coordinates of the existing atoms of the polypeptide
chain, PSFGEN creates a new PDB file where coordinates
of the missing atoms are guessed and incorporated in the
respective amino acids of the polypeptide chain. The
OPT+ +°2 package is employed for the efficient implemen-
tation of the conjugate gradient descent algorithm. The
algorithms implemented in OPT++ provide robust and
efficient solutions to nonlinear optimization problems that
require expensive function evaluations.

Hardware and Software Setup

The implementation was carried out in ANSI C/C++
using the Intel® 8.0 compilers and libraries. The experi-
ments were run on the Rice Terascale Cluster, a 1Tera-
FLOP Linux cluster based on Intel® Itanium® 2 proces-
sors. Each node has two 64-bit processors running at 900
MHz with 1.5 MB of L2 data cache and 2 GB memory per
processor. On such architecture, it takes on average 67
min to obtain 1,000 conformations for a fragment of 30
residues.

RESULTS

We present the following results: we first demonstrate
how to incorporate loop mobility in the loop modeling
problem by applying FEM to the generation of ensembles
of relevant loop conformations. Then we present the
application of PEM to proteins where equilibrium mobility
is due to local fluctuations and validate the obtained
fluctuations with available experimental data.

Generating Equilibrium Ensembles of Missing
Loops

Due to their high mobility and low structural conserva-
tion, modeling long loops in partially resolved protein
structures remains a challenge for structural biology.** To
first test the accuracy of FEM, we reproduce the native
loops in stable proteins, such as CI2, PDB code 1COA,®
and o-Lac, PDB code 1HML,?* respectively (the PDB
structures are equilibrated through an energy minimiza-
tion detailed in the Supplementary Material). We consider
the 12-residue loop between VAL53 and ASP64 in CI2 and
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native structure for CI2 and a-Lac and lowest energy structure for VISE). Obtained conformations are rendered
with the VMD 1.8.3 software.?* a2, b2, c2: Energy landscapes associated with generated ensembles are
shown by plotting the energetic difference versus the RMSD of each conformation relative to a reference
structure. Energy landscapes are shown only for conformations with energy less than 10 RT units away from
the reference structure (each ensemble is reduced to 2499, 2022, and 2755 conformations). An average
energy profile is computed by distributing conformations in bins every 0.001 A away from the reference
structure and measuring the energy of each bin as an average over its conformations. Average energy profiles
obtained for CI2 and «-Lac are very steep compared to the flat average energy profile of VISE. a3, b3, ¢3:
Obtained fluctuations versus B factor-derived fluctuations for the CI2 loop, fluctuations in Vendruscolo et al.>”

for the a-Lac loop, and disorder scores for the VISE loop.

the 26-residue loop between LYS51 and THR76 in a-Lac.
We use FEM to generate an ensemble of conformations for
the considered loop in each protein.

Figure 2(al) shows the ensemble of generated conforma-
tions for the VAL53-ASP64 loop in CI2. Qualitatively, the
obtained loop conformations are clustered around the
native loop as found in the equilibrated crystal structure of
CI2. We quantify the equilibrium mobility of the loop by
plotting in Figure 2(a2) the energy profile of the generated
ensemble versus the RMSD of the generated loop conforma-
tions from the equilibrated native loop conformation. The
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obtained energy profile is clearly funnel-like, in full agree-
ment with the known role and stability of this loop for the
activity of CI2.%5-56

We validate residue fluctuations obtained on the gener-
ated ensemble against B factors®® available for CI2. Fluc-
tuations of each residue are obtained by averaging through
the Boltzmann statistics the residue RMSD measured in
each loop conformation relative to the native loop conforma-
tion as found in the equilibrated crystal structure of CI2.
Since fluctuations derived from B factors are different in
magnitude from fluctuations obtained over the ensemble
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generated in this work, we normalize both sets of fluctua-
tions. As shown in Figure 2(a3), the obtained fluctuations
are consistent with those derived from the available B
factors; the data agree with a Pearson correlation of 96%
and g-factor of 28%. This agreement indicates that fluctua-
tions of this loop are mainly local and can be obtained in
isolation, even when immobilizing the rest of the protein
structure.

The generated ensemble for a-Lac is shown in Figure
2(b1). As expected, the obtained loop conformations are
clustered around the native loop of the equilibrated crystal
structure. Figure 2(b2) reveals a funneled energy land-
scape with a global minimum around the native conforma-
tion found in the equilibrated crystal structure of «-Lac,
similarly to the energy landscape associated with the
ensemble of loop conformations generated for CI2.

The fluctuations observed over the generated ensemble
for a-Lac are fully consistent with what is obtained from a
Monte Carlo simulation guided to agree with hydrogen
exchange protection factors.?” In Figure 2(a3) we compare
residue fluctuations measured over the ensemble gener-
ated in this work with the fluctuations reported in Vendr-
uscolo et al.®” (data courtesy of M. Vendruscolo). Due to
their different magnitudes, fluctuations are normalized in
the comparison. A Pearson correlation of 86% and a
q-factor of 24% are obtained. Interestingly, the Pearson
correlation of the fluctuations obtained from our ensemble
with fluctuations derived from B factor data for a-Lac®* is
63% (data not shown), comparable to the 61% Pearson
correlation obtained when comparing fluctuations derived
from the B factor data to fluctuations reported in Vendrus-
colo et al.?”

An additional application of FEM to characterize the
mobility of an internal loop at equilibrium is provided in
section “Application of FEM to Model Conformational
Ensembles of Internal Loops” in the Supplementary Mate-
rial.

The examples described above provide a good testbed for
the accuracy of FEM in producing ensembles of native-like
loop conformations with associated steep funnel-like en-
ergy landscapes for strongly stable proteins. The most
interesting application of FEM, however, is the generation
of a large ensemble of loop conformations for proteins with
highly flexible loops. In this context, we present here the
results obtained when applying this method to generate an
ensemble of conformations for the LYS93-GLY112 loop in
the crystal structure of VISE, PDB code 1L8W.?® This
20-residue loop is missing in the crystal structure due to
its high flexibility.®® Our analysis reveals that there are
many geometrically variable conformations relevant for
this loop at room temperature. The high conformational
heterogeneity of the closed loop conformations can be seen
in Figure 2(c1). The heterogeneity of these loop conforma-
tions is quantified in Figure 2(c2), where the energy
landscape associated with the generated ensemble is plot-
ted as a function of the RMSD from the most stable
complete protein conformation obtained through FEM.
Figure 2(c2) shows a plateau-like energy landscape, which
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is very different from the funnel-like landscapes obtained
for the loops in CI2 and «-Lac.

To validate the ensemble generated for the missing loop
of VISE, we compare the magnitudes of the structural
fluctuations per residue (measured relative to the lowest
energy structure obtained) with disorder scores computed
from the amino acid sequence of VISE through the PONDR
package.®?®© We should note that the disorder scores
predicted by the PONDR package®®:%° for the loop are all
well above 0.5 (the boundary between disorder and order),
consistent with the fact that the LYS93-GLY112 loop in
VIsE is highly disordered. Since the comparison between
fluctuations and disorder scores is between two different
quantities of different magnitudes, we normalize both
quantities. As shown in Figure 2(c3), the agreement
between the residue fluctuations and the PONDR-pre-
dicted disorder scores is with a Pearson correlation of 79%
and g-factor of 31%. We should note that this comparison
is qualitative since the residue fluctuations and the disor-
der scores represent different quantities. Interestingly,
both quantities, as shown in Figure 2(c3), indicate that
ILE98 is the most mobile and disordered residue in the
missing loop of VISE.

Capturing Equilibrium Fluctuations in Ubiquitin
and Protein G

We present here results of the application of PEM to
characterize the equilibrium ensemble of two proteins:
streptococcal protein G°' (PDB code 1IGD) and human
ubiquitin®® (PDB code 1UBQ). Because of their relatively
small sizes (61 residues in protein G and 76 residues in
ubiquitin) and their biological importance, these proteins
represent an ideal application for PEM. Protein G, a cell
surface streptococcal protein, binds immunoglobulin with
high affinity and potentially enhances microbial virulence.
It is important in labeling and purification of antibodies
and the study of protein-protein interactions.®® Ubiquitin
regulates multiple intracellular pathways in eukaryotic
cells®* and is involved in labeling proteins for proteolysis.
Its involvement in protein degradation makes it important
for anticancer drug discovery. The availability of NMR
data for protein G757 and ubiquitin®~"° makes it pos-
sible for us to quantitatively validate the ensembles char-
acterized through PEM.

On both protein G and ubiquitin, windows of length 30
residues with 25-residue overlap suffice to reveal consis-
tent fluctuations measured over ensembles of neighboring
overlapping fragments. Figures 3(al,b1) qualitatively show
the structural variability of the generated structures for
protein G and ubiquitin. The consistency of fluctuations
measured over ensembles of neighboring overlapping frag-
ments can be seen in Figure 3(a2,b2) where we plot the
average RMSD of each residue measured over ensembles
of the fragments that encompass that residue.

We validate the ensembles generated for each protein by
comparing thermodynamic quantities measured over each
ensemble with NMR data that probe the dynamics of each
protein. We compare to order parameters (S?) and residual
dipolar couplings (RDCs) for both protein G%~%7 and
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(a1) and (b1) Obtained native ensembles for protein G and ubiquitin, respectively. (a2) and (b2)

Average RMSD per residue obtained by combining the local fluctuations of all the different regions. Results for
different regions are shown in different colors, from red to blue as a window of 30 residues slides from the N- to
the C- terminus of the protein. The black lines mark the highest and lowest RMSD values recorded from all the
different windows embracing each given residue, and provide an estimate for the uncertainty of the procedure.
Two consecutive 30-residues windows have an overlap of 25 residues. The results corresponding to the first
and last 5 residues of each fragment are discarded as they are biased by the finite size of the window.

ubiquitin.®®~"° For ubiquitin, three-bond scalar couplings
(3J)%° are also used in our comparison.

Order parameters are measured over the conforma-
tional ensembles generated with PEM as outlined in Best
and Vendruscolo.”* The magnitudes of the RDCs mea-
sured over each ensemble are normalized with respect to
those for an amide NH in the same orientation by scaling
according to bond lengths and gyromagnetic ratios.”?
Three-bond scalar couplings are measured over the popula-
tion of rotamers as detailed in Chou et al.®®

Order parameters provide information on the reorienta-
tional averaging of the NH bond. Residual dipolar cou-
plings quantify the fluctuations on the direction of differ-
ent bond vectors. The three-bond scalar couplings measure
the side-chain population of rotameric states. The diffi-
culty of classic MD simulations in reproducing these data
is related to the timescales captured by these parameters:
Order parameters extracted from "N relaxation experi-
ments capture from the picosecond to the nanosecond
timescale.! RDCs report on averages over longer time-
scales of up to millisecond range and so can reveal slower
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protein motions over a very broad timescale.! Characteriz-
ing side-chain order parameters and three-bond scalar
couplings can be highly nontrivial since the time scale for
the slowest side-chain rotations may be in the millisecond
range.”® In particular, scalar couplings report on rota-
meric averaging on timescales from few hundredths of a
second to picoseconds.”

Validation of protein G fluctuations with NMR
measurements

The experimentally available S? data for protein G are
derived from '°N NMR relaxation experiments®® and
capture the fast dynamics of this protein in the picosecond
to nanosecond timescale. For brevity, we will refer to them
as fast S2. Figure 4(a) shows the agreement between the
ensemble measured backbone (amide) S? and the fast S2
data of protein G. The Pearson correlation between the two
quantities is 73%. We should note that no scaling has been
applied to the measured S? order parameters to match to
the fast S? data (no scaling is applied in the comparisons
with the experimental data for protein G and ubiquitin).
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Fig. 4. Comparison of NMR data with thermodynamics data measured over the generated ensemble for
protein G. a: Comparison of S? backbone (amide) order parameters measured over our ensemble (S2,,.) with
fast (S) data obtained from NMR relaxation measurements (S2,,,). b: Comparison of $* backbone (amide)
order parameters measured over our ensemble (S2,,.) with slow (S%,,) data obtained from NMR relaxation
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c: Comparison of residual dipolar coupling (RDC) parameters as obtained in our
cair ON the y-axis), and from NMR relaxation measurements (RDC,,,,, on the x-axis). Results

for different bond types are shown in different colors. (a—c) The dashed black line indicates the linear least
squares regression fit on the two sets of data, while the continuous line represents the identity line.

The agreement is better on a-helix and the B,- and B;-helix
loops (residues 22—48), indicating that most of the mobility
captured by our ensemble for these residues happens on
the picosecond to nanosecond timescale. However, the
agreement drops on the N- and C-terminal chains and on
residues 14—22 due to a higher heterogeneity reported for
these regions from our ensemble. The region between
residues 14-22 incidentally includes the “melting hot
spot””® loop of residues 14—17 and the beginning of the
2-strand, residues 18 —22. The order parameters calculated
over our ensemble for residues 14-17 point to a slower
timescale mobility for this region.

To validate the high heterogeneity in this region, we
compare our ensemble-averaged S? data with order param-
eters for the NH bond derived in Bouvignes et al.®¢ as they
provide information on reorientational averaging of the
NH bond up to the millisecond timescale. For brevity, we
refer to these as slow S? Figure 4(b) shows a better
agreement between the S? data measured over our en-
semble and the slow S? data derived in Bouvignes et al.®¢
as the Pearson correlation improves up to 83%. As Figure
4(b) shows, the agreement between the S? data for the
residues on the N- and C- terminal chains improves,
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indicating that the motions in these residues happen in a
slower timescale. In addition, while the magnitudes of the
calculated S? data for residues 14—22 are higher than
those derived in Bouvignes et al.,’® the two profiles for this
region of the protein are comparable. This further confirms
that the mobility of this important region in protein G
happens in a slower timescale.

To further validate slower timescale fluctuations cap-
tured by our ensemble for protein G, we compare RDCs
measured over our ensemble with five sets of experimental
RDC data used in refining the crystal structure®! to obtain
the NMR structure®” of protein G. In Figure 4(c) we show
that the RDCs measured over our ensemble and those
experimentally measured in bicelle medium®” agree with a
Pearson correlation of 97% and g-factor of 21%. Naturally,
a lower g-factor of 6% is obtained when comparing this
experimental RDC data to the RDC-refined NMR struc-
ture®” itself. Comparison of our ensemble-averaged RDC
data with experimental RDCs measured over the other
four media®’ reveals agreement with Pearson correlation
varying from 94% to 98% and g-factor varying from 18% to
24% (data not shown). A complete comparison of the
RDC-refined NMR structure reported in Ulmer et al.®”
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Fig. 5. Comparison of NMR data with thermodynamics data measured over the generated ensemble for
ubiquitin. a: Comparison of S? order parameters for backbone (amide S°) and side chain (methyl S), as
obtained in our ensemble (S2,,, on the y-axis), and from NMR relaxation measurements (RDC_,,, on the
x-axis). b: Comparison of residual dipolar coupling (RDC) parameters as obtained in our ensemble (RDC_,,,
on the y-axis), and from NMR relaxation measurements (RDC,,,, on the x-axis). Results for different bond
types are shown in different colors. ¢: Comparison of three-bond scalar coupling parameters ®Jy, and ®Jgc,
as obtained in our ensemble (°J,.,., on the y-axis) and as extracted from NMR relaxation experiments (°J,,,,,,

on the x-axis). (a—c) The dashed black line indicates the linear least squares regression fit on the two sets of

data, while the continuous line represents the identity line.

with each of the five experimentally measured RDCs
reveals a g-factor varying from 5% to 7%, with an average
of 6%.

Validation of ubiquitin fluctuations with NMR
measurements

In Figure 5(a) we show the agreement between the
ensemble measured and the experimentally available back-
bone (amide S?) and side-chain (methyl S?) order parame-
ter data.®®7° The side-chain S? order parameters quantify
the contribution of side-chain disorder. They provide indi-
cation on the heterogeneity of the population of different
rotamer states for a given torsion angle: an extreme value
of 8% = 1 indicates no variability, while S = 0 indicates a
uniform distribution over all allowed rotamers. Figure 5(a)
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shows a Pearson correlation of 96% and indicates that low
S2 order parameters are found not only for residues in the
carboxy-terminal region of ubiquitin, residues from 72-76,
but also in residues that form the core of this protein.
Fluctuations of each residue can also be seen as residue
RMSDs measured over the generated ensemble in Figure
5(b2).

Figure 5(b) shows the agreement between the ensemble-
averaged RDCs and the experimentally available ones.®
The RDC parameters measured over the generated en-
semble agree with the experimental RDC parameters with
a Pearson correlation of 97% and g-factor of 23%. The only
better agreement with the experimental RDC parameters
comes from the NMR ensemble itself, a Pearson correla-
tion of 99% and qg-factor 14%, which is not a surprise since
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the NMR ensemble reported in Cornilescu et al.?® is
derived from the experimental RDC parameters.©®

Due to the availability of experimental scalar couplings
for ubiquitin,®® we also compare measured ensemble aver-
ages of °J with experimental data.®® Figure 5(c) shows the
agreement between the experimental and the ensemble
measured ’Jyc, and ®Jcc,, which are the three-bond
scalar couplings between the side-chain gamma carbon
and the backbone amide nitrogen and carbonyl carbon,
respectively. The ®J parameters quantify the side-chain
population of rotameric states and are related through the
Karplus equation to the probability of occupation of differ-
ent rotamer states for torsion angles of specific side
chains.®® As outlined in Chou et al.,’® the ensemble of
rotameric states can be used to parameterize the Karplus
equation. Optimal values to the Karplus parameters A, B,
C, 8 can be defined to improve the agreement between
observed and calculated scalar coupling data. Rather than
optimize such parameters, we choose to perform a golden
test and use the Karplus equation empirically parameter-
ized for the X-ray structure of human ubiquitin reported in
Chou et al.®® (PEM generates conformations starting from
the equilibrated X-ray structure of ubiquitin). Comparing
the so measured ensemble averaged scalar coupling data
with the ones available from NMR reveals a Pearson
correlation of 97%, which indicates that the side chains in
the conformations generated by PEM populate the right
rotameric states. Such a correlation is higher than the 84%
and 89% Pearson correlation obtained when comparing
the scalar couplings measured on the ubiquitin crystal
structure®® and NMR ensemble,®® respectively, with experi-
mental scalar coupling data. Such a result indicates that
the ensemble averaging of the side-chain dihedrals im-
proves the agreement with experimental scalar coupling
data.

Significance of Agreement with NMR Data

All results presented here have been obtained by using
two different force fields: CHARMM22*° and AMBER94.°
These force fields have similar functional form but differ-
ent parameterization strategies. It has been recently shown
that MD simulations with these force fields allow to obtain
similar structural and dynamical properties of proteins
(see Price and Brooks”®). The results obtained in this work
are also found to be essentially independent of the choice of
CHARMMZ22 versus AMBER94. The small differences
observed in the results obtained with the two force fields
are incorporated in the error bars in Figure 4(a—c) and
Figure 5(a—c). The effect of other approximations used by
PEM besides the choice of the force field is also measured
as outlined in Materials and Methods and incorporated in
the error bars.

It is worth stressing the importance of the recovery of
RDCs in both ensembles, [shown in Figure 4(c) for protein
G and Figure 5(b) for ubiquitin]. While NMR' and molecu-
lar dynamics? simulations can characterize local backbone
fluctuations in the picosecond-nanosecond timescale,
slower motions in the millisecond—second range, of crucial
interest to many functionally important biological pro-
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cesses,””"® are not well understood. Recovering RDC data

that report on slow timescale motions, up to the millisec-
ond range, is an important result and confirms the validity
of PEM in capturing equilibrium mobility in proteins.

In addition, the correct prediction of NMR data related
to side-chain motion, such as the methyl S order parame-
ters [Fig. 5(a)l, and three-bond scalar couplings ®J [Fig.
5(c)], is a significant result. The NMR ensemble available
for ubiquitin®® correlates with a Pearson correlation of
62% with the experimentally available S? order parame-
ters, significantly lower than the Pearson correlation of
96% obtained with PEM. In addition, it has been previ-
ously reported that a 6 ns MD simulations on ubiquitin
performed in explicit solvent and reported in Lindorff-
Laren et al.”® cannot capture the heterogeneity of the
native state of the protein as given in the experimental S
order parameters®® (the Pearson correlation with the
experimental S? order parameters is 62%). The only other
effort we know of that is successful in recovering the NMR
data for human ubiquitin, presented in Lindorff-Laren et
al.,”® guides replica exchange MD simulations to generate
ubiquitin conformations that correlate well with NOE
derived distances®® and S? order parameters®® and reports
Pearson correlations of no lower than 96% with experimen-
tal S%, RDCs, and scalar couplings.

Finally, the recovery in this work of NMR data related to
side-chain dynamics, scalar couplings and SZ order param-
eters, is an important result since it has been estimated
that the time scale for the slowest side-chain rotations may
be about milliseconds.”® As a consequence, the equilibrium
distribution of side-chain conformers cannot be observed
directly in MD simulations.”® Since different conforma-
tions are generated independently in our ensembles, differ-
ent low-energy conformers for a given side chain can be
sampled even if they are separated by a large barrier,
which would hinder the transition from one to the other in
MD simulations. Indeed, a closer look at our ensemble of
ubiquitin structures reveals that 88% of the allowed
side-chain rotamers are populated, although some are
found with much smaller frequency than others (as ex-
pected in the human ubiquitin native ensemble—see
Chou®® and Lindorff-Laren et al .”®). The successful recov-
ery of these side-chain NMR data in our ensemble [Fig.
5(a—c)] further corroborates the validity of the proposed
PEM in properly characterizing equilibrium local fluctua-
tions.

DISCUSSION AND CONCLUSION

Capturing equilibrium mobility in proteins is important
for understanding biological function. We propose a method
to address the mobility of missing loops in protein struc-
tures. The method generates an ensemble of physical loop
conformations on which thermodynamic quantities can be
measured for validation with corresponding data from
experiment and simulation. Furthermore, we extend this
method to capture the equilibrium mobility of an entire
protein.

Designing methods to obtain an ensemble of conforma-
tions available to a protein at equilibrium is a novel
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contribution of this work. The FEM proposed to model loop
mobility at equilibrium makes use of an efficient robotics-
inspired exploration to sample the conformational space
available to a missing fragment that fits with a given
protein structure. This exploration allows FEM to explore
the space of arbitrarily long fragments, an advantage over
database and ab initio methods.2°—30-34

The multi-scale approach employed in this work allows
to efficiently model protein fragments as kinematic chains.
In addition, the use of all-atom force fields allows accurate
estimation of conformational energies. A statistical me-
chanics formulation then provides a natural way to associ-
ate a weight to each obtained conformation and as a result
allows an equilibrium conformational ensemble to be
obtained. This is an obvious advantage over existing
geometric exploration methods applied to proteins.32:33:40
The extension of FEM into PEM provides a novel approach
to characterize equilibrium fluctuations of an entire pro-
tein by combining equilibrium fluctuations of protein
fragments.

When applied to stable proteins such as CI2 and «-Lac,
the proposed FEM recovers the native loops of these
proteins. The generated ensembles are clustered around
the native loops, and the associated energy landscapes are
funnel-like. Fluctuations measured over each ensemble
are fully consistent with experimental data and existing
simulations. A novel application of our method on VIsE
with a missing loop of 20 residues generates an ensemble
whose conformational heterogeneity is consistent with the
high disorder of the missing loop. These results point to an
immediate future application of the proposed FEM where
consideration of the crystal environment as in Jacobson et
al.®° will allow modeling of the effects of crystal packing on
loop mobility.

Applications of PEM on ubiquitin and protein G reveal
fluctuations that correlate very well with order parameter,
residual dipolar coupling, and three-bond scalar coupling
NMR data. The proposed PEM fully characterizes the
equilibrium mobility in proteins such as ubiquitin and
protein G, where mobility is not due to concerted motions.
Because this method explores the mobility of a protein one
fragment at a time, it is not immediately clear whether it
can capture concerted motions. We are currently investigat-
ing this issue and extending the proposed methods into a
more general approach. We are also investigating ways to
improve the efficiency of the search for low-energy confor-
mations in the proposed methods by, for instance, search-
ing for optimal side-chain configurations in backbone-
dependent rotamer libraries such as those provided in
SCWS3RL 3.0.8!

An additional consideration for future work is the inclu-
sion of solvent effects on the modeled equilibrium fluctua-
tions. While we do not employ the ensembles obtained in
this work to make inferences about the relationship be-
tween structure and function, modeling water may allow
us to answer important questions on the role of water in
functional motions.?? Investigation of the performance of
modern force fields is another obvious direction of future
work. The agreement shown in this work between the
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ensembles obtained when using CHARMM22*° versus
AMBER94°° is consistent with results obtained in Price
and Brooks,”® where different force fields of similar func-
tional form are shown to behave comparably in MD
simulations. Evidence of differences between force fields,
however, on other physical conditions, such as modeling of
peptide unfolding,®® indicates that protein modeling with
an exhaustive set of force fields is worth investigating.
Since the recovery of NMR data probing the dynamics of
proteins is generally a challenge for even long MD simula-
tions, the successful prediction for protein G and ubiquitin
in this work is a particularly significant result. The
nontrivial recovery of these NMR data suggests that the
methods we propose can provide detailed information on
the equilibrium flexibility of proteins and so help us better
understand the interplay between flexibility and function.
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