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Abstract

Background: Structural excursions of a protein at equilibrium are key to
biomolecular recognition and function modulation. Protein modeling research is
driven by the need to aid wet laboratories in characterizing equilibrium protein
dynamics. In principle, structural excursions of a protein can be directly observed
via simulation of its dynamics, but the disparate temporal scales involved in such
excursions make this approach computationally impractical. On the other hand,
an informative representation of the structure space available to a protein at
equilibrium can be obtained efficiently via stochastic optimization, but this
approach does not directly yield information on equilibrium dynamics.

Methods: We present here a novel methodology that first builds a
multi-dimensional map of the energy landscape that underlies the structure space
of a given protein and then queries the computed map for energetically-feasible
excursions between structures of interest. An evolutionary algorithm builds such
maps with a practical computational budget. Graphical techniques analyze a
computed multi-dimensional map and expose interesting features of an energy
landscape, such as basins and barriers. A path searching algorithm then queries a
nearest-neighbor graph representation of a computed map for
energetically-feasible basin-to-basin excursions.

Results: Evaluation is conducted on intrinsically-dynamic proteins of importance
in human biology and disease. Visual statistical analysis of the maps of energy
landscapes computed by the proposed methodology reveals features already
captured in the wet laboratory, as well as new features indicative of interesting,
unknown thermodynamically-stable and semi-stable regions of the equilibrium
structure space. Comparison of maps and structural excursions computed by the
proposed methodology on sequence variants of a protein sheds light on the role
of equilibrium structure and dynamics in the sequence-function relationship.

Conclusions: Applications show that the proposed methodology is effective at
locating basins in complex energy landscapes and computing basin-basin
excursions of a protein with a practical computational budget. While the actual
temporal scales spanned by a structural excursion cannot be directly obtained
due to the foregoing of simulation of dynamics, hypotheses can be formulated
regarding the impact of sequence mutations on protein function. These
hypotheses are valuable in instigating further research in wet laboratories.

Keywords: protein equilibrium dynamics; multi-state protein; multi-basin energy
landscape; energy landscape map; sample-based representation; evolutionary
algorithm; structural excursion; mechanical work; nearest-neighbor graph;
low-cost paths
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Background
Experimental, theoretical, and computational studies have shown that protein func-

tion is the result of a complex yet precise relationship between protein struc-

ture and dynamics [1–3]. Long gone are the days when proteins were viewed as

rigid molecules [4], with the atom nuclei frozen in specific positions in the three-

dimensional (3D) structural models captured by X-ray crystallography [5]. Nowa-

days, wet-laboratory techniques based on single-molecule fluorescence spectroscopy

provide irrefutable evidence of proteins as macromolecules in perpetual motion [2],

even catching proteins in the act of switching between different structures to bind

different molecular partners [6]. The ability of a protein to switch between different

structures under physiological conditions (at equilibrium) is key to biomolecular

recognition and function modulation [7]. This finding warrants characterizing the

equilibrium structural dynamics of a protein as a means of exposing the range of

activities of a protein in the cell [8].

While significant advances have been made in the wet laboratory [6,9–12], existing

techniques are in principle limited by the disparate spatio-temporal scales involved

in protein dynamics; proteins undergo small (sub-angstrom) and large (> 10Å)

structural changes at different temporal scales, spanning from a few femto-seconds

to milli-seconds and more [13]. Dwell times of proteins in specific structural states

may be too short to be detected in the wet laboratory.

Computational methods that simulate the constrained dynamics of the bonded

atomic particles in a protein molecule via iterative application of Newton’s laws of

motions are appealing. By following motions of atoms along the negative gradient of

a molecular mechanics force field, these methods, also known as Molecular Dynamics

(MD) methods, directly simulate structural excursions of a protein [14]. Since energy

landscapes are highly multi-dimensional [15] (directly related to both independent

and concerted motions of thousands or more atoms comprising a protein molecule),

MD methods have to be operated in a random-restart fashion to sufficiently explore

the structure space accessed by a protein at equilibrium. Typical computational

efforts can exceed several weeks on large (several-hundred core) supercomputers [16]

for medium-size proteins (100−300 amino-acids long), though advances in hardware

and specialized architectures are beginning to broaden the scope and scale of MD

methods to larger macromolecular assemblies and even viral capsids [17,18].

The challenges regarding characterization of equilibrium protein dynamics are

better understood from a protein energy landscape perspective, which links protein

structure, dynamics, and function [19]. Briefly, measuring the extent to which a

structure satisfies the (physical) constraints that atoms place on one another al-

lows one to associate an energy landscape with the structure space of a protein.

Structural excursions of a protein at equilibrium correspond to hops between en-

ergy basins in the landscape [20]. A basin, visually corresponding to a valley in the

energy landscape, contains structures with similar energies. The set of structures

mapped to the same basin represent a particular protein state. These states can

be thermodynamically-stable or semi-stable, depending on the width and depth of

the corresponding basin. A protein may spend more time in a wider and deeper

basin (the state is stable) than in a narrower and shallower basin (the state is semi-

stable) [20]. Energy barriers between basins regulate the time it takes for a protein
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to switch between basins [7,20]. The interested reader is referred to works in [1,21]

for detailed reviews of energy landscapes and motions of proteins.

The energy landscape view clarifies why a complete and detailed account of protein

equilibrium dynamics is a non-trivial task. In principle, the task requires a com-

prehensive characterization of both the protein structure space and the underlying

energy landscape that governs the accessibility of structures and excursions be-

tween them at equilibrium. While wet-laboratory studies may not catch semi-stable

structural states (due to insufficiently long dwell times), computational approaches

that simulate protein dynamics quickly become computationally intractable for even

moderate-size proteins.

In this paper we present a novel computational methodology that takes a comple-

mentary approach to the MD-based approach. While the goal remains to elucidate

the equilibrium dynamics of a protein by computing structural excursions at equi-

librium, the dynamics are not simulated directly. Instead, a two-step approach is

followed. First, stochastic optimization (randomized/stochastic search) is employed

to explore a protein’s structure space and construct a map of the energy land-

scape relevant for equilibrium dynamics. Second, the map is analyzed and queried

for paths of intermediate structures that link two structural states of interest, ef-

fectively yielding an ensemble of paths that provide an on-demand view of the

equilibrium dynamics relevant to a specific structural excursion. This two-step ap-

proach foregoes any direct information on the temporal scales involved, as there is

no notion of physical time in the computed structures and paths connecting them.

However, by doing so, the computational demands become much more reasonable;

for instance, investigations of medium-size proteins of 150 or more amino acids can

be conducted on small clusters (of no more than 16 CPUs) in no more than a few

days (ranging from 7 to 15). Moreover, during this process, close to a million struc-

tures are generated, embedded in multi-dimensional maps of energy landscapes,

and available to answer queries about energetically-feasible structural excursions at

equilibrium between any two structures of interest.

The advantages of stochastic over systematic search to explore high-dimensional

variable spaces have been demonstrated in various domains. In protein structure

modeling, algorithms that navigate the structure space of a protein via the Monte

Carlo (MC) approach have been shown to have higher exploration capability than

MD-based ones [22]. Furthermore, evolutionary algorithms (EAs) have been shown

to provide significant improvements over MC-based algorithms [23,24]. Specifically,

for de novo protein structure prediction, EAs with domain-specific insight have

been shown to rapidly locate the global minimum and reproduce the native struc-

ture [25,26]. However, when the focus is on multi-state proteins with complex multi-

basin energy landscapes, the objective goes beyond rapidly locating one structural

state and requires an exploration of the breadth of the structure space. Recent

evolutionary search techniques have advanced efforts in this direction [27–29].

A key starting point of recent work is the increasingly rich set of structural data

for both the wildtype (WT) and variants of multi-state proteins being deposited

by wet-laboratory scientists in the Protein Data Bank (PDB) [30]. Work in [31]

has shown that a statistical characterization of this structural information provides

important and useful information about the structure space of a particular protein.
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A simple, generational EA operationalizes this idea in [27]. Work in [28] enhances the

exploration capability of the EA while still operating under the classic optimization

setting of finding the global minimum (via a decentralized selection operator that

delays population take-over by the most fit individuals). Work in [29] finally switches

from the classic setting to that of obtaining a comprehensive map of a (multi-state)

protein’s multi-basin energy landscape via the concept of the hall of fame. The

resulting EA is shown able to map complex, multi-basin fitness landscapes beyond

the protein modeling domain via careful combination of local and global search [32].

These collective algorithmic developments have now made it possible to build com-

prehensive and detailed maps of energy landscapes of medium-size proteins with a

modest computational budget. The EA we employ for mapping protein energy land-

scapes in the methodology proposed here builds on all these previously-published

evolutionary search techniques to effectively and efficiently map the structure space

available to a protein at equilibrium. The Methods section summarizes this EA for

the sake of completeness, paying particular attention to those aspects that give it

the ability to efficiently map energy landscapes of medium-size proteins.

Analysis of maps computed to represent energy landscapes is non-trivial. Even

when the focus is simply to locate basins, the analysis involves several hundred

thousands of multi-dimensional data points that reside in a highly non-linear land-

scape. Past work [28, 29, 33] has relied on visual analysis of 2D projections of all

structures ever computed during the execution of an EA or only those structures in

the hall of fame/map. We make the case in the Results section that such analysis is

informative, but the projection can sacrifice possibly interesting energetic features

in the multi-dimensional map. Hence, in this paper we utilize additional graphi-

cal techniques to visualize and analyze the computed multi-dimensional maps. The

techniques reveal not only basins already captured in the wet laboratory, but also

new energetic features indicative of interesting, unknown thermodynamically-stable

and semi-stable regions of the equilibrium structure space.

Mapping the energy landscape of a protein provides an opportunity to extract

information on its equilibrium dynamics in much in the same way the map of a city

allows extracting information on routes connecting landmarks. In previous work [28,

29,33,34], we have relied on qualitative summarizations of protein dynamics based

on the location of energy barriers and other features of a mapped landscape, and how

these features differ in the variant forms of a protein. Here we propose a procedure

to extract information on the equilibrium dynamics of a protein by computing

structural excursions between structures of interest. The procedure builds on ideas

utilized in robotics-inspired methods for protein motion computation [35–37]. In

these methods, structures are embedded in a nearest-neighbor graph (referred to as

a roadmap), which is then queried for a path connecting a start to a goal structure

structure. In this paper, the structures are those produced by an EA mapping

process. That is, they constitute a comprehensive and detailed map of the energy

landscape. Care has to be taken to embed them in a nearest-neighbor graph and

utilize them for path queries. Moreover, unlike related work in robotics-inspired

modeling, where the focus is typically on one path, the procedure proposed here

reveals an ensemble of energetically-similar paths. This focus is warranted in order

to obtain a broader view of the stochastic but energy-driven nature of protein

structural excursions (and equilibrium dynamics).
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The methodology proposed in this paper to build maps, analyze them, and then

query them for structural excursions is applied to several proteins of importance

in human biology and disease. In addition, detailed comparison of the maps and

path ensembles is conducted on the WT and 7 variant sequences of an oncogenic

protein. This comparative setting evaluates the ability of the proposed methodology

to explain the impact of mutations on protein equilibrium dynamics and in turn

on misfunction. These results are presented in the Results section, and a discussion

of how they reproduce, explain, or further existing knowledge is provided in the

Discussion section.

While the actual temporal scales spanned by a modeled structural excursion can-

not be obtained by the proposed methodology due to the foregoing of simulation of

dynamics, specific hypotheses can be formulated nonetheless regarding the impact

of sequence mutations on function. These hypotheses are valuable in instigating

further research on structure-function studies in wet laboratories. The advantages

and disadvantages of the proposed methodology, as well as possible directions of

further research, are summarized in the Conclusions section, which concludes this

paper.

Methods
The input to the proposed methodology consists of a protein sequence α, a set of

structures SPDB representing stable structural states for sequences no more than 3

amino acids different from α, and (a pair of start and goal) structures of interest

for a possible excursion. The methodology first performs a principal component

analysis (PCA) on the structures in SPDB in order to define a low-dimensional

representation of the protein structure space. An evolutionary algorithm (EA) is

then applied to this PCA-defined space to construct a map representing the all-

atom energy landscape of α. Finally, a path-finding algorithm uses this map to

compute energetically-feasible paths realizing structural excursions of interest. The

methodology is shown in pseudocode in Algorithm 1.

Below we first relate details on the principle that allows utilizing structures in

SPDB to define the (reduced) variable space underlying the structure space of a

protein sequence of interest α, as well as describes the technique employed to do so

(lines 1-2 in Algorithm 1). The EA that explores this variable space to build a multi-

dimensional map of the all-atom energy landscape of α (line 3 in Algorithm 1) is

then described. The graphical statistical techniques utilized to analyze a computed

multi-dimensional map and reveal interesting energetic features, such as energy

basins, are related afterwards. A description of the algorithm employed to build and

query the map for energetically-feasible excursions of the target protein sequence α

between two structures of interest (line 5 in Algorithm 1) concludes this section.

Extracting variable axes to define a reduced protein structure space

As mentioned in the Backgrounds section, a key starting point that has recently al-

lowed EAs to explore complex structures spaces of multi-state proteins is the ability

to define variable spaces of reasonable dimensionality to represent protein structure

spaces. These variable spaces are extracted based on a statistical characterization

of the increasingly rich structural information available in the PDB for a protein se-

quence α and other (variant) sequences similar to it. The characterization is rooted

in the principle of conformational selection, summarized next.
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Algorithm 1 Building and querying a multi-dimensional map of the energy landscape
Input: α //Target protein sequence

SPDB //PDB-obtained wet-laboratory structures of α and variants
Sstart, Sgoal //start and goal structures for desired excursion

1: Traces ← SPDB|α,CA
//CA traces of PDB structures “threaded” onto sequence α

2: {PC1, . . . , PCm} ← Traces //extract PCA variables

3: Map ← EA(α, Traces, {PC1, . . . , PCm}) //EA-built map of landscape of α

4: NNGraph ← Map
5: Paths ← Query(NNGraph, Sstart, Sgoal)

Output: Map, Paths //output map and paths

Utilization of structures and the principle of conformational selection: Let us sup-

pose a structure has been captured for a sequence β of a protein in the wet lab-

oratory. This structure represents a thermodynamically-stable state for β. If β is

a variant of a given protein (that is, within a few amino-acid mutations of some

neighboring sequence α), then the structure that is stable for β may possibly be

of low-energy in the structure space of some similar sequence α. This is in effect

the principle of conformational selection [38], under which perturbations such as

sequence mutations do not change a protein’s structure space but rather the prob-

abilities (which in turn are related to energies) with which a given sequence is

expected to populate the various structural states; in other words, even a structure

detected for a variant is expected to be assumed by the WT (and vice-versa) but

possibly with a different probability at equilibrium. In summary, known structures

of different sequence variants of a protein represent stable and semi-stable structural

states of a target sequence.

Extracting variable axes via multivariate statistical analysis

Structures in the set SPDB are first “converted” into structures of α (line 1 in Al-

gorithm 1). The structures are stripped down to CA atoms (effectively discarding

all atoms except the central carbon atom – CA atom – of each amino acid in the

amino-acid/protein chain). A structure stripped down to the CA atoms is referred

to as a CA trace. Since the CA traces corresponding to the set SPDB come from

sequences possibly different (within a few mutations) from α, the amino-acid iden-

tities of the CA atoms are replaced with those in the target sequence α in each CA

trace. The resulting traces are then subjected to a multivariate statistical analy-

sis, PCA, originally described in [27], to extract new variable axes; these are the

principle components (PCs) obtained from the PCA (line 2 in Algorithm 1).

In summary, PCA yields new variable axes via an optimal rotation of the original

axes that maximizes variance of the data along the new axes [39]s. Ordering of

the new axes (PCs) by the variance of the data when projected onto them allows

extracting a subset m that is typically much less than the original dimensionality

of the data, if PCA is indeed effective. Work in [28] shows this to be the case for

many multi-state proteins with multi-basin landscapes; with the top two PCs one

captures more than 45% of the variance (which means they can be employed for

data visualization) and anywhere between 10-25 PCs allow capturing more than

90% of the variance. The latter is a reduction by more than ten-fold, as the original

structures are of proteins with more than 100 amino acids; stripping them down
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to their CAs prior to PCA exposes more than 300 Cartesian coordinates on which

PCA operates to reveal no more than 25 PCs/coordinates that still capture more

than 90% of the variance.

The variance-ordered PCs are used as variables ({PC1, . . . , PCm}) through which

to represent a structure. As described in [27], a structure can be represented as an

m-dimensional point whose coordinates are projections over the m axes (obtained

via essentially a dot-product operation with each of the axes). The reverse is also

possible. Given an m-dimensional point, a process that essentially depends on a lin-

ear combination of the axes yields 3D coordinates of the CA atoms of the structure

corresponding to the point. Going back and forth between the variable space and

the structure space of a given protein sequence makes it computationally feasible to

map and query the structure space of a protein by techniques that operate on the

variable space. Next we describe the EA that explores this variable space to build

a PCA-based map of the all-atom energy landscape of a given protein sequence α.

The map is analyzed and queried for paths by techniques that also operate on the

variable space.

EA building of a multi-dimensional energy landscape map

The EA employed here to map a protein energy landscape is the result of a series

of recent works [27–29, 32, 34] that carefully and gradually investigate the impact

of various design and implementation decisions regarding the exploration versus

exploitation capability of EA-based stochastic search in multi-basin protein energy

landscapes. At a conceptual level, the EA evolves a fixed-size population of indi-

viduals over generations towards better-fit individuals. Individuals are points in

an m-dimensional space whose variable axes are the top variance-ordered PCs ob-

tained as described above. The fitness of an individual in the EA is evaluated via the

Rosetta score12 energy function, which measures the all-atom energy of the 3D pro-

tein structure corresponding to the individual. The EA is memetic, as an offspring

individual obtained by varying a parent individual is subjected to improvement.

This is particularly important for individuals that represent molecular structures

in order to reduce the number of constraints violated in offspring. An improved

offspring is then considered for addition to the map, which is thus dynamically

updated during the evolutionary process.

Algorithm 2 summarizes the EA in pseudocode. Rather than specifying a budget

in terms of a total number of generations, the algorithm exhausts a total num-

ber of fitness or energy evaluations (line 4 in Algorithm 2), as these are the most

computationally-demanding step of any algorithm manipulating molecular struc-

tures. Once the budget is exhausted, the map is outputted. For completeness, we

provide more details of the EA in what follows, paying particular attention to the

shaded boxes in Algorithm 2 that constitute the main functional units of the EA.

It is worth noting that these units make use of various parameters. In the interest

of clarity, these parameters are not listed in Algorithm 2, but we describe them in

context and list their values when relating implementation details.

Initialization mechanism to seed the EA

Proper initialization is key to exploration. As mentioned above, the CA traces ex-

tracted from SPDB and “threaded” onto the sequence of interest α are the first
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Algorithm 2 Building multi-dimensional map of energy landscape
Input: α //Target protein sequence

Traces //CA traces of PDB structures “threaded” onto sequence α
{PC1, . . . , PCm} //variable axes of search space for the EA

1: Map ← ∅ //empty map of landscape of α

2: i← 0 //generation iterator
3: Populationi ← Initialization(Traces, {PC1, . . . , PCm}) //initial population

4: while a fixed total budget of fitness evaluations not exhausted do
5: Offspring ← ∅ //set of offspring

6: for p ∈ Populationi do

7: c← Variation(p, {PC1, . . . , PCm}) //each parent yields an offspring
8: c̃ ← Improvement(c) //some fitness evaluations allocated to improve offspring

9: if c̃ should be considered for addition to the map then
10: Map ← UpdateMap(Map, c̃)
11: else //restart lineage by replacing parent with a new individual
12: p← new individual in variable space

13: Offspring ← Offspring ∪ {c̃} //add to set of offspring

14: i← i+ 1 //select population for next generation
15: Populationi ← Selection(Populationi−1, Offspring) //offspring compete with parents

Output: Map //output constructed map

to be added to the initial population (line 3 in Algorithm 2); the traces are first

projected onto the m PCs so as to obtain individuals corresponding to them in the

variable space. Prior work has considered various strategies to fill in the rest of the

population; typically, a higher exploration capability is obtained as the population

size increases from 500 to 2, 000 individuals (we use 2, 000 in this work), and the

number of PDB-obtained structures can be significantly smaller than this target

population size. In [27, 28], the rest of the population is filled by individuals ob-

tained as offspring of the CA traces via the variation operator (described below). A

comprehensive analysis in [29] compares this strategy to two others, one where the

rest of the population is filled by individuals drawn at random in the space of the

m PCs, and another where the initial population does not make use of any of the

experimentally-known structures but consists of only individuals drawn at random

in the variable space.

Comparison on the average fitness and average diversity (measured via Euclidean

distance in the variable/PC space) of a population over generations demonstrates

that the strategy where the initial population consists of individuals derived from

the experimentally-known traces and individuals drawn at random provides a better

balance between exploitation (improvement in average fitness over generations) and

exploration (retainment of diversity over generations). In the results described in

the Results section, this strategy is employed to seed the EA and obtain the energy

landscape maps of various protein sequences.

Obtaining offspring via a variation operator

As line 6 in Algorithm 2 indicates, each parent p yields an offspring c. Variation is

introduced in each population through a variation operator (line 7 in Algorithm 2)
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described in detail in [27,28]. In summary, a vector is first defined in the PC space;

its elements are magnitudes of movement along each of the m PCs. The magnitude

of the movement along the top PC (that captures the most variance) is sampled

uniformly at random in the segment [-s, s], where s is a user parameter. The mag-

nitudes of the movements along the other PCs respect their variance relative to the

variance captured by the first/top PC. While the shape of the space is preserved,

the boundaries of the m-dimensional embedding of the wet-laboratory traces are

not observed, as the ultimate goal is to generate individuals that represent new

structures not captured in the wet laboratory for the target sequence α.

Fixed versus variable budget improvement operator

The obtained offspring c is subjected to an improvement operator to obtain a better

offspring c̃ (line 8 in Algorithm 2). The process consists of three steps.

First, the offspring, which is a point in the m-dimensional PC space, is converted

into a set of backbone atoms with coordinates in 3D. This step consists of recovering

the CA trace via simple algebra operations (detailed in [28], and then recovering

the backbone skeleton from the CA trace via the BBQ backbone reconstruction

protocol [40]. The next step subjects the backbone skeleton to the Rosetta relax

protocol [41]. This protocol is open-source and written in C/C++, which allows

easy integration in the EA. The protocol repeatedly guesses coordinates for the

side-chain atoms (utilizing the target sequence α in the backbone structure fed to

it as input) and improves them via a simulated annealing MC search. The result

is a 3D structure for all atoms (backbone and side chains) that corresponds to a

local minimum in the (Rosetta score12) all-atom energy surface of α. In the third

step, the improved individual c̃ corresponding to the resulting structure is obtained.

The CA trace is extracted from the structure, and the trace is projected back onto

the space of PCs to obtain c̃. The all-atom Rosetta score (score12) is recorded and

associated with the c̃. The fact that it is the improved offspring c̃ and not c that is

added to the set of offspring in line 13 in Algorithm 2 is what makes the EA shown

in Algorithm 2 a Lamarckian EA.

In prior work [27–29], a fixed number NrImprovItersMax of iterations of the MC

search have been utilized in the improvement operator. Since each iteration ex-

hausts one energy evaluation, the budget of energy evaluations can be effectively

wasted by attempting to improve sub-optimal offspring. Recent work in [34] intro-

duces a variable-budget improvement operator, which allocates iterations/energy

evaluations based on the promise of an offspring for further improvement. The im-

provement operator spends only one iteration at a time on improving an offspring c

until a maximum NrImprovItersMax has been reached on the lineage from a parent

to the currently improved offspring. The neighborhood of the currently improved

offspring in the Map is analyzed and compared in terms of average fitness to the

fitness/energy of the offspring, and a determination is made (via an empirically-

determined relationship) on whether the improvement should be terminated prior

to reaching the maximum number of iterations. The relationship also determines

whether the improved offspring ought to be considered for addition to the Map or

not (lines 9-10 in Algorithm 2). If not, the lineage is penalized, as well, so as to

remember that this specific region in the variable space ought not to considered fur-

ther. Lines 11-12 in Algorithm 2) show that the parent of the terminated offspring is
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replaced with a new individual. While work in [34], generates the new individual at

random in the variable space, here we consider an alternative strategy; two parent

individuals are selected at random and crossed over (utilizing one-point crossover)

to obtain the new individual. These two different strategies are compared in the

first set of results related in the Results section.

A Sample-based map of a protein energy landscape via a hall of fame

A large population is critical to capture a possibly large set of local minima in a

rugged energy landscape. Maintaining all individuals ever generated in memory is

not practical; nor is it effective, as many individuals generated during the execution

of the EA may be highly structurally-similar. What is needed is a map with a

tunable resolution. Work in [29] proposes utilizing the concept of a hall of fame

to serve as a dynamically-updated, resolution-tunable map of a protein’s energy

landscape. The hall of fame is an evolutionary strategy to equip an EA with memory.

The algorithm invoked to update it is shown in pseudocode in Algorithm 3.

Algorithm 3 Update of the map
Input: Map //hall of fame

c, f(c) //individual considered for inclusion and its Rosetta score12 fitness
fitThreshold, distThreshold //fitness and distance thresholds determining inclusion

1: if f(c) ≥ fitThreshold then //fails fitness test
2: RETURN
3: c candidate for map ← 1 //flag
4: for all 〈C, f(C)〉 in the current map do
5: if ManhattanDistance(c, C) < distThreshold then
6: if f(c) < f(C) then //c similar to C but fitter
7: Map ← Map \ {〈C, f(C)〉} //C removed from Map
8: else
9: c candidate for map ← 0

10: if c candidate for map == 1 then
11: Map ← Map ∪ {〈c, f(c)〉}; //c included in Map

As Algorithm 3 shows in lines 1-2, if the fitness f(c) of the individual c considered

for addition to the map is not below a threshold fitThreshold, c is not considered

(reflecting the objective to update the map with fit individuals). Otherwise, c is

considered (line 3) and then compared to neighboring individuals C in the map

(line 4). If a neighboring individual C whose Manhattan distance (in the space of

m top PCs) falls below the threshold distThreshold but has higher fitness than

the fitness of c, then the individual is replaced by c (lines 5-11). If c is similar

but does not reside deeper in the local minimum containing C (lines 8-9), c does

not replace C. Note that if c is not similar to any other individual in the map, it is

added, as it represents a new region not currently present in the map. The idea is to

update the map with individuals that may represent the same region in the variable

space but allow further exploitation of a local minimum and with fit individuals

representing novel regions. The distThreshold represents a resolution, as the map

is a set of distinct local minima individuals (obtained after improvement) separated

by at least the defined threshold distThreshold in the space of PCs. Increasing

distThreshold makes the map sparser. Lowering it, provides more detail but also

increases the number of individuals in the map.
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Selection operator

Line 15 in Algorithm 2 invokes the selection operator, where offspring compete with

parents for survival. A comparative analysis of various implementations in [28] sug-

gests that a local/decentralized selection operator, where each offspring competes

only with parents in a given neighborhood, stalls take-over of the population by

most-fit individuals, thus delaying premature convergence. The neighborhood cap-

tures the notion of structural similarity, so that offspring only replace structurally-

similar parents if they lower Rosetta score12 energy. Structural similarity is de-

termined efficiently by embedding individuals in an explicit 2D grid over the top

two PCs. Cell width is also a user-defined parameter, and values employed here for

the construction of the grid are those suggested to be optimal by the comparative

analysis in prior work [28]. In recent work [29], a modification is proposed to the

local selection operator, which we employ here in applications of the EA analyzed

in the Results section. If an offspring does not have any parent individuals in its

neighborhood, it survives and is included in the population for the next generation;

in prior work [28], such an offspring would compete with all parents.

Analysis of a multi-dimensional map via graphical statistical techniques

Projections of the multi-dimensional maps onto 2D, while informative (as related in

the Results section, may hide interesting energetic features that only appear along

the remaining axes. Graphical techniques for visualization of multi-dimensional data

are employed here to elucidate interesting energetic features hidden along the dif-

ferent dimensions of the variable space explored by the EA. In all the proteins

investigated here, the top 4 PCs capture about 80% of the dynamics. Therefore,

hidden energetic features are sought on at most 4D projections of the computed

maps (PC1-PC2-PC3-PC4) by way of two-way conditioned plots.

Two-way conditioned plots provide a way to obtain insight in data patterns related

to a 4D domain. Such graphics have a substantial history and are alternatively

referred to as multi-window displays, casement displays and co-plots [42–45]. The

basic idea is to focus on plots of two variables at a time, conditioning on the other

two variables so the basic view is a function of the other variables (or not). Let us

refer to the former the primary variables, and the latter as the conditioned-upon

variables. Since the PCs are ordered by variance, PC1 and PC2 are used as the

primary variables, leaving PC3 and PC4 to be the conditioned-upon variables.

In the two-way conditioned plots we employ to visualize the map along essentially

the top 4 PCs, the data is partitioned in 16 subsets that are quartile intervals for

PC3 and PC4. Let us consider a specific quartile, Qi for PC3 and Qj for PC4. The

m-dimensional individuals in the map are then visualized as follows. All coordinates

of an individual along PC5 and on are discarded, and the only individuals retained

are those whose third coordinate falls in Qi of PC3 and fourth coordinate falls in

Qj of PC4. This subset resides in a 4D space. In effect, considering the fitness value

of each individual adds a fifth dimension. These individuals are visualized in a 2D

plot as follows. They are binned in hexagon bins, a popular idea in visualization of

multi-dimensional data introduced in [46]. Only the lowest-energy (best) individual

is then visualized per bin, plotting it as a 2D point along PC1 and PC2, and color-

coding it based on its energy. A blue-to-red color-scheme is employed corresponding

to low-to-high energy values.
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It is worth noting that the conditioned-plot approach to multi-dimensional data

visualization sacrifices much of the resolution of the conditioning (partitioning) vari-

ables while retaining much of the resolution for the variables used in the plots. The

comparison of juxtaposed plots, however, provides valuable insight into the impact

of the conditioning variables. As the results in the Results section relate, a layout

of 16 color-coded, hexagon-binned, two-way conditioned plots (16 by combination

of each of the quartiles of PC3 with quartiles of PC4) provides an effective way to

visualize a 5D view of the maps of energy landscapes constructed by the above-

described EA. In particular, the layout allows visualizing how basins elongate along

the other dimensions, and where along these dimensions they populate regions not

captured in wet laboratories.

Graph-based query of map for energetically-feasible structural excursions

The map that the EA described above constructs to represent an energy landscape

is essentially a (hall of fame) list of (multi-dimensional) individuals with associated

fitness values (Rosetta score12 energies). In order to query the map for ensembles of

energetically-feasible structural excursions between any two structures of interest

for a protein at hand, the map is first converted into a nearest-neighbor graph.

Details are related below. After the map is essentially equipped with connectivity

information, any informed graph search algorithm can be employed to query the

map for energetically-feasible paths. Below we describe how the nearest-neighbor

graph representation of the map is provided with energy-based weights, and how

Dijkstra’s shortest-path algorithm [47] is then employed to extract a lowest-cost

path connecting two structures of interest from a graph of close to a million vertices.

Finally, the rest of the Methods section describes how Dijkstra is employed in an

iterative fashion to obtain an ensemble of low-cost paths in order to provide a

broader picture of energetically-feasible structural excursions.

A nearest-neighbor graph representation of the energy landscape map

The map is converted into a nearest-neighbor graph G = (V,E) as follows. The indi-

viduals in the map populate V . Each vertex is then connected via edges to k other

vertices that are its nearest neighbors. Euclidean distance in the m-dimensional

variable space is used to measure the proximity between two vertices/individuals.

The computation of nearest neighbors can be potentially a time-consuming step,

but nearest-neighbor search data structures, such as a kd-tree [48], provide a rem-

edy, particularly when the number N of data points is much larger than 2m (that

is, N >> 2m), where m is the dimensionality of the variable space [49]. We employ

a process similar to how the kd-tree organizes data points to support fast nearest-

neighbor queries. Specifically, Euclidean distance calculations are terminated ear-

lier than considering all variable axes if the distance already surpasses a dynamic

threshold (the latter is updated as neighbors are found).

Since the set V can be very large (recall that the distThreshold parameter in the

map construction can allow for a highly-detailed map with millions of individuals),

the number of nearest neighbors for a vertex is limited to k = 8. That is, the

branching factor for the graph is limited to 8. The graph is directed; a vertex v may

be among the k-nearest neighbors of a vertex u, but u may not be among the k

nearest-neighbors of v.
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While edges are added based on essentially a proximity relationship between ver-

tices, weights or costs associated with them are based on the following energy-

/fitness-based relationship: Cost(e = (u, v)) = max{score12(v) − score12(u), 0}.
The idea behind this is as follows: If the directed edge e = (u, v) lowers the energy

of a protein hopping from u to v, then this particular u → v excursion does not

require additional energy, as it is a down-hill movement in the landscape. Down-

hill movements occur instantaneously per thermodynamics; no build-up of energy

is needed to allow the excursion to take place. On the other hand, an up-hill move-

ment, where score12(v) > score12(u), requires the system to build enough energy

in order to cross what is essentially an energy barrier. This way of associating costs

with edges is based on the principle of mechanical work, as the cost that would

be tallied up with a path of edges would essentially sum only up-hill movements

in the landscape; that is, only keep track of the total amount of external work

that needs to be performed to give energy to fund such movements. This way of

associating costs with edges is shown to assess the relevance of a lowest-cost path

as a representative of a structural excursion better than an alternative approach

based on the integral cost along the path [50] (and has been used by us before on

robotics-inspired protein motion computation [35]).

Querying nearest-neighbor graph for low-cost paths

Given two structures Sstart and Sgoal , the nearest-neighbor graph can be queried

for a path as follows. First, the two structures are projected onto the m-dimensional

variable space, and their projections vstart and vgoal are added to the vertex set.

The vertex set is then inspected to find the nearest neighbor ustart to vstart and the

nearest neighbor ugoal to ugoal. The directed edges (vstart, ustart) and (ugoal, vgoal)

are then added to the set of edges in the graph, with weights are defined above.

A path in the enhanced nearest-neighbor graph is then an ordered list of vertices

〈vstart, ustart, . . . , ugoal, vgoal〉. Dijkstra’s shortest path algorithm is used to compute

the lowest-cost path vstart  vgoal.

The following modification is carried out in order to produce a physically-realistic

lowest-cost path. Since the vertices correspond to individuals obtained via random-

ized search, the sampling of the structure space is non-uniform; while some struc-

tures may have nearest neighbors in very close proximity, this cannot be guaranteed

over all structures computed by the EA. Indeed, the most densely-sampled regions

will be those in basins due to the nature of EAs. The unintended consequence of

non-uniform sampling is that a structure (vertex) may be connected via an edge to a

structure (vertex) far away in the structure space. Such connections are valid in the

nearest-neighbor graph construction, but they do not provide physically-realistic

information regarding structural transitions.

Rather than place additional proximity constraints among a vertex and its k-

nearest neighbors in the construction of the edge list of the graph, such constraints

are imposed when querying the graph for paths; that is, the neighbors of a vertex

are a subset of its k neighbors in the graph subjected to an additional proximity

constraint. A user parameter is considered for this purpose, max nn dist (maxi-

mum nearest-neighbor distance), and values for this are generated by dividing the

Euclidean distance between the individuals corresponding to the start and goal
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structures by values in the set {15, 10, 7.5}. The latter can be considered path reso-

lutions, and in the Results section we demonstrate the implication of the resulting

different values for max nn dist. In summary, a large value allows making large hops

in the variable space and associating non-credible costs, such as would be obtained

by directly connecting two nearby basins without considering the energetic barrier

in between the basins (the equivalent of tunneling through an invisible mountain).

A small value is conservative, making much smaller hops and effectively is impacted

by the ruggedness of the energy landscape. Very small values of max nn dist may

result in no paths at all, as no nearest neighbors can be found to meet a very

conservative distance criterion.

Dijkstra’s algorithm can be run in an iterative manner to produce more than the

lowest-cost path. Once the lowest-cost path is computed, the intermediate vertices

(excluding start and goal) in the path are removed from the graph, together with

their edges. The remaining graph is queried again for the lowest-cost path, and

this process is continued, removing intermediate vertices after identifying a path,

until no more paths can be found; that is, the start and goal are now in different

connected components. The result of this iterative process is an ensemble of low-

cost paths, which are analyzed in the Results section to obtain summary statistics

regarding energetically-similar structural excursions of a protein.

Implementation details

The algorithms for map building and querying are implemented in C/C++, whereas

the graphical techniques for analysis of a built map are implemented in R. The

EA is run until the budget of 1, 000, 000 Rosetta score12 evaluations is exhausted.

Population size in the EA is 2, 000 individuals. A preliminary analysis in [29] also

shows that this population size, combined with the initialization strategy described

in above, injects greater diversity in the initial population. The target cumulative

variance to obtain m PCs is set at 90%, as in prior work. The step size s in the vari-

ation operator is set to 1, and NrImprovItersMax in the improvement operator is

set to 5. In the map update, fitThreshold is set to 0 Rosetta Energy Units (REUs)

for most proteins. For CaM, where Rosetta heavily penalizes non-compact struc-

tures, fitThreshold is set to 250 REUs. Also in the map update, distThreshold

is set to be twice the minimum Manhattan distance between two wet-laboratory

structures of a protein under consideration. In the variable-budget improvement

operator, neighbors of an offspring in the map are individuals no more than 1 unit

away in Manhattan distance. Prior work on the selection operator indicates that

C25 and C49 are reasonable choices that delay premature convergence [28]. Simi-

larly, reasonable values for the grid cell width vary from 1−2 for small proteins less

than 100 amino acids and 10 for other longer proteins.

The EA is run on a 16 core red hat Linux box with 3.2GhZ HT Xeon CPU and

8GB RAM. The cores are employed to parallelize offspring improvements. This

results in significant time savings. The experiments reported here are carried out

on a 16-core platform, but, since the distribution is embarrassingly parallel, more

time savings can be obtained with more cores.
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Results
Test cases and experimental setup

The proposed methodology is applied to 10 protein sequences, and performance is

evaluated both in terms of running time and quality of the maps and structural ex-

cursions modeled on each sequence in relation with existing wet- and dry-laboratory

evidence on known features of the energy landscapes and equilibrium dynamics.

Test cases

The selected test cases are proteins of importance in human biology and with a

significant number of structures in the PDB [30]. They are the the superoxide

dismutase [Cu-Zn] (SOD1), Calmodulin (CaM), and the WT and disease-related

variant forms of the catalytic domain of uncomplexed H-Ras (to which we refer as

H-Ras from now on). SOD1 is a 150 amino-acid long protein whose mutations have

been linked to familial Amyotrophic lateral sclerosis (ALS) [51]. CaM is an enzyme

148 amino acids long that binds calcium and regulates over 100 target proteins,

including kinases, phosphodiesterases, calcium pumps, and motility proteins [52–

54]. H-Ras is a 166 amino-acid long protein that mediates signaling pathways that

control cell proliferation, growth and development. H-Ras switches between two

distinct structural states to regulate its biological activity [55]. Sequence mutations

are implicated in various human cancers and other developmental disorders [56],

and we study here several single and double mutants (7 variant sequences in all).

Data collection and preparation

Due to the implication of these proteins in various critical human diseases, ample

structural data of their WT and mutated (variant) sequences exist in the PDB.

Only X-ray structures are collected for H-Ras, whereas NMR structures are addi-

tionally included for SOD1 and CaM to enrich these datasets. The WT sequence of

each of these proteins is obtained from UniProt [57]. Structures obtained from the

PDB whose sequence changes by more than 3 amino acid from the WT sequence are

discarded. Structures with missing internal amino acids are also discarded. Remain-

ing structures are cropped at the termini, if necessary, so their lengths match the

length of the WT. This protocol results in 186 wet-laboratory structures collected

for SOD1 from the PDB, 86 for H-Ras, and 697 for CaM. As described in the Meth-

ods section, application of PCA to these datasets yields a cumulative variance of

90% at m = 25, m = 10, and m = 10 PCs for SOD1, CaM, and H-Ras, respectively.

A cumulative variance of 45−50% is captured by the top two PCs on each of these

proteins. In the interest of space, the cumulative variance profiles are not shown

here, but they have been presented in prior work on analysis of the PC spaces for

each of these proteins [27,28].

Experimental setup

The proposed methodology is applied to SOD1 (WT), CaM (WT), and 8 different

sequences of H-Ras. The breakdown of the run time of the methodology on each

of its components (map building, nearest-neighbor graph computation, and map

querying) is shown via pie charts in Fig. 1. The run time of the EA and the size

of the maps built on each test case are listed in Table 1. Analysis of the impact of
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the two different strategies described in the Methods section on how to restart an

unpromising lineage is carried out over 3 independent runs of the EA and is related

first.

The analysis then focuses on maps and paths computed on each of the test cases.

The analysis on SOD1 and CaM is conducted on color-coded 2D projections of the

maps built for each protein and the structural excursions computed for each of them

via map queries. This is related next.

The rest of the analysis is on H-Ras, on which there is a wealth of structure

data and disease-related mutations. The graphical techniques summarized in the

Methods section are applied to the multi-dimensional map generated for H-Ras WT

to reveal in detail energetic features that are lost in a 2D projection. Path ensembles,

computed as described in the Methods section, are then visualized and analyzed for

H-Ras WT and several single- and double-mutant variants. Summary statistics are

juxtaposed to supplement the visual comparison of maps and paths. More results

are related in the Additional Files accompanying this paper. The Discussion section

summarizes all results presented on H-Ras to reconcile existing literature and further

our understanding of the role of equilibrium structural dynamics on the link between

mutations and misfunction in H-Ras variants.

Exploration versus exploitation: restarting failed lineages with individuals generated at

random or via crossover

Two different settings are investigated to restart a failed lineage, generating a new

individual at random in the variable space versus generating it via crossover of two

parent individuals selected at random in the current population. The EA with each

setting is run 3 times, and two measurements are tracked over generations. The first,

the average fitness of the growing map (average over fitness values of individuals in

the map at a given generation) estimates the exploitation power of the resulting EA.

The second, the average diversity among individuals in the growing map (average

value over all pairwise Euclidean distances over individuals in the map at a given

generation). Fig. 2 shows these two measurements for the H-Ras WT map over

generations; the 99% confidence intervals are also shown.

Fig. 2 shows that EA with crossover lowers both the average fitness and the av-

erage diversity of a growing map faster; that is, the crossover enhances exploitation

but lowers exploration. The impact on exploitation is smaller, however, than the

impact on exploration. Taken together, this analysis suggests that the EA, where a

failed lineage is restarted with an individual generated at random, will be as effective

in exploitation and more effective in exploration than when the individual restart-

ing a lineage is generated via crossover. It is worth noting that the differences are

not significant; this is expected, as crossover of two individuals that correspond to

protein structures is likely to result in similar constraint violations as an individual

generated at random in the variable space. The rest of the analysis on the proteins

studied here employs the EA where failed lineages are restarted with individuals

drawn at random in the variable space.

Projection-based visualization and analysis of computed energy landscape maps and

structural excursions for SOD1 and CaM

One way to visualize computed multi-dimensional maps of energy landscapes is to

project individuals in a map onto the top two PCs and color-code the projections
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based on the Rosetta score12 energy values; effectively, the 2D projection of a com-

puted map is a 2D projection of the explored score12 all-atom energy landscape of a

protein. Color-coded 2D projections of all individuals ever generated or individuals

in a map have been employed by us before to conclude that low-energy regions of an

explored protein energy landscape are co-located with projections of experimentally-

known structures of a protein [29]; thus, suggesting the ability of a mapping EA

operating in a reduced variable space to produce reliable maps of multi-basin energy

landscapes. In the following, we show such projections for maps built for SOD1 and

CaM. A lowest-cost path is also shown for each protein to demonstrate the ability

of the proposed methodology to model structural excursions.

Analysis of computed map and basin-basin excursions of SOD1

Fig. 3 shows the color-coded 2D projection of the map built for SOD1 (WT se-

quence). The map contains two well-delineated basins. This two-basin feature is

related to the phosphorylation event [58], grouping the experimentally-known struc-

tures (their PC1-PC2 projections are drawn as black dots) into one of the two basins.

The map is queried for a structural excursion between the two basins. Two struc-

tures, one residing in each basin, are selected and provided as start and goal to

the map querying algorithm in the proposed methodology. The lowest-cost path is

computed with a value of max nn dist corresponding to about 5.43Å/15 (where

5.43Å is the least-root-mean-squared-deviation – lRMSD – between the two struc-

tures, and 15 relates to the sought path resolution (as described in the Methods

section. The query is successful; the succession of structures in the path is shown

in Fig. 3 by projecting each of the structures onto the top two PCs. The compu-

tation of the lowest-cost path points to numerous structures computed by the EA

that allow connecting the two basins despite such a conservative (subangstrom)

max nn dist value. The path also goes nearby various experimentally-known struc-

tures in the projection of the energy landscape, which lends more credibility to its

validity. Taken altogether, the path demonstrates the ability of SOD1 to undergo

structural changes related to the phosphorylation event, effectively switching be-

tween two structural states (that separate the experimentally-known structures)

during phosphorylation.

Analysis of computed map and basin-basin excursions of CaM

The ability of the proposed methodology to compute both maps and structural

excursions is additionally illustrated on CaM. The color-coded 2D projection of the

map is shown in Fig. 4. The map has a characteristic shape, with a hollow region

in the middle, indicating the inability of the EA to find low-energy structures in

this region. A broad and deep basin is found, populated by many experimentally-

known structures, whose PDB ids are annotated. A long narrow strip of low-energy

structures is also found. Fig. 4 additionally shows the lowest-cost path computed to

capture a structural excursion from a compact, closed structure of CaM (PDB id

1XFZ) to the calcium-bound structure (PDB id 1CLL); The lRMSD between the

CA atoms of these two structures is 9.5Å, and the shown path is computed with a

value of max nn dist corresponding to about 9.5Å/10; effectively limiting structural

changes between any two successive structures in the path to subangstrom values.
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As Fig. 4 shows, the path goes through the calcium-free structure (PDB id 1CFD),

passes through compact structures with which CaM binds proteins and peptides

(PDB ids 1NWD and 2F3Y) to then reach a structure representative of the calcium-

bound state (Ca(2+)-CaM) and in the state bound to myosin light chain kinase

(CaM-MLCK) (PDB id 2KOE) just before terminating in the calcium-bound state

(PDB id 1CLL). The path confirms that in the succession of structures from the

compact state to the calcium-bound state, the domain collapse, re-arrangement,

and partial unfolding of the helix linker in CaM are gradual. The succession of

structures in the path points to a rearrangement of the domains in the compact state

that is needed for CaM to then open up, before populating a semi-open state with

a partially-unfolded linker that then further allows it to adopt the open, calcium-

bound state. This detailed observation is in agreement with other studies, both

those employing MD [59] and others employing robotics-inspired approaches [35].

Multi-dimensional visualization of computed map of H-Ras WT

Prior work in [29, 34] has analyzed the 2D color-coded projection the H-Ras WT

energy landscape in great detail and has concluded that the EA mapping the H-Ras

WT energy landscape reproduces the two, large basins corresponding to the two

states, On and Off, between which H-Ras switches to regulate its activity in the

cell. In addition, the map contains novel low-energy regions not probed in the wet

laboratory for H-Ras WT, some of which we analyze in detail here. However, we

now do so by considering more than two dimensions.

While important features can be preserved (and thus analyzed and subjected to

interpretation) in a 2D projection, other features can be hidden by the projection.

Note that, though the top two PCs capture around 45−50% of the variance of the

experimentally-known structures for each protein, essentially 50% of the dynamics

is hidden when projecting the computed maps onto two dimensions. Moreover,

the ruggedness of the energy landscape requires careful preparation of the large

number of points in a computed map when visualizing them after projection. The

above projections for SOD1 and CaM, for instance, are visualized after ordering the

points from high to low-energy, so that the low-energy ones are plotted on top of

the high-energy ones to prevent occlusion.

Below we relate conditioned plots for the H-Ras WT multi-dimensional map com-

puted by the EA; the plots are constructed as described in the Methods section. The

projections are along PC1 and PC2, and the data are conditioned on each of the 4

quartiles of PC3 and PC4. It is worth noting that the top 4 PCs capture more than

75% of the variance, and thus almost all of the dynamics of H-Ras. The quartile

intervals for PC3 and PC4 each have roughly 222, 580 data points for H-Ras WT.

Table 2 shows the number of cases in common to a chosen quartile of PC3 and a

chosen quartile of PC4. The left top panel of Figure 5 shows a hexagon bin plot

along PC1 and PC2 conditioned on the first quartile of PC3 and the first quartile of

PC4 (containing 70, 908 individuals, as related in Table 2). The color scheme uses

color thresholds based on the binned quantiles of cell minimum-energy distributions

without subsetting. Quantiles of {0, 20, 60, 99, 100}% correspond to Rosetta score12

values of {−374,−348,−321,−115,−18} REUs. The corresponding color-scheme is

{dark blue, light blue, gray, pink}; yellow is reserved to show projections of the
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experimentally-known structures collected for H-Ras. The right bottom panel of

Figure 5 shows the shift of the minimum-energy patterns, as different subsets of

the data are inspected per the 16 two-way conditioned plot layout. In particular,

several interesting observations can now be drawn regarding the location of energy

basins that the above 2D color-coded projections of the maps did not allow.

Since the hexagonal binning effectively smooths the ruggedness of the mapped

energy landscape, two distinct basins can clearly be seen without the noise due to

the ruggedness. The basins are most visible on the PC1-PC2 scatter plots along

the second quartile of PC3 and the second or third quartile of PC4 (the [PC3:Q2;

PC4:Q2-3] views). The basins reach deep in the energy landscape, as some of the

conditioned plots show (for instance, along PC3:Q2 and PC4:Q2-3). The On basin

(the dark blue region on the right) persists along all quartiles of PC4 (see first

column of the 16-plot layout Figure 5) but disappears quickly after the second

quartile of PC3. No basins are visible on the third and onwards quartiles of PC3

and PC4. The Off basin (dark blue region on the left) is located (and is most visible)

on [PC3:Q2; PC4:Q2-3] views.

The experimentally-known structures appear on different quartiles of PC3 and

PC4. Specifically, the majority can be found no further than the second quartiles of

PC3 and PC4. This observation is particularly interesting, as the portion of the On

basin that continues onto the third quartile of PC4 (and second quartile of PC3)

does not contain any experimentally-known structures in it. This portion of the On

basin is in effect a novel region of the H-Ras WT energy landscape not currently

probed in the wet laboratory. As such, the structures in this region constitute a novel

stable region that is worth pursuing further in the wet laboratory, particularly in the

context of designing drug inhibitors for H-Ras. Similar observations can be drawn

regarding portions of the Off basin along specific quartiles, where no experimentally-

known structures reside.

Comparison of maps and basin-basin excursions of H-Ras WT and variants

Maps and structural excursions computed by the proposed methodology on H-Ras

are now investigated in greater detail. A comparative setting is pursued to under-

stand dfferences between H-Ras WT and 7 disease-related variants, five of which

are single mutants, and two are double mutants. The H-Ras sequences are listed in

column 1 in Table 3. The standard naming convention [Code1][Position][Code2] for

a single-mutant variant relates that the amino acid named ’Code1’ (using one-letter

amino-acid codes) at position ’Position’ in the WT is replaced with the amino acid

named ’Code2’ in this particular variant. In other variants, the additional mutations

are joined in order of positions; e.g. Y32CC118S.

The EA described in the Methods section is employed to obtain maps for each of

the 8 H-Ras sequences. The maps are then queried to compute the lowest-cost paths

and other low-cost paths (as described in the Methods section) connecting a struc-

ture representative of the On state (PDB id 1QRA) to a structure representative of

the Off state (PDB id 4Q21) in each of these 8 H-Ras sequences, effectively mod-

eling the On→Off structural excursion. Two values of max nn dist are considered,

corresponding to 1.45Å/10 and 1.45Å/7.5, where 1.45Å is the lRMSD between the

CA atoms of the structures selected to represent the On and Off states.
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Summary statistics for the lowest-cost path and the ensemble of low-cost paths

computed on each of the 8 H-Ras sequences are shown in Tables 3 and 4. The low-

cost paths (and maps) are also shown on color-coded 2D projections for selected

sequences (WT in Fig. 6, G12C in Fig. 7, Q61L in Fig. 8, and Y32CC118S in Fig. 9).

Color-coded 2D projections of maps and paths computed for the other variants

are related in the Additional Files 1-4. Summary statistics on paths modeling the

(reverse) Off→On structural excursion are related in the Additional Files 6-7.

Table 3 compares the lowest-cost On→Off path for each of the 8 H-Ras sequences.

The cost of the path, the highest energy among structures in the path, and the num-

ber of edges in the path are listed in columns 3-5. The lowest-cost path on each

H-Ras sequence has been queried off the EA-built map under the two different val-

ues for max nn dist listed above. The lower value makes it harder to find paths, as

indicated by the higher costs and the lack of paths on any sequence but the WT in

Table 3. The higher value allows finding more paths, and even lower-cost paths, as

the ruggedness of the energy landscape within a ball of radius max nn dist is effec-

tively ignored. Since the higher setting of max nn dist still corresponds to a very

small distance between two successive structures (1.45Å/7.5) and allows obtaining

low-cost paths on both WT and variants, the paths shown on 2D projections of the

computed maps are those computed for max nn dist set to 1.45Å/7.5. Additional

File 5 shows the paths that are obtained on H-Ras WT on the lower, more strin-

gent value of 1.45Å/10 for max nn dist. The paths are higher in cost, as described

above, but they navigate similar regions in the landscape as the paths computed at

the less stringent distance of 1.45Å/7.5.

Comparison of the lowest-cost path found for each of the 8 H-Ras sequences at

the less stringent distance allows drawing the following conclusion: The majority

of the single mutants (with the exception of Q61L and G12V) incur a significantly

higher energetic cost for the On→Off structural excursion. This points to a higher

energetic barrier separating the On and Off states, which is also visible on many

of the 2D projections of the maps built for these variant sequences. The latter is

particularly prominent for the G12C variant and can additionally be qualitatively

confirmed by comparing the color-coded 2D projection of the H-Ras WT map in

Fig. 6 to the 2D projection of the H-Ras G12C map in Fig. 7.

While the results related in Table 3 are informative, they do not take into account

the stochasticity of protein motions. Summary statistics on the ensemble of low-cost

paths, computed as described in the Methods section, are listed in Table 4 for each

of the 8 H-Ras sequences. The comparison of the average cost and average highest-

energy along structures in paths generally preserves the ordering of the variants on

the lowest-cost paths above. The only variant where this is not the case is Q61L,

where a lowest-cost path even lower than in the H-Ras WT can be found, but this

path is an outlier compared to the ensemble. The rest of the low-cost paths found for

Q61L are much higher in cost, contributing to an average statistic of 161.3 REUs,

which is among the highest (the highest average cost is obtained on the G12C

variant) when compared to the WT and other variants. This conclusion is in line

with qualitative observations made in [33] and similar ones based on visualization

of the 2D projection of the energy landscape map in Fig. 8; a high energy barrier

between the On and Off basins in the Q61L variant contributes to a structural
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rigidity in Q61L that effectively causes Q61L to be constitutively activated (always

on). The same mechanism is observed on the majority of the variants of H-Ras here.

H-Ras variants where the mutation has a profound impact on the cost of the

On→Off structural excursion are those where G12 is mutated to S, C, or D. The

higher average path costs over the H-Ras WT for these variants can be also be

confirmed by the color-coded 2D projections of the computed maps. For instance,

Fig. 7 shows that the entire landscape is elevated in G12C, as many structures

become more costly; the On−Off barrier is also higher than in the WT, contributing

to the higher average cost for the On→Off excursion. This observation holds on

G12S and G12D, as well. In particular, in the G12S variant, whose 2D projection

of the map and paths are shown in the Additional File 1, the On basin is very deep,

effectively trapping this variant in the On/GTP-binding state. The G12C is also

trapped in the On state, but that is due to everything else in the landscape being

much more energetically costly. G12V is the only G12* variant where the average

cost (and the landscape) is not significantly different from the WT (the paths and

the landscape are shown in the Additional File 2). This result is in agreement with

an earlier study, where the G12V mutation is proposed to have a subtle effect more

on the binding than the energy landscape of the uncomplexed H-Ras variant [33].

Visualization of the maps via color-coded 2D projections reveals an additional

interesting energetic feature. G12C, G12S, and the double mutants Y32CC118S

and R164AQ165V populate two more regions, distinct from the On and Off basins,

with lower-energy structures than the WT, G12V, G12D, and Q61L (the maps for

G12S/D and R164AQ165V are provided in the Additional Files 1, 3, and 4, respec-

tively). Preliminary evidence of these regions was related by us in prior work on

analysis of a first-generation version of our EA on H-Ras WT, G12V, and Q61L [33].

However, in [33], these regions were not exploited as well. These regions, dubbed

Conf1 and Conf2 in [33] (Conf1 corresponds to PC1 in [−3, 0] and PC2 in [36], and

Conf2 corresponds to PC1 in [−9,−6] and PC2 in [1215] in the 2D projections), are

populated with very low-energy structures by the EA employed here in the H-Ras

G12C, G12S, Y32CC118S, and R164AQ165V variants. The regions constitute new

basins, effectively, in these variants. It is interesting that the Conf1 basin emerges

only on the G12C/S mutations and not on the G12V mutation, particularly consid-

ering that the structure caught in the wet laboratory for the G12V variant projects

to this region of the structure space. This is a novel finding of our methodology and

suggests that perhaps the relationships regarding shared molecular function profiles

between the G12* variants and these double mutants ought to be investigated in

greater detail in the wet laboratory.

Finally, it is worth noting that the Conf1 region is populated well by the dou-

ble mutants, as well. In particular, the Conf1 basin is deeper in the Y32CC118S

variant (see Fig. 9), as expected, given that this region contains projections of wet-

laboratory structures caught for this variant (thus representing a stable state). This

basin is also deep in the R164AQ165V variant (see the Additional File 4). How-

ever, both double mutants have a higher energy barrier and a shallower off basin

than the WT (see Fig. 9 for the Y32CC118S variant, and the Additional File 4

for the R164AQ165V variant), which results in higher-cost On→Off excursions, as

related in Table 4, effectively rigidifying these variants. The latter explains the loss

of GTP-binding activity noted for the R164AQ165V variant.
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Discussion
The results presented here suggest that an increasingly detailed picture is emerging

of the H-Ras energy landscape. The two-basin feature of the H-Ras energy land-

scape has been elucidated in both wet and dry laboratories; extensive computational

studies by McCammon and colleagues via MD methods have both verified the exis-

tence of these two basins and the energy barrier separating them [60]. The two-basin

characteristic has also been reproduced via prior versions of the EA algorithm em-

ployed here that did not make use of a map but rather analyzed all structures ever

generated. The graphical techniques employed in this paper to analyze the map

constructed by the proposed methodology provide for the first time a highly de-

tailed view of the multi-dimensional H-Ras energy landscape. In particular, Fig. 5

shows not only how the On and Off basins elongate along the third and fourth

dimensions, but also clarify which regions of this multi-dimensional space provide

interesting new energetic features not captured in other laboratories. For instance,

as described in detail in the Results section, a significant portion of the On basin

that continues onto PC4:Q3 (and PC3:Q2) does not contain any experimentally-

known structures. Effectively, this represents a new region of the H-Ras energy

landscape that is reported to be associated with the stable on structural state by

the EA employed here but has yet to be captured in the wet laboratory.

The graphical techniques employed here also allow making comparative observa-

tions regarding the depth and width of the On and Off basins. The layout of the

16 two-way conditioned plots in Fig. 5 shows that the On basin is both wider and

deeper than the Off basin (this observation can also be made, though less reliably,

on the 2D projection of the energy landscape in Fig. 6). The [PC3:Q3-4; PC4:Q3-4]

views in Fig. 5 join the two basins, effectively showing the landscape at the higher

energy levels. As one proceeds deeper in the landscape, the regions separate to yield

the distinct On and Off basins; energy barriers appear along [PC3:Q1-2; PC4-Q*].

The higher width of the On basin points to the higher stability of this basin; that

is, the temporal scale of structural excursions of H-Ras from the On to the Off state

will be dominated by diffusions within the deep and broad On basin.

The juxtaposition of maps and On→Off structural excursions for the H-Ras WT

and the 7 single- and double-mutant variants in the Results section elucidates,

among other things, that two new basins emerge on the landscapes of some single-

and double mutants, referred to as Conf1 and Conf2. In particular, these are ob-

served to be richly populated in G12C, G12S, and the double mutants, but poorly

populated on the other variants and H-Ras WT.

Fig. 10 provides a 3D view of the lowest-energy structures (falling in the 1st per-

centile of the energy distribution) in the map computed for H-Ras WT and the

experimentally-known structures by projecting them onto the top three PCs. Pick-

ing a lower percentile loses the range of the PCs, which we want to retain in order to

show projections of all the experimentally-known structures (drawn as red spheres).

The 3D space is partitioned into truncated octahedron cells, as advocated by Carr

in [61], and one sphere is drawn at the centroid of each cell. The color and size of

a sphere is based on the minimum energy value in the corresponding cell. Three

energy intervals are observed for H-Ras WT in this way: [−37.442− 367.286] REUs

(large blue spheres), (−367.286− 350.180] REUs (smaller green-blue spheres), and
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(−350.180 − 330.102] REUs (small violet spheres). The interval boundaries corre-

spond to the 0%, 0.005%, 0.02%, and 1% percentiles. The approximate locations of

the On, Off, Conf1, and Conf2 basins are delineated in blue in Fig. 10. The PDB

ids of selected experimentally-known structures are also annotated.

Comparison of Fig. 5 and Fig. 10 shows that the Conf1 and the On basins are

merged together by structures with slightly higher energy values (a few REUs in

score12). In [33], where an early version of the EA is employed (with narrow ini-

tialization, no map, and a budget-fixed improvement operator), these structures

effectively merging the On and Conf1 basin in the WT are not reported, as the

earlier EA has lower exploitation capability. In contrast, the 2D maps of the G12C

and the double mutants show Conf1 to be separated by an energy barrier from the

On state rather than merged into the On state as in the WT, and to also protrude

deeper in the energy landscape than in the WT.

The experimentally-known structure with PDB id 1LF0 sits in the region of the

structure space corresponding to the Conf1 basin in the variants and the elongated

On basin in the WT (see Fig. 10). This structure has been captured for the H-

Ras A59G variant in the active/On state [62]. A 20-ns unbiased MD simulation

in [63] has noted that this structure may mediate the On→Off switching in the

A59G variant. The intermediate role of this structure is confirmed by the EA here,

as this structure is reported to be low-energy for the H-Ras WT and part of the

elongated On basin. However, none of the low-cost paths computed for the WT

directly employ this structure, as the work-based cost does not promote diffusing in

a basin. The in-basin diffusion may explain why this structure has not been captured

as an intermediate for the WT during the On→Off excursion in the wet laboratory;

it is only in H-Ras variants that an energy barrier gives rise to the distinct Conf1

basin. This barrier may trap variants in Conf1 long enough for this structure to

be caught in wet laboratories. Interestingly, another structure, with PDB id 1LF5

(residing in the Off basin in Fig. 10), has been caught for A59G in the Off state.

Taken together, the comparative analysis suggests that the wide On basin retreats

in the variants, and an energy barrier splits it into two basins, a narrower On basin

and Conf1. The H-Ras WT, once outside the wide On basin, may switch to the

stable Off basin or a semi-stable basin observed most clearly in the [PC3:Q1; PC4-

Q1] view. This basin sits at the top of the map, in between the On and Off basins,

and is referred to as the Conf2 basin. Conf2 is not populated by the lowest-energy

structures, but it does contain low-energy structures and two experimentally-known

ones. The latter are reported in the PDB under ids 1Q21 and 2Q21. The structure

with PDB id 1Q21 is reported as active/On for the WT , whereas that with PDB

id 2Q21 is reported as active/On for the G12V variant [64]. The structures are

very similar, as noted in [64], and differ mainly in the configuration of the side-

chain at position 12, confirming the proximity of these two structures in the PC

variable space in Fig. 10 (found at [-9,-6] in PC1 and [12, 15] in PC2). The work

in this paper again confirms that these two structures are functional for the WT

from a thermodynamic availability point of view, but perhaps difficult to access

within physiological temporal scales due to the high-energy barriers that surround

the Conf2 basin. The juxtaposition of the H-Ras WT to the variants in the Results

section shows that the Conf2 basin is richly populated in G12C, G12S, and the
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double mutants. In particular, it is wider and protrudes deeper in the energy land-

scape for G12C and G12S but not G12V. This is an interesting finding that points

to further work in the wet laboratory, as it suggests a novel function regulation

mechanism that can be modulated via inhibitors.

The comparison of landscapes and path ensembles across the H-Ras variants pro-

vides observations that not only validate and reconcile wet-laboratory findings but

may also be useful to further investigation in the wet-laboratory on understanding

mutations and designing inhibitors to disrupt aberrant activity [65]. For instance, in

addition to the analysis above, a conclusion can be reached regarding the structure

with PDB id 6Q21; the asymmetric unit (chain D) of this structure is projected

and shown in the 3D view in Fig. 10. This structure is reported for the H-Ras WT

in [66]. This unit is in a slightly different structure than the canonical on state (PDB

id 1QRA), providing in [66] the earliest evidence of the structural flexibility of H-

Ras WT. Fig. 10 shows that the structure captured for the WT in PDB id 6Q21 is

in a region of the energy landscape populated by low-energy structures part of the

elongated On basin in H-Ras WT. The increases in costs reported here associated

with structural excursions of H-Ras variants correspond to increases in the time it

takes to undergo the excursion at equilibrium. Since molecular recognition events

occur at carefully-calibrated temporal scales, any disruption to temporal scales is

consequential for molecular recognition events, and thus normal biological activity

in the cell.

Conclusions
This paper introduces a novel methodology to map a protein’s energy landscape and

model equilibrium dynamics. Rather than simulate the dynamics of the covalently-

bound network of atoms in a protein molecule, the proposed methodology relies on

stochastic search to obtain a sample-based representation of the constrained struc-

ture space relevant for the dynamics, and then employs discrete search structures

to summarize the dynamics. An EA is employed to map the multi-dimensional en-

ergy landscape of a protein, and a nearest-neighbor graph representation of the

map is then queried to reveal energetically-feasible successions of structures medi-

ating structural excursions of interest. Analysis of applications on several proteins

of importance to human biology and disease suggests the proposed methodology is

useful in understanding the relationship between protein structure, dynamics, and

function with a practical computational budget.

While obtaining a detailed characterization of protein equilibrium dynam-

ics remains a challenge in silico, the work here exploits the wealth of struc-

ture data and novel randomized search strategies to enhance exploration of the

thermodynamically-available structure space. The exploitation of structure data is

a powerful and timely mechanism to map the structure space of a protein. The

availability of wet-laboratory structures representing semi-stable and stable struc-

tural states for many proteins allows formulating algorithms that can map energy

landscapes within a reasonable computational budget, as demonstrated here.

The work presented here opens up several promising directions for future re-

search. One direction concerns lowering the dependency of the methodology on

sufficient structure data, as well as expanding its applicability to systems where
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experimentally-known structure reside in a non-linear low-dimensional space. The

first can be addressed via techniques such as Normal Mode Analysis, already inte-

grated with some success in robotics-inspired modeling of protein motions [67–70].

The second can be addressed via linear dimensionality reduction techniques.

Another direction of future research concerns improving the predictions of the

locations and depths of mapped basins by employing various energy functions. This

direction aims to increase the reliability of in-silico predictions. Considering multiple

energy functions remains challenging, however, as considerable recoding efforts are

required to efficiently integrate such functions in in-house code.

All data obtained by the proposed methodology and analyzed here are available

to the research community upon request. Similarly, any components of the proposed

methodology can be shared as linux binaries.
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Figures

Figure 1 Run time profiling. The break-down of the run time along each of the three main
components of the methodology is shown for SOD1, CaM, and H-Ras WT. The path query time
refers to the proportion of running time spent on computing the lowest-cost path.

Figure 2 Crossover evaluation. The top panel shows the average fitness/energy among
individuals in the hall of fame list (map), as the map is updated over generations. The bottom
panel shows the average diversity among individuals in the hall of fame (measured via Euclidean
distance) as the map is updated over generations.

Figure 3 Visualization in 2D of map and a lowest-cost path computed for SOD1. The
computed map for SOD1 is projected onto 2D and projections are color-coded by Rosetta score12
energy values. Black dots show projections of experimentally-known structures. A lowest-cost path
connecting the two visible basins is additionally drawn. Its cost (in REUs) is also listed.

Figure 4 Visualization in 2D of map and a lowest-cost path computed for caM. The computed
map for CaM is projected onto 2D and projections are color-coded by Rosetta score12 energy
values. Black dots show projections of experimentally-known structures. A lowest-cost path
connecting two experimentally-known structures is also drawn; its cost (in REUs) is listed. The
PDB ids of the structures the path connects, as well as other experimentally-known structures of
interest, are additionally shown where these structures project onto the top two PCs.

Figure 5 Visualization via conditioning plots of map computed for H-Ras WT. The map
computed for the H-Ras WT is visualized via conditioning plots, which plot projections of the hall
of fame on PC1 and PC2 conditional on projections on PC3 and PC4. Sixteeen plots are
generated, considering combinations of all quartiles of PC3 with all quartiles of PC4. The 4D
space in each subplot is discretized via hexagons, plotting for each hexagon only the projection of
the lowest-energy individual in the hexagon. The blue-to-red color-coding scheme follows the low
to blue energy range. Dots in yellow show PC1-PC2 projections of experimentally-known
structures of H-Ras WT.

Figure 6 Visualization in 2D of map and paths computed for H-Ras WT. The computed map
for H-Ras WT is projected onto 2D and projections are color-coded by Rosetta score12 energy
values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural excursion are
also drawn. The projections of experimentally-known structures on the top two PCs are related by
showing whether the structures are captured in the wet laboratory for the WT or variants.

Figure 7 Visualization in 2D of map and paths computed for H-Ras G12C. The computed map
for the H-Ras G12C variant is projected onto 2D and projections are color-coded by Rosetta
score12 energy values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural
excursion are also drawn. The projections of experimentally-known structures on the top two PCs
are related by showing whether the structures are captured in the wet laboratory for the WT or
variants.
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Figure 8 Visualization in 2D of map and paths computed for H-Ras Q61L. The computed map
for the H-Ras Q61L variant is projected onto 2D and projections are color-coded by Rosetta
score12 energy values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural
excursion are also drawn. The projections of experimentally-known structures on the top two PCs
are related by showing whether the structures are captured in the wet laboratory for the WT or
variants.

Figure 9 Visualization in 2D of map and paths computed for H-Ras Y32CC118S. The
computed map for the H-Ras Y32CC118S variant is projected onto 2D and projections are
color-coded by Rosetta score12 energy values. Low-cost paths (costs in REUs are listed) modeling
the On→Off structural excursion are also drawn. The projections of experimentally-known
structures on the top two PCs are related by showing whether the structures are captured in the
wet laboratory for the WT or variants.

Figure 10 Visualization in 3D of map computed for H-Ras WT. The lowest-energy structures in
the map computed for H-Ras WT are shown projected onto the top 3 PCs. Projections of the
experimentally-known structures are also drawn, as red spheres of a larger radius. The PDB ids of
some of these structures are also shown. The four basins that emerge on the WT and the various
variants are also delineated and named per the convention described in the main text.
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Tables

Table 1 Map build run time across SOD1, CaM, and H-Ras sequences.

Sequence |Map| Time (CPU Days)
SOD1 669, 102 13
CAM 170, 570 9.5
H-Ras WT 890, 391 9
H-Ras G12S 699, 265 7
H-Ras G12C 704, 610 10
H-Ras G12D 694, 739 8
H-Ras G12V 649, 006 7
H-Ras Q61L 602, 893 7
H-Ras C32YS118C 693, 567 8
H-Ras R164AQ165V 559, 862 7

Table 2 Distribution of H-Ras WT individuals along PC3 and PC4 quartiles

PC3
PC4 Q1 Q2 Q3 Q4
Q1 70, 908 57, 038 54, 913 39, 723 222, 582
Q2 59, 644 57, 896 54, 655 50, 387 222, 582
Q3 51, 601 56, 742 56, 261 57, 971 222, 575
Q4 40, 430 50, 908 56, 748 74, 494 222, 580
Q5 222, 583 222, 584 222, 577 222, 575 890, 391

Table 3 Comparison of lowest-cost on→off path across H-Ras WT and variants

Sequencemax nn dist (Å) Path Cost (REU) Highest Energy (REU) Nr. Edges

WT
1.45/10 266 -251 90
1.45/7.5 108 -299 56

G12S
1.45/10 – – –
1.45//7.5 130 -230 26

G12C
1.45/10 – – –
1.45//7.5 232 -150 66

G12D
1.45/10 – – –
1.45//7.5 119 -277 51

G12V
1.45/10 – – –
1.45//7.5 109 -276 72

Q61L
1.45/10 – – –
1.45//7.5 85 -263 62

Y32CC118S
1.45/10 – – –
1.45//7.5 131 -265 54

R164AQ165V
1.45/10 – –
1.45//7.5 131 -277 72

Table 4 Comparison of ensemble of low-cost on→off paths across H-Ras WT and variants

Sequencemax nn dist (Å) (µ, σ)Cost (REU) (µ, σ)HighestEnergy (REU) (µ, σ)Nr.Edges

WT
1.45/10 (418.3, 106.) (-203.5, 25.1) (101.3, 16.1)
1.45/7.5 (127.6, 7.90) (-277.3, 15.2) (64.2, 15.6)

G12S
1.45/10 – – –
1.45/7.5 (143, 40.9) (-259, 92) (73, 22)

G12C
1.45/10 – – –
1.45/7.5 (266.4, 18.2) (-139.3, 24.4) (60, 9.8)

G12D
1.45/10 – – –
1.45/7.5 (140.4, 15.5) (-253.9, 15.9) (54.6, 8.6)

G12V
1.45/10 – – –
1.45/7.5 (132.3, 13.5) (-236.3, 83.4) (64.6, 13.)

Q61L
1.45/10 – – –
1.45/7.5 (161.3, 45.2) (-240.7, 21.8) (64.1, 9.2)

Y32CC118S
1.45/10 – – –
1.45/7.5 (158.2, 18.9) (-257.5, 18.1) (63.9, 10.2)

R164AQ165V
1.45/10 – – –
1.45/7.5 (159.7, 21.3) (-245.6, 23.8) (65.9, 7.1)



Sapin et al. Page 31 of 31

Additional Files

Additional File 1

Visualization in 2D of Map and Paths Computed for H-Ras G12S. The computed map for the

H-Ras G12S variant is projected onto 2D and projections are color-coded by Rosetta score12 energy values. Low-

cost paths (costs in REUs are listed) modeling the On→Off structural excursion are also drawn. The projections

of experimentally-known structures on the top two PCs are related by showing whether the structures are captured

in the wet laboratory for the WT or variants.

Additional File 2

Visualization in 2D of map and paths computed for H-Ras G12V. The computed map for the

H-Ras G12V variant is projected onto 2D and projections are color-coded by Rosetta score12 energy values. Low-

cost paths (costs in REUs are listed) modeling the On→Off structural excursion are also drawn. The projections

of experimentally-known structures on the top two PCs are related by showing whether the structures are captured

in the wet laboratory for the WT or variants.

Additional File 3

Visualization in 2D of map and paths computed for H-Ras G12D. The computed map for the

H-Ras G12D variant is projected onto 2D and projections are color-coded by Rosetta score12 energy values. Low-

cost paths (costs in REUs are listed) modeling the On→Off structural excursion are also drawn. The projections

of experimentally-known structures on the top two PCs are related by showing whether the structures are captured

in the wet laboratory for the WT or variants.

Additional File 4

Visualization in 2D of map and paths computed for H-Ras R164AQ165V. The computed map

for the H-Ras R164AQ165V variant is projected onto 2D and projections are color-coded by Rosetta score12 energy

values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural excursion are also drawn. The

projections of experimentally-known structures on the top two PCs are related by showing whether the structures

are captured in the wet laboratory for the WT or variants.

Additional File 5

Visualization in 2D of map and (finer-resolution) paths computed for H-Ras WT. The

computed map for H-Ras WT is projected onto 2D and projections are color-coded by Rosetta score12 energy

values. Low-cost paths (costs in REUs are listed) modeling the On→Off structural excursion are also drawn, now

using a more stringent distance criterion for two successive structures in the path. The projections of experimentally-

known structures on the top two PCs are related by showing whether the structures are captured in the wet

laboratory for the WT or variants.

Additional File 6

Comparison of lowest-cost off→on path across H-Ras WT and variants. Column 1 lists the

different H-Ras sequences investigated. The two different values used in the query of the map are listed in column

2. The cost of the path, the highest energy among structures in the path, and the number of edges in the path

are listed in columns 3-5.

Additional File 7

Comparison of ensemble of low-cost off→on paths across H-Ras WT and variants. Column

1 lists the different H-Ras sequences investigated. The two different values used in the query of the map are listed

in column 2. Columns 3-5 show summary statistics, such as mean and standard deviation, are reported for path

cost, highest energy over structures in a path, and the number of edges in a path.


