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Abstract

Background: Many problems in protein modeling demand obtaining a discrete representation of the protein

conformational space in terms of an ensemble of conformations. In ab-initio structure prediction, in particular,

where the goal is to predict the native structure of a protein chain given its amino-acid sequence, the ensemble

needs to satisfy energetic constraints. Given the thermodynamic hypothesis, an effective ensemble contains

low-energy conformations near the native structure. The high-dimensionality of the conformational space and

the ruggedness of the underlying energy surface currently make it very difficult to obtain such an ensemble.

Recent studies have proposed that Basin Hopping is a promising probabilistic search framework to obtain a

discrete representation of the protein energy surface in terms of local minima. The framework, where a structural

perturbation is followed by an energy minimization to hop between nearby minima in the energy surface, has been

shown effective in obtaining conformations near the native structure for small systems. Recent work by us has

extended this framework to larger systems through employment of the molecular fragment replacement technique,

resulting in rapid sampling of large ensembles.

Methods: Here we conduct a detailed investigation of the algorithmic components in Basin Hopping to both

understand and control their effect on the sampling of near-native minima. Realizing that such an ensemble is

reduced before further refinement in full ab-initio protocols, we take an additional step and analyze the quality of

the ensemble retained by ensemble reduction techniques. We propose a novel multi-objective technique based on

the Pareto front to filter the ensemble of sampled local minima.
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Results and conclusions: We show that controlling the magnitude of the perturbation allows directly con-

trolling the distance between consecutively-sampled local minima and in turn steering the exploration towards

conformations near the native structure. In minimization, we show that a simple greedy search is just as effective

as Metropolis Monte Carlo-based minimization. Finally, we show that the multi-objective filter is particularly

effective at efficiently reducing the ensemble of sampled local minima and obtains a simpler representation of the

probed energy surface.

Background

Many problems in protein modeling demand obtaining a discrete representation of the protein conformational

space in terms of an ensemble of conformations. In the ab-initio structure prediction problem, in particular,

where the goal is to predict the native structure of a protein chain given its amino-acid sequence, the

ensemble needs to satisfy certain energetic constraints. Under the thermodynamics treatment [1], the native

structure is located at the basin of a funnel-like energy surface [2,3]. Thus, search algorithms that generate

conformations and are guided towards low-energy ones by a potential energy function should obtain an

effective ensemble containing low-energy conformations near the native structure. This is predominantly not

the case due to the size and high-dimensionality of the protein conformational space and the ruggedness of

the underlying energy surface [4]. Despite these challenges, computational research is needed to close the

growing gap between the wealth of protein sequence data and the scarce information on native structures.

Obtaining structural information ab initio promises to elucidate the structure-function relationship and

advance structure-driven studies of biological function and drug design [5–7].

The two predominant reasons that it is challenging to obtain a conformational ensemble near the (un-

known) native structure of a protein are poor sampling capability by the search algorithm and inaccuracies

in the energy function employed by this algorithm to probe low-energy regions of the energy surface. Lim-

ited sampling capability is to be expected when considering a vast high-dimensional search space. For the

purpose of illustrating this point, consider a protein chain of n amino acids. Each amino acid contains a

group of atoms. A shared subset among all known amino acids, known as backbone atoms, defines the main

backbone thread that runs through the protein chain. Even if focusing on modeling only this thread and

its spatial arrangements, which we refer to as conformations, the space populated by these conformations

has many dimensions. There are 4 heavy backbone atoms per amino acid. A cartesian representation would

define a 4 ∗ 3n-dimensional space. One can reduce this down to a 3n- or a 2n-dimensional space if instead
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of maintaining cartesian coordinates, only backbone dihedral angles are maintained to represent a confor-

mation. For a small protein of 30 amino acids, the conformational space has at least 60 dimensions in this

angular representation.

The high-dimensionality of the search space favors certain approaches to the problem of obtaining an

ensemble of conformations near the native structure in a reasonable amount of time. Methods based on

the Molecular Dynamics (MD) approach simulate the actual folding process where a protein slowly tumbles

down the energy surface from its unfolded to the folded native state. Simulating folding kinetics demands

very small moves in the energy surface in order to retain accuracy when integrating equations of motions. For

this reason, MD-based approaches demand significant computational resources (e.g., Folding@Home) and/or

specialized hardware (e.g. Antoine) [8,9]. Sacrificing information on folding kinetics and conducting instead

global (energy) optimization is useful and justified under the thermodynamics treatment. Optimization-

based approaches can obtain native conformations orders of magnitude faster than approaches that simulate

folding pathways [10]. Many of these approaches follow the Monte Carlo (MC) approach in order to enhance

their sampling capability over the MD approach. The complexity of the protein energy surface still presents

a significant challenge for MC-based approaches, especially on medium-size proteins [4]. For this reason,

research into development and analysis of stochastic optimization algorithms for conformational search is

very active [11].

A unifying strategy among many stochastic optimization techniques for ab-initio structure prediction

is the sampling of a large number of low-energy conformations. The emphasis on the size is due to the

fact that many local minima may be present in the energy surface, particularly in those constructed by

current functions available to measure the potential energy of a protein conformation. Predominantly, the

conformations are end points of many independent MD or MC trajectories locally optimizing some chosen

coarse-grained energy function. In full ab-initio protocols, stochastic optimization with a coarse-grained

energy function constitutes only stage one. After the ensemble of low-energy conformations is obtained,

often referred to as decoys, the decoy ensemble is reduced in preparation for a second stage of optimization.

The reduction employs either filtering by energies or grouping by structural similarity through clustering-

based techniques. The purpose of the reduction is to reveal a subset of conformations representing local

minima that are worth optimizing further at greater structural detail and through some finer-grained energy

function in order to improve their proximity to the native structure [5, 12,13,13–17].

While successful on many small-to-medium proteins, current approaches are bound by the accuracy of the

employed energy function. Many studies analyze the inherent errors due to approximations in state-of-the-art
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energy functions [18]. These errors are responsible for deviations between the reported global minimum of an

energy function and the experimentally-determined structure. Some studies report that deviations can vary

between 2-4Å [10]. In this context, approaches that aim to obtain a broad view of different low-energy local

minima are more appropriate, particularly if they are to be followed by detailed heavy-duty optimization

techniques on select minima.

In most MC-based methods, the broad view is obtained by launching many independent MC trajecto-

ries. In another approaches, the trajectories are integrated into a tree-based or population-based search

framework, maintaining a broader view and thus a more diverse decoy ensemble by employing analysis of

the ensemble to effectively guide the search towards relevant regions of the search space [19–22]. In robotics-

inspired approaches, a tree of conformations grows in conformational space [19, 20], and low-dimensional

embeddings of the energy surface and conformational space are used to collect online statistics with which to

adaptively bias the search towards low-energy regions and away from over-sampled regions. In evolutionary-

inspired approaches [21, 22], multi-objective analysis of energy terms is used to guide the search towards

a diverse population of conformations. Currently, this multi-objective analysis is applied only to all-atom

representations and applied to very small proteins.

None of the above methods explicitly sample local minima in the energy surface. They rather rely on

some post-analysis to group conformations together to identify captured local minima. Recent studies by

us and others have proposed that Basin Hopping (BH) is a promising stochastic optimization framework to

directly obtain a discrete representation of the protein energy surface in terms of local minima [23–25]. The

framework was originally introduced to obtain the Lennard-Jones minima of small atomic clusters [26]. The

motivation for the BH framework in [26] was from evolutionary search algorithms, such as Iterated Local

Search (ILS). ILS consists of iterated applications of perturbation followed by local search and is popular

for solving discrete optimization problems [27]. An adaptation of ILS for molecular modeling introduces a

Metropolis-like criterion to bias the sampling of local minima towards lower energy ones over time.

Algorithmic realizations of BH were available before, most notably in the MC with Minimization al-

gorithm [28, 29]. BH algorithms essentially differ in how they implement perturbation and minimization.

Perturbation predominantly modifies atomic coordinates, and minimization is either a gradient descent or

a Metropolis MC at low temperature. BH algorithms have been applied to capture local minima of small

atomic clusters and map the energy surface of polyalanines and model other small proteins [10,30–32].

The BH framework has gained new attention for protein structure prediction [23–25]. In [23], the per-

turbation changes cartesian coordinates by values sampled uniformly at random over a small range. The
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minimization is implemented through a gradient descent of a selected coarse-grained energy function. The

resulting BH algorithm succeeds in locating both lower-energy minima and conformations closer to the

experimentally-determined native structure than MD with Simulated Annealing on small proteins. On se-

quences longer than 75 amino acids, the efficiency decreases [23].

Recent work by us addresses this issue and extends the applicability of the BH framework to longer protein

sequences by employing the molecular fragment replacement technique [24, 25] (detailed in the Methods

section). Application of the resulting BH algorithm shows that the obtained proximity to the known native

structure is similar to that reported by many state-of-the-art structure prediction protocols. It is worth

noting that the BH algorithm in [25] employs a coarse-grained energy function and is intended to be the

first step in a structure prediction protocol that then further refines select minima.

Given the newly-gained attention and promise of the BH framework for structure prediction, it is impor-

tant to obtain a deeper understanding and assess the components and efficiency of this framework. While

some studies into the efficacy of different perturbation moves for identifying low-energy isomers of small Si

and CU clusters exist in the computational physics community [33], no such study is available for proteins.

In this work we offer a detailed analysis of the BH framework in the context of structure prediction.

We conduct a detailed investigation of the framework’s two main components, perturbation and mini-

mization and analyze how they work in concert to affect sampling of decoy conformations. We show that

controlling the magnitude of jumps in conformational space due to perturbation allows directly controlling

the distance between consecutively-sampled local minima. We show in turn that this distance is related

to the ability to effectively steer the exploration towards near-native conformations. We also show that a

greedy search in minimization is just as effective as Metropolis MC-based minimization.

Our BH algorithm is effective at rapidly sampling large numbers of decoy conformations that represent

local minima in the protein energy surface. Here we extend analysis of this decoy ensemble beyond simply

comparing the decoys with the lowest lRMSD to the experimentally-determined native structure. Realizing

that the true utility of a stochastic optimization technique is in which subset of its conformations would

be retained for further refinement in a complete ab-initio protocol, we pursue different reduction techniques

and analyze how each of those would retain near-native conformations sampled by the BH algorithm.

We show, as expected, that ensemble reduction techniques based on total energy miss many promising

near-native conformations. This is to be expected, as a method with high sampling capability will uncover

many low-energy non-native conformations. Given the growing knowledge that current energy functions,

particularly coarse-grained ones, are weakly funneled, displaying very weak correlation between low energies
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and proximity to the native structure, no energetic threshold will discard non-native and retain near-native

conformations. Our analysis shows this on 15 diverse protein systems. On the other hand, reduction

techniques that discard energies and instead cluster conformations by structural similarity can be quite

computationally demanding with large ensemble size (106 conformations or more). Such techniques would

also not be viable if there is a need to possibly apply them repeatedly during search.

We introduce here a novel energy-based ensemble reduction technique that makes use of multi-objective

analysis to enhance retention near-native decoys. The technique decomposes the energy of each conformation

into the various terms in the energy function and evaluates conformations based on Pareto count and the

Pareto front. The analysis is particularly suited to finding a subset of conformations that satisfy conflicting

terms, as is the case with terms added up in energy functions. We show that our Pareto-based selection

scheme significantly reduces the size of the decoy ensemble, while retaining a more diverse set of near-native

conformations than employing a total energy threshold. These results are shown to be robust and valid

when using two different state-of-the-art coarse-grained energy functions commonly employed in a structure

prediction setting. The computational complexity of computing these multi-objective metrics makes them

practical, even on very large ensembles of decoy conformations. Since the Pareto front and Pareto count can

be computed online, these multi-objective energy metrics are also ideal to be employed in online analyses

used by tree-based and population-based search algorithms to adaptively guide search.

Methods

Obtaining a broad view of the energy surface for a protein sequence of interest in the coarse-grained stage

relies on a stochastic optimization algorithm to go through different conformations and an energy function

to score these conformations and guide the search towards low-energy ones. As described in the Background

section, coarse graining in this stage refers to the employment of a coarse-grained representation for the

protein chain. As in many state-of-the-art ab-initio protocols, we employ an extended backbone represen-

tation in our BH-based algorithm, sacrificing side chains. This representation is detailed first below, in the

Molecular representation section. Given a coarse-grained representation, a coarse-grained energy function

scores conformations generated by the search algorithm. We consider here two state-of-the-art coarse-grained

energy functions, the AMW and the Rosetta energy functions, briefly described below in the Coarse-grained

energy function section. The BH-based stochastic optimization algorithm that makes use of the chosen

representation and energy function(s) is described next, followed by details on the different implementations

considered and analyzed for its perturbation and minimization components. The implementations for the
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algorithmic components of the algorithm are analyzed in detail for how they affect the quality of the (de-

coy) ensemble of local minima produced by the algorithm. The Pareto-optimal filtering of this ensemble is

described last.

Molecular representation

The structural detail in the side chains of a protein is largely sacrificed in the interest of expediency. It is

worth noting that once the decoy ensemble is obtained and reduced through selection techniques, the retained

coarse-grained conformations are added structural detail through side-chain packing techniques [34,35]. The

AMW and the Rosetta coarse-grained energy functions considered here and described below operate on

slightly different extended backbone representations. In both cases, the backbone heavy atoms N , C, Cα,

and O are explicitly modeled. When using AMW, side-chains are reduced to only the Cβ atom (with

exception of glycine, where there is no such atom). When using Rosetta, a side chain is reduced to a

pseudo-atom centered at the side chain’s centroid.

Cartesian coordinates for the atoms modeled are employed by the respective energy functions to associate

a potential energy value or score with a generated conformation. Internally, the representation employed by

the algorithm to generate conformations maintains only three backbone dihedral angles (φ, ψ, ω) per amino

acid. This angular representation, also known as a kinematic model, is based on the idealized geometry

assumption, which fixes bond lengths and angles to idealized (native) values (taken from CHARMM22 [36])

and limits variations to backbone dihedral angles. Using this angular representation, the BH algorithm

essentially generates conformations by replacing values for an entire block of φ, ψ, ω angles of f consecutive

amino acids at a time (f is often referred to as the fragment length). New values for a block are sampled from a

fragment configuration library, which essentially stores blocks of angles observed in known native structures,

as described in the Background section. After a conformation is obtained in its angular representation,

forward kinematics is employed to obtain cartesian coordinates for the modeled atoms from the backbone

dihedral angles [37].

Coarse-grained energy function

Our experiments in this paper consider two state-of-the-art coarse-grained energy functions, the Associative

Memory Hamiltonian with Water (AMW), and the Rosetta energy function, described below.
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AMW energy function

This coarse-grained potential, originally proposed in [38], has been used by us and others in the context

of different search procedures for the purpose of decoy sampling in ab-initio structure prediction [12, 19,

20, 39–41]. Briefly, AMW sums 5 non-local terms (local interactions are kept at ideal values under the

idealized geometry assumption): EAMW = ELennard−Jones + EH−Bond + Ecompaction + Eburial + Ewater.

The ELennard−Jones term is implemented after the 12-6 Lennard-Jones potential in AMBER9 [42] allowing

a soft penetration of van der Waals spheres. The EH−Bond term allows modeling hydrogen bonds and is

implemented as in [43]. The other terms, Ecompaction, Eburial, and Ewater, allow formation of a hydrophobic

core and water-mediated interactions (See [12] for more details).

Rosetta energy function

The Rosetta energy function we use here corresponds to the score3 setting in the suite of energy functions

used in the Rosetta ab-initio protocol [44]. The different energy functions used in the Rosetta ab-initio

protocol are scaled versions of a full energy function that is a linear combination of 10 terms. These

terms measure repulsion, amino-acid propensities, residue environment, residue pair interactions, interactions

between secondary structure elements, density, and compactness. The different substages used in the Rosetta

ab-initio protocol use subsets of the terms of the full energy function and modify weights in the linear

combination to promote certain interactions over others. We use here the score3 setting, as this corresponds

to the full coarse-grained Rosetta energy function.

Probabilistic Search Algorithm based on Basin Hopping Framework

We first proposed the BH-based probabilistic search algorithm that we analyze in detail in this paper in [25].

Briefly, the algorithm hops between two consecutive minima Ci and Ci+1 through an intermediate Cperturb,i

conformation. The perturbation modifies Ci to obtain a higher-energy conformation Cperturb,i that allows

escaping the current minimum. The minimization conducts a series of modifications starting from Cperturb,i

to reach a new minimum Ci+1. Ci+1 is added as the current minimum to the trajectory according to the

Metropolis criterion based on the energetic difference between Ci and Ci+1. The result is a trajectory of

conformations representing local minima in the energy surface. The Metropolis criterion guides the trajectory

towards lower-energy regions of the energy surface. Thus, the ensemble of decoy conformations obtained

with BH consists of good-quality conformations that represent local minima in the protein energy surface.

The two main components in the algorithm are the perturbation and minimization. They both modify

8



conformations using the molecular fragment replacement technique described in the Background section.

Briefly, given a conformation, a trimer (three consecutive amino acids) is selected at random over the target

protein sequence. A configuration for that trimer (consisting of 9 backbone dihedral angles - φ, ψ, ω for

each of the amino acids in the trimer) is then obtained at random over the available ones in a fragment

configuration library. The library is pre-compiled from configurations extracted from known non-redundant

native structures. The fragment configuration library is constructed as in the protocol outlined in the

Rosetta ab-initio package (for further details, cf. to Ref [25]). While the perturbation replaces one trimer

configuration, the minimization consists of repeated replacements until a certain preset number of consecutive

attempts fail to lower energy.

In this work we propose and analyze different implementations for the minimization and perturbation

components, paying attention to how they affect the quality of the decoy ensemble. We do not explicitly

analyze the efficacy of different moves that one can employ in perturbation. Comparative results between

work in [23], which applies small random perturbations to atomic coordinates, and work in [25], which applies

trimer configuration replacements, suggests that the latter moves are more efficient with growing sequence

length and confer higher sampling capability.

Perturbation

The magnitude of the jump provided by the perturbation needs to be large enough to escape the current

minimum (so the following minimization does not bring the trajectory back to it), but also not so large that

consecutive minima are unrelated (in terms of proximity in the conformational space). If the magnitude is too

small, the BH search is inefficient. If the magnitude is too large, the search effectively resorts to minimizations

of conformations sampled at random and the Metropolis criterion does not provide the intended energy bias.

Here we quantify how the perturbation magnitude controls the distance between consecutive minima and

analyze whether this control has any bearing on the sampling of near-native conformations.

The following technique is employed to control the magnitude of each perturbation jump to a configured

distance D (the magnitude is measured as the lRMSD between Ci and Cperturb,i). A target distance d

is sampled from a Gaussian distribution centered at D with a standard deviation of 1. A new perturbed

conformation Cperturb is sampled using a single trimer configuration replacement. Cperturb is accepted if the

lRMSD between Ci and Cperturb is within a tolerance, t, of the target distance d. The process is repeated

for a maximum n number of attempts or until a Cperturb that satisfies the lRSMD criterion is obtained. If

not, the ensuing minimization uses as Cperturb,i the Cperturb conformation with the lRMSD from Ci closest

9



to d over all n obtained in this process. The value of n is set to 20, which is large enough to find an accepted

Cperturb within a tolerance t = 0.5Å in most cases. Since candidates for Cperturb,i are not evaluated for

energy, this process adds insignificant additional computation to the overall BH search.

Minimization

The two main alternatives we study for the minimization component are the greedy search summarized above

and implemented originally in [25] and Metropolis MC (MMC) trajectories of different effective temperatures.

We do not investigate gradient-based techniques, as they converge very slowly to a local minimum [23].

Greedy search insists on lowering the energy after every modification. An MMC search instead can

cross over energetic barriers whose height is controlled through the effective temperature in the Metropolis

criterion. Employing a small non-zero T allows MMC to jump over low barriers and possibly probe lower-

energy levels than a strictly downhill greedy search. The MMC trajectory continues until k consecutive

moves (a move consists of a single trimer configuration replacement) have been rejected (k is the number of

amino acids in the sequence).

Finding true local minima in the energy surface can be computationally intensive. Analysis of the AMW

surface in previous work shows that the native structure lies somewhere above the true global minimum [25].

The working definition of a local minimum here in terms of the parameter k is sufficient to discover near-

native conformations [25].

Controlling the effective temperature allows controlling the height of the barriers crossed during the

MMC search. The greedy search shown effective in our previous work [25] can be regarded as a special

case where the effective temperature is set to 0; hence, no higher-energy moves are allowed. In section , we

compare the effectiveness of greedy vs. MMC search in minimization. Three different effective temperatures

are studied in the context of the MMC search. A very low one, T0, corresponds to accepting a 1.4 kcal/mol

energy increase with probability 0.1, and two slightly higher ones, T1 and T2, respectively, accept energy

increases of 1.7 and 2.6 kcal/mol with probability 0.1.

Multi-objective ensemble reduction

The ensemble Ω of local minima that is obtained by the BH-based algorithm under some chosen implemen-

tations of the perturbation and minimization components can be large. The ensemble Ω needs to be reduced

in order to provide a relevant subset of local minima for further energetic refinement at greater structural

detail in the context of a complete ab-initio structure prediction protocol. The reduction necessitates a
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trade-off between selecting a small number of conformations and selecting a sample diverse enough so as to

increase the likelihood of retaining near-native conformations.

Selecting all conformations below some energy threshold is problematic. First, there is no consistent

technique for selecting an appropriate energy threshold for different protein systems. Second, it is likely

that the threshold will either include a large portion of the ensemble, making fine-grained refinement com-

putationally prohibitive, or exclude many near-native conformations (recall that the native structure may

deviate from the global energy minimum, as current energy functions are all weakly funneled). However,

the noise resulting from the weighted linear combination of energy terms in current energy functions can be

avoided by conducting a more nuanced energetic comparison that considers energy terms individually [45].

This multi-objective analysis is the foundation of the technique we propose and analyze here to reduce Ω.

A conformation Ci is said to dominate a conformation Cj when every energy term in Ci is lower than

the corresponding term in Cj . If there is no conformation in Ω that dominates Cj , then Cj is said to be non-

dominated. Conformations in the non-dominated ensemble, referred to as the Pareto front, are considered

equivalent with respect to a multi-objective analysis. Figure 1 illustrates the the Pareto front for a simplified

energy function containing only two terms.

When every term in Ci is less than every term in Cj , Ci is said to strongly dominate Cj . If the requirement

for dominance is relaxed such that every term in Ci is less than or equal to its corresponding term in Cj , this

is referred to as weak dominance. Typically, multi-objective analysis employs strong dominance, however,

in some cases weak dominance may be more appropriate, particularly if one of the energy terms has a very

low variance.

Membership in the Pareto front is a binary state. It is often desirable to employ multi-objective analysis

to rank conformations whether or not they lie in the Pareto front. One such metric is the Pareto count of a

conformation. The Pareto count of Ci measures the number of other conformations Ci dominates. Pareto

count is illustrated in Figure 1.

This work employs employs multi-objective analysis as a method for filtering the Ω ensemble of conforma-

tions representing local minima. The ensemble ΩPF corresponds to conformations that lie in the Pareto front

and ΩPC(n) corresponds to conformations with a Pareto count above a given threshold value. The variable

n is set to a particular percentage of Ω and a Pareto count threshold is chosen such that |ΩPC(n)| = n ∗ |Ω|.

For example, ΩPC(5%) represents the 5% of conformations in Ω with the highest values for Pareto count.
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Results and discussion

Experimental setup The analysis is conducted over 15 target protein systems listed in Table 1 which range

from 61-123 amino acids in length and cover the α, β, and α/β folds. Experiments are run for a fixed budget

of 10,000,000 energy function evaluations. Since over 90% of CPU time is spent on such evaluations, the limit

ensures a fair comparison between different parameter selections on a diverse set of proteins. Computing

10,000,000 energy function evaluations takes 1-4 days of CPU time on a 2.4Ghz Core i7 processor, depending

on protein length. The perturbation and minimization components are analyzed first in the Analysis of BH

framework section with respect to the AMW energy function. Lastly, the Multi-objective ensemble reduction

section presents results for Ω ensembles obtained by running the BH framework with both the AMW and

Rosetta energy functions.

Analysis of BH framework

Analysis is performed on the effect of biasing perturbation distance and varying the temperature of the local

search in the BH framework.

Biasing perturbation distance

Our previous work shows a direct correlation between the mean lRMSD between consecutive local minima

(referred to from now on as µ|MM |) and the ability of the BH framework to sample near-native confor-

mations [25]. Figure 2 shows that µ|MM | can be effectively controlled by biasing the magnitude of the

perturbation jump through a target perturbation distance D; as D is increased, there is a corresponding

increase in µ|MM |. Tuning D does not have any significant effect on the single lowest lRMSD obtained

(lRMSD is computed over the heavy backbone atoms and measures the proximity of a conformation to the

experimental native structure). However, D affects the frequency with which near-native conformations are

obtained (that is, the distribution of sampled minima) in cases where unbiased perturbation results in large

µ|MM | values. Figure 3 illustrates this for two representative systems by plotting, for different values of

D, the distribution of µ|MM | values and the resulting distribution of lRMSD values. These results show

that there is a distinct advantage to biasing the perturbation distance to D = 1Å or D = 2Å. Figures 3(a)

and 3(c) show that the frequency of small µ|MM | is larger when D ∈ {1, 2}Å vs. an unbiased perturbation.

Figures 3(b) and 3(d) show that the resulting ensembles contain more low-lRMSD conformations than the

unbiased approach.

The effect of controlling D shown in Figure 3 is strongest on more heavily β-sheet proteins (those with
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native PDB ids 1dtdB, 1isuA, 1wapA, and 1hhp). On these proteins, an unbiased perturbation results in

few small consecutive local minima distances. More near-native conformations are also obtained (though to

a lesser extent) when D ∈ {1, 2} for other proteins (with native PDB ids 1ail, 1sap, and 2h5nD). On these

proteins, unbiased perturbation results in larger numbers of small consecutive local minima distances, but

these proteins still benefit from enhanced sampling of neighboring local minima.

This enhanced sampling of near-native conformations can correspond to the BH search remaining in the

same near-native region of the space; low D values could potentially cause the minimization to return to the

previous minimum. In practice, this does occur for D = 1Å; however, when D > 1Å, the search returns to

previous local minima the same or less frequently than the unbiased approach.

MMC versus greedy search in minimization

Table 1 compares the greedy search (T = 0) to MMC searches with T0, T1, and T2. Columns 7-10 show the

lowest energy achieved under each setting. Three observations can be made: (i) Lower energies are obtained

by MMC than the greedy search. (ii) Overall, on proteins with less than 80 amino acids, the lowest energy is

achieved by MMC with T0. (iii) On longer proteins, the slightly higher T1 achieves lower energies, possibly

because in more complex rugged surfaces, small uphill moves allow reaching deeper minima.

The energy surface sampled by the BH framework for each given value of T is illustrated in Figure 4. The

x and y-axes represent geometric projections of the conformations based on interatomic distances, and the z-

axis represents the energy of each sampled local minimum. The Geometric projections are based on the mean

interatomic distances between selected atoms (see [19] for more details). A large white “x” represents the

location of the experimentally-determined native structure. Figure 4 illustrates that coarse-grained energy

functions are noisy and result in surfaces that can deviate from the true protein energy surface. Columns

11-14 in Table 1 show, for each value of T , the lowest lRMSD to the native structure over Ω. Comparable

lowest lRMSDs are obtained whether greedy or MMC search is employed in the minimization. Probing

deeper into minima in the MMC-based minimization does not necessarily bring the BH search closer to the

native structure.

MMC-based minimization is costly, resulting in longer minimizations and fewer sampled minima (total

number of energy evaluations is fixed). Employing MMC over greedy search thus shortens the BH trajectories

by 50 to 70% in terms of the number of sampled minima. Columns 11-14 in Table 1 show that a lower number

of sampled minima does not necessarily correlate with worse proximity to the native state. Even at lower

energy levels, the many sampled local minima can represent noise. Focusing on a smaller ensemble of
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“interesting” local minima allows more computationally intensive refinement steps to focus resources more

effectively. The next section outlines a method for filtering local minima to reduce the size of the ensemble

Ω.

Multi-objective ensemble reduction

Multi-objective ensemble reduction proposed in the Methods section is evaluated by comparing its ability

to retain near-native conformations to that of employing a threshold based on total energy. The use of

the Pareto front and the Pareto count as metrics for ensemble reduction are evaluated in the “Pareto front

reduction technique” and “Pareto count reduction technique” sections, respectively. To further evaluate the

effectiveness of the multi-objective reduction technique, results are given for both the AMW energy function

and the Rosetta coarse-grained energy function with “score3” weights. The ensembles ΩAMW and ΩRosetta

are generated for each target protein with the BH framework described in Methods employing unbiased

perturbation and T = 0 for minimization.

The total energy for each conformation Ω is decomposed into individual energy terms described

in Methods. Since multi-objective analysis is highly sensitive to the number of energy terms, the Rosetta

energy terms are then combined into 5 groups so the number of terms is consistent between ΩAMW and

ΩRosetta in the multi-objective analysis. Grouping is done based on correlation between energy terms; more

highly correlated terms are combined. In this work, the following energy term groupings are employed : {env,

pair, cbeta, rg}, {vdw}, {cenpack}, {hs pair}, {ss pair, rsigma, sheet}. Since the terms ss pair, rsigma, and

sheet are primarily employed in the evaluation of beta sheets, their values often remain fixed for proteins

without beta sheets or for proteins in which beta sheets are not accurately modeled. If one term remains

fixed, then it is impossible for one conformation to dominate another using strong Pareto dominance as

described in the Multi-objective ensemble reduction section. Therefore weak dominance is employed when

performing multi-objective analysis on ΩRosetta.

Tables 2 and 3 compare the ensemble reduced through a total energy threshold, ΩTE(n), to the ensembles

reduced by employing the Pareto front, ΩPF , and the Pareto count, ΩPC(n), for the AMW and Rosetta

energy functions. The ensemble ΩTE(n) is achieved by selecting a total energy threshold and removing all

conformations with total energy greater than the threshold. The variable n is set to a particular percentage

of Ω and a total energy threshold is chosen such that |ΩTE(n)| = n ∗ |Ω|. Recall that the ensemble ΩPC(n)

is constructed similarly to ΩTE(n), however, the Pareto count is employed in place of total energy to rank

conformations. For ΩPF only conformations in the non-dominated Pareto front are retained. For ΩPC(n)
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and ΩTE(n), n can be set to any percentage of Ω, while the size of ΩPF is dictated by the size of the Pareto

front for a given Ω.

Pareto front reduction technique

Column 3 in Tables 2 and 3 shows that, when considering only conformations in the Pareto front, ΩPF , the

size of Ω is reduced by over 90% across all target proteins and at least 95% for the majority of proteins.

This shows that the Pareto front filter is a highly effective method for efficiently reducing the size of a large

ensemble of decoy conformations. The difference between the average size of ΩPF employing AMW and

ΩPF employing Rosetta is due to the the use of strong dominance for AMW and weak dominance Rosetta.

Columns 4-6 in Tables 2 and 3 show the minimum lRMSD to the native structure of all conformations

in Ω, ΩTE(n=r), and ΩPF , respectively. Here r is chosen such that |ΩTE(n=r)| = |ΩPF |, so a fair comparison

can be made. While neither ensemble reduction technique is able to retain the lowest lRMSD to native

conformations from Ω, comparison of columns 5 and 6 reveals that ΩPF retains conformations with lRMSDs

to native not higher than ΩTE(r) for all but two proteins when employing the AMW energy function (Table

2) and for all proteins when employing the Rosetta energy function (Table 3). This difference in lRMSD is

significant (0.5Å or greater) for proteins with native PDB ids 1fwp, 1ail, 1cc5, 2ezk, 2h5nD for AMW and

1dtdB, 1c8cA, 1ail, 1aoy, 2ezk, 1hhp, 2hg6, 2h5nD for Rosetta.

Merely looking at the minimum lRMSD to native structure retained does not tell the entire story. Fig-

ures 5(d) and 6(d) plot the energy versus lRMSD to native for each conformation in Ω for the AMW and

Rosetta energy functions, respectively, for a representative protein with native PDB id 1sap. Conformations

in ΩPF are highlighted in dark blue and a dashed line represents the energy cutoff for ΩTE(n=r). For both

energy functions, ΩPF retains lower lRMSD to native conformations than ΩTE(n=r) and ΩTE(n=r) loses

significantly more of these near-native conformations. These results show that there is a clear advantage to

employing the Pareto front over a total energy threshold to select conformations from Ω, and these results

hold whether employing AMW or Rosetta.

Figure 6(e) represents an unusual case (illustrated by the protein with native PDB id 1hz6A) where the

correlation between total energy and lRMSD to native is very high. High correlation is rarely the case for

coarse-grained energy functions. We have specifically chosen to show 1hz6A here because Rosetta seems to

capture well the true energy surface for this protein. For 1hz6A, a total energy threshold alone is sufficient

for selecting decoy conformations with low lRMSDs, given this high correlation. In a blind prediction, the

native structure is unknown and thus lRMSDs are not available. Thus, such cases are difficult to identify
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and the the Pareto front is still just as effective as a total energy threshold.

Pareto count reduction technique

Unlike ΩPF , the size of ΩPC(n) can be set for any desired value of n. Figures 5(a)-(c) (AMW energy function)

and 6(a)-(c) (Rosetta energy function) show the minimum lRMSD to native for ΩPC(n) (dashed red line)

and ΩTE(n) (solid black line) for n ∈ {1, 2, 3...100} on three selected proteins with PDB ids 1sap, 1hz6A, and

2ezk. The minimum lRMSD and size of ΩPF is also given for reference as a blue “X”. Examination reveals

that ΩPC(n) retains conformations with lRMSDs to the native structure as low or lower than ΩTE(n) for

values of n <= 10% for all three proteins. This result is representative of all 15 target proteins investigated

in this study. Columns 7-10 of Tables 2 and 3 give the minimum lRMSD for ΩTE(n) and ΩPC(n) for n = 5%

and n = 10% for all 15 target proteins.

Figures 5(g)-(i) and 6(g)-(i) plot the energy versus lRMSD to native for each conformation in Ω for the

AMW and Rosetta energy functions, respectively, for same three representative proteins (PDB ids 1sap,

1hz6A, and 2ezk). Conformations in ΩPC(5%) and ΩPC(10%) are highlighted in blue and red, respectively.

The dashed blue and red lines represent the total energy cutoffs for ΩTE(5%) and ΩTE(10%), respectively.

Examination of the common case of 1sap reveals that ΩPC(n) retains significantly more low-lRMSD confor-

mations than ΩTE(n) for a given value of n. In the unusual case of 1hz6A, for which total energy is highly

correlated with lRMSD, ΩPC(n) retains a similar range of low-lRMSD structures as ΩTE(n) does.

The protein with PDB id 2ezk represents a case where ΩPF is not effective at retaining low lRMSD

structures. Figures 5(f) and 6(f) show that the low-lRMSD conformations retained by ΩPF are outliers,

particularly for the Rosetta energy function. Examination of Figures 5(i) and 6(i) reveals that, for this

difficult case, ΩPC(n) is still effective at sampling a range of low-lRMSD conformations. A similar results is

seen for the protein with PDB id 1ail (data not shown here).

Taken together, these results show that employing multi-objective analysis to filter the output ensemble

provides a distinct advantage over a total energy criterion. The ensemble size reduction is dramatic, yet

non-outlier low-lRMSD conformations are still retained. In difficult cases the Pareto count metric retains

low-lRMSD conformations even when the Pareto front does not.

Conclusions

This work shows that careful realizations of the BH framework can provide both rapid sampling and enhanced

sampling of the protein conformational space. In addition to previous work, where a simple realization of
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the BH framework was shown competitive in terms of obtaining lowest lRMSDs to the native structure

comparable to state-of-the-art MC-based methods [25], this work shows the high sampling capability and

the diversity of the decoy ensemble obtained by BH-based algorithms. We draw attention to the ability of

the algorithm to obtain many non-native conformations of low energies, which is a hallmark of algorithms

with high sampling capability [46,47].

This work provides a deeper understanding of the BH framework and its premise for obtaining an effec-

tive decoy ensemble. The two algorithmic components of the framework, perturbation and minimization,

are analyzed in detail, and effective implementations are offered to control the exploration for the purpose

of obtaining a diverse decoy ensemble. Results show that the distance between consecutively-sampled local

minima is directly affected by the perturbation distance. Our experiments demonstrate that by biasing per-

turbation distance, one can enhance sampling of near-native decoys in the BH framework. Moreover, a simple

greedy search was shown just as effective at sampling near-native conformations as a more computationally

intensive MMC trajectory.

Employing short greedy searches for minimization is appealing, as it allows sampling a significantly larger

number of local minima than longer MMC trajectories. This larger ensemble provides a broad view of low-

energy local minima in the coarse-grained energy surface, but inaccuracies in the energy function do not

allow relating near-native conformations with the lowest-energy minima. To deal with this issue, we present

an ensemble reduction technique based on multi-objective analysis. Metrics based on the Pareto front and

Pareto count are proposed, and analysis is performed on the decoy ensemble generated by our BH framework

employing either the AMW or the Rosetta coarse-grained energy functions.

For all of proteins investigated in this work, the Pareto-based reduction technique is highly effective

at reducing the ensemble while still maintaining non-outlier near-native conformations. Multi-objective

metrics based on Pareto dominance are an ideal choice because they can be computed online and have

lower computational complexity than structure-based clustering algorithms. Future work will investigate

this setting to further enhance sampling capability while retaining an informative conformational ensemble.
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Figures

Figure 1

Conformations are plotted with respect to two energy terms E1 and E2. Conformations represented by empty

blue circles are non-dominated and form the Pareto front. C2 strongly dominates 4 conformations and weakly

dominates 1 additional conformation, thus the Pareto count of C2 is 4 for strong Pareto dominance and 5

for weak Pareto dominance.

Figure 2

The mean µ|MM | is shown for a given target perturbation distance D, where µ|MM | refers to the distance

between two consecutively sampled local minima.

Figure 3

The frequencies of µ|MM | sampled during the search for proteins with native structure PDB ids 1ail and

1isuA are shown in (a) and (c), respectively. Frequency of lRMSDs to the native structure for each protein

are given in (b) and (d), respectively. The solid red line represents BH employing the unbiased perturbation

method. The dashed lines represent BH with median perturbation distances D = 1Å to D = 5Å.

Figure 4

The energy surface sampled for the protein with native PDB id 1fwp is shown for each temperature T . The

x and y-axes represent projection coordinates based on interatomic distances within each conformation, and

the z-axis represents the energy of each sampled local minimum. The white “x” indicates the location of the

native structure in the energy surface.

Figure 5

Results for each of the proposed multi-objective ensemble filtering methods are shown for the AMW energy

function on three representative proteins with native PDB ids 1sap, 1hz6A and 2ezk. (a)-(c) show the

minimum lRMSD to the native structure retained from the full ensemble Ω in the reduced ensembles ΩPC(n)

(dashed red line) and ΩTE(n) (solid black line), for a given percentage n of the conformations in Ω. The

minimum lRMSD retained by ΩPF is marked with a blue “X”. (d)-(f) show the total energy versus lRMSD to

the native structure for each conformation in the ensemble Ω. Conformations corresponding the the Pareto

front,ΩPF , are colored in dark blue. The dashed line represents the energy cutoff such that |ΩTE(n)| = |ΩPF |.
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In (g)-(i), conformations are colored according to their Pareto count. Conformations in ΩPC(n) are colored

in blue and red for n = 5% and n = 10%, respectively. The dashed lines represents the total energy cutoff

for conformations in ΩTE(n).

Figure 6

Results for each of the proposed multi-objective ensemble filtering methods is shown for the Rosetta coarse-

grained energy function on three representative proteins with native PDB ids 1sap, 1hz6A and 2ezk. (a)-(c)

show the minimum lRMSD to the experimentally determined native structure retained from the full ensemble

Ω in the reduced ensembles ΩPC(n) (dashed red line) and ΩTE(n) (solid black line), for a given percentage n of

the conformations in Ω. The minimum lRMSD retained by ΩPF is marked with a blue “X”. (d)-(f) show the

total energy versus lRMSD to the native structure for each conformation in the ensemble Ω. Conformations

corresponding the the Pareto front,ΩPF , are colored in dark blue. The dashed line represents the energy

cutoff such that |ΩTE(n)| = |ΩPF |. In (g)-(i), conformations are colored according to their Pareto count.

Conformations in ΩPC(n) are colored in blue and red for n = 5% and n = 10%, respectively. The dashed

lines represents the total energy cutoff for conformations in ΩTE(n).
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Tables
Table 1 - local search

Columns 2-4 show the native PDB id, size and fold topology for each of the 15 target protein systems.

Columns 5 and 6 break the fold topology down as the percentage of amino acids which are part of α-helices

and β-sheets. Columns 7-10 report the minimum energy achieved for each temperature T of the minimization

component of the BH framework. Columns 11-14 then report the corresponding lowest lRMSD to the native

structure achieved for each T .

Native Lowest Energy (kcal/mol) Lowest lRMSD (Å)

PDB id Size fold % α % β T = 0 T0 T1 T2 T = 0 T0 T1 T2

1 1dtdB 61 α/β 15 46 -128.2 -132.1 -131.6 -127.9 6.9 6.6 6.9 7.0

2 1isuA 62 α/β 15 19 -127.8 -130.3 -130.7 -130.2 6.3 6.0 6.4 6.0

3 1c8cA 64 α/β 22 48 -133.5 -134.8 -130.8 -129.6 6.5 6.6 7.4 7.3

4 1sap 66 α/β 30 44 -132.8 -132.3 -133.6 -127.3 6.5 6.0 6.8 6.9

5 1hz6A 67 α/β 31 42 -143.5 -144.7 -142.1 -138.9 5.7 5.9 6.0 6.0

6 1wapA 68 β 0 62 -118.4 -127.2 -133.9 -127.9 7.4 7.6 7.4 7.5

7 1fwp 69 α/β 30 26 -152.8 -152.0 -143.5 -143.2 6.3 6.7 6.5 6.1

8 1ail 70 α 84 0 -170.6 -171.0 -167.3 -168.4 3.2 3.2 3.4 3.3

9 1aoy 78 α/β 41 10 -183.9 -181.2 -180.8 -184.1 5.7 6.4 6.0 6.4

10 1cc5 83 α 47 4 -170.9 -171.5 -179.1 -173.8 5.8 5.7 5.8 5.8

11 2ezk 93 α 68 0 -217.3 -218.6 -224.4 -216.0 4.3 4.6 4.2 4.4

12 1hhp 99 β 7 48 -168.7 -175.4 -179.0 -175.9 10.4 10.4 10.0 10.5

13 2hg6 106 α/β 34 21 -233.6 -236.8 -239.5 -235.1 8.8 9.0 8.8 9.2

14 3gwl 106 α 70 0 -264.6 -270.4 -273.9 -267.3 4.9 4.9 4.4 5.2

15 2h5nD 123 α 71 2 -307.8 -313.0 -316.5 -313.2 7.5 7.9 7.4 8.1
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Table 2 - AMW multi-objective reduction technique

The minimum lRMSD to the native structure retained by each of the proposed multi-objective ensemble

reduction techniques is given for the Ω generated with the AMW energy function. Column 3 gives the size

of the Pareto front as a percentage of the size of Ω. Column 4 gives the minimum lRMSD to the native

structure of any conformation in the Ω. Columns 5 and 6 give minimum lRMSD retained by ΩTE(r) and

ΩPF , respectively, where r is the corresponding value from Column 3. Columns 7-10 compare the minimum

lRMSD retained by ΩTE(n) and ΩPC(n) for thresholds of n = 5% and n = 10%.

AMW Energy Function

Native ΩPF reduction Minimum lRMSD (Å)

PDB Id (r = |ΩPF |/|Ω|) Ω ΩTE(r) ΩPF ΩTE(5%) ΩTE(10%) ΩPC(5%) ΩPC(10%)

1 1dtdB 4% 7.2 7.9 7.7 7.9 7.7 7.7 7.7

2 1isuA 7% 6.0 6.2 6.5 6.4 6.2 6.2 6.2

3 1c8cA 4% 7.4 7.5 7.5 7.5 7.5 7.5 7.5

4 1sap 2% 6.5 7.6 7.5 7.4 7.2 7.4 7.2

5 1hz6A 2% 5.9 6.7 6.3 6.7 6.7 6.7 6.6

6 1wapA 2% 7.7 8.7 8.7 8.7 8.7 8.7 8.7

7 1fwp 7% 6.4 8.1 7.3 8.1 8.1 8.1 8.1

8 1ail 2% 3.4 6.8 5.9 5.8 4.2 4.7 4.4

9 1aoy 6% 5.7 6.9 6.6 6.9 6.5 6.8 6.5

10 1cc5 7% 5.6 8.6 7.0 8.7 8.6 8.6 8.1

11 2ezk 3% 4.4 8.0 7.3 7.7 7.1 7.2 7.1

12 1hhp 1% 10.7 12.0 12.0 11.6 11.6 11.6 10.8

13 2hg6 6% 8.6 10.8 10.5 11.6 10.8 10.9 10.8

14 3gwl 5% 4.2 4.7 5.2 4.7 4.7 4.7 4.7

15 2h5nD 7% 7.9 10.7 10.0 10.8 10.4 10.4 10.4

24



Table 3 - Rosetta multi-objective reduction technique

The minimum lRMSD to the native structure retained by each of the proposed multi-objective ensemble

reduction techniques is given for the Ω generated with the Rosetta energy function. Column 3 gives the size

of the Pareto front as a percentage of the size of Ω. Column 4 gives the minimum lRMSD to the native

structure of any conformation in the Ω. Columns 5 and 6 give minimum lRMSD retained by ΩTE(r) and

ΩPF , respectively, where r is the corresponding value from Column 3. Columns 7-10 compare the minimum

lRMSD retained by ΩTE(n) and ΩPC(n) for thresholds of n = 5% and n = 10%.

Rosetta Energy Function

Native ΩPF reduction Minimum lRMSD (Å)

PDB Id (r = |ΩPF |/|Ω|) Ω ΩTE(r) ΩPF ΩTE(5%) ΩTE(10%) ΩPC(5%) ΩPC(10%)

1 1dtdB 1% 6.7 10.8 9.1 10.6 10.2 10.2 8.6

2 1isuA 2% 6.5 8.9 8.6 8.9 8.6 8.0 7.5

3 1c8cA 2% 5.6 7.9 7.1 7.8 7.0 7.1 6.8

4 1sap 3% 6.1 7.4 7.1 7.4 6.8 6.8 6.6

5 1hz6A 3% 2.5 2.8 2.8 2.8 2.6 2.7 2.6

6 1wapA 1% 7.4 8.8 8.8 8.5 8.5 8.8 8.1

7 1fwp 3% 6.1 7.2 7.0 7.1 7.1 7.2 6.9

8 1ail >1% 4.8 8.2 6.2 7.6 7.5 7.5 6.9

9 1aoy 2% 6.2 10.1 9.1 9.2 9.2 9.3 9.2

10 1cc5 1% 5.0 6.3 6.3 5.7 5.7 5.5 5.4

11 2ezk 1% 3.9 9.1 6.2 5.2 5.1 5.1 4.9

12 1hhp 3% 10.8 13.9 12.6 13.9 13.6 13.0 12.9

13 2hg6 2% 10.6 12.2 11.5 12.0 12.0 12.0 11.7

14 3gwl 1% 7.1 8.9 8.5 8.7 8.4 8.0 7.8

15 2h5nD 1% 8.9 13.0 10.4 12.3 12.1 12.2 11.4
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D = 4Å
D = 5Å
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PDB ID 1isuA
Topology α/β
Size 62

(c) 1isuA

5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

lRMSD to the native structure (Å)
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