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The roughness of the protein energy surface poses a signi¯cant challenge to search algorithms

that seek to obtain a structural characterization of the native state. Recent research seeks to bias
search toward near-native conformations through one-dimensional structural pro¯les of the

protein native state. Here we investigate the e®ectiveness of such pro¯les in a structure prediction

setting for proteins of various sizes and folds. We pursue two directions. We ¯rst investigate the
contribution of structural pro¯les in comparison to or in conjunction with physics-based energy

functions in providing an e®ective energy bias. We conduct this investigation in the context of

Metropolis Monte Carlo with fragment-based assembly. Second, we explore the e®ectiveness of

structural pro¯les in providing projection coordinates through which to organize the confor-
mational space. We do so in the context of a robotics-inspired search framework proposed in our

lab that employs projections of the conformational space to guide search. Our ¯ndings indicate

that structural pro¯les are most e®ective in obtaining physically realistic near-native confor-

mations when employed in conjunction with physics-based energy functions. Our ¯ndings also
show that these pro¯les are very e®ective when employed instead as projection coordinates to

guide probabilistic search toward undersampled regions of the conformational space.

Keywords: Protein conformational space; near-native conformations; structural pro¯le.

1. Introduction

After nearly four decades, structural characterization of the native state for a novel

protein sequence remains a central challenge in computational structural biology.1
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Experimental techniques are not able to keep pace with the exponential growth in

the number of uncharacterized sequences deposited in protein databases. Compu-

tational methods present a complementary approach to provide a structural

characterization of the protein native state and advance our understanding of the

structure�function relationship in proteins.1

According to the thermodynamic hypothesis, the protein native state has lowest

free energy and consists of low-energy conformations in the protein energy surface.2

The surface emerges when associating with each conformation a potential energy

value resulting from summation of interatomic interactions. The term conformation

refers to a spatial arrangement of the atoms in a protein molecule and can be rep-

resented, for instance, through the dihedral angles over rotatable bonds connecting

atoms in the protein chain. Each amino acid contributes two or more dihedral angles.

The result is a space of at least 2n dimensions for a chain of n amino acids.

The dimensionality of the conformational space is one of the principal reasons

that computing conformations of the native state is challenging. Many strategies are

employed to simplify the conformational space. A popular strategy is to lower the

dimensionality through coarse-grained representations. One such representation

may model only the protein backbone with two dihedral angles per amino acid.

Instead of independently modifying angles to sample conformations, techniques such

as fragment-based assembly group angles in fragments of consecutive amino acids.

Values for the angles in a fragment are obtained by copying those of con¯gurations of

that fragment in native structures deposited in experimental databases. The process

is essentially assembly of protein-like conformations with fragment con¯gurations

and is currently among the most successful in ab initio structure prediction.3,4

Ruggedness of the protein energy surface is another reason that the search for

native conformations is di±cult. While modeling energy allows providing an energy

bias to a search algorithm and leads to low-energy conformations, the energy surface

is rich in local minima. Signi¯cant research is devoted to the design of coarse-grained

energy functions that simplify the e®ective energy surface by essentially reducing its

ruggedness to help guide search algorithms to regions near the native state.5

Applications of probabilistic search algorithms that employ state-of-the-art not

highly rugged potentials show that, in many cases, the search is led to low-energy

regions that do not contain near-native conformations.1

Recent research advocates the use of structural pro¯les of the native state in

investigating the role of additional information in guiding search to near-native con-

formations.6,7 A structural pro¯le reduces information about the three-dimensional

structure of a protein in a one-dimensional vector representation.8 Pro¯les that

encapsulate information of a contact matrix have been shown to correlate well with

hydrophobicity,9 provide e®ective and e±cient structural alignments,10 distinguish

decoy from near-native conformations,11 and even assist with guiding Metropolis

Monte Carlo (MMC) simulations toward near-native conformations on short protein

chains (up to 50 amino acids).6,7
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In this paper we investigate the applicability and e®ectiveness of structural

pro¯les in a structure prediction setting for an extensive list of proteins of various

sizes and folds (up to 123 amino acids). We pursue two directions. We ¯rst inves-

tigate the contribution of structural pro¯les in comparison to or in conjunction with

physics�based energy functions in providing an e®ective energy bias that leads

stochastic search to the native state. We do so in the context of an MMC search

that employs fragment-based assembly. Second, inspired by the e®ectiveness of

structural pro¯les in aligning and comparing protein structures, we pursue a novel

non-energy�based employment of structural pro¯les in stochastic search. Speci¯-

cally, we explore the e®ectiveness of structural pro¯les in organizing conformational

space. We do so in the context of a robotics-inspired search framework recently

proposed in our lab that employs projections of the conformational space to guide

search.

We conduct a detailed analysis of computed conformations to determine their

proximity to the native state through measures such as least Root-Mean-Squared

Deviation (lRMSD) and percentage of native contacts (Q value). Our ¯ndings indicate

that structural pro¯les are most e®ective in obtaining physically realistic near-native

conformations when employed in conjunction with physics-based energy functions.

Our ¯ndings also show that these pro¯les are equally e®ective when employed not as

part of the energy bias but as projection coordinates instead to guide probabilistic

search toward etc undersampled regions of the conformational space.

1.1. Related work

Currently, the most successful algorithms for ab initio structure prediction rely on

sampling a large number of low-energy conformations to obtain a broad view of local

minima. The predominant framework involves launching many MMC trajectories

with fragment-based assembly and organizing conformations in local minima

through clustering.3,4,12 Further exploration of select minima with ¯ne-grained

(computationally intensive) potentials is often pursued in a second stage to identify

the global minimum and so reproduce the native structure with high ¯delity.13 Work

in Ref. 4, attempts to address the possible issue of independent MMC trajectories

providing redundant information through an iterative approach that periodically

clusters conformations and launches new trajectories from the cluster centroids. This

approach reapportions computational resources based on the clustering results but

does not explicitly bias the exploration toward diverse conformations.

The probabilistic robotics-inspired search framework, FeLTr, integrates the

conformational analysis in the search itself. The MMC trajectories are integrated in a

tree search structure that maintains sampled conformations. Projection layers are

employed to ensure energetic feasibility and structural diversity of sampled con-

formations.14�16 Sampled conformations are projected onto a low-dimensional geo-

metric space, where conformations can be grouped based on geometric similarity.

This allows FeLTr to dynamically bias further sampling away from oversampled

Guiding Probabilistic Search of the Protein Conformational Space
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regions. Our previous work employs the ultrafast shape recognition USR-based

projection coordinates proposed in Ref. 17, which capture molecular shape. These

coordinates are shown to e®ectively bias sampling in FeLTr toward near-native

conformations.15

In contrast to the above approaches, the Basin Hopping (BH) framework expli-

citly samples local minima through repeated applications of a structural pertur-

bation followed by an energy minimization. While most BH algorithms have been

demonstrated with limited applicability in the context of protein structure predic-

tion, they have been shown more e®ective at sampling local minima than simulated

annealing with molecular dynamics.18 Moreover, a recent e®ective realization of

this template has been shown as e®ective in reproducing native structures of an

extensive list of small- to medium-size proteins as leading fragment-based assembly

methods.19

These frameworks rely at various degrees on energy to bias their exploration and

converge to the native state. However, even with reasonably accurate energy func-

tions, the energy bias often leads to lowest-energy regions that are not near the

native state. In an e®ort to remedy this and assist search algorithms, structural

pro¯les of the native state have been proposed for usage complementary to the

energy bias. A one-dimensional pro¯le is proposed in Ref. 8 based on the principal

eigenvector of the contact matrix. This pro¯le correlates well with sequence hydro-

phobicity,9 which allows its prediction from sequence.20,21

Recent work has combined structural pro¯les with simple coarse-grained energy

functions to form a pseudo-energy function by which to bias MMC simulations for

structure prediction.6,7 This work has shown limited success and applicability to

small proteins (at most 50 amino acids in length).7 It remains unclear what structural

pro¯les o®er over sophisticated coarse-grained energy functions, and whether they

are more e®ective in comparison to or conjunction with such functions. We pursue

this line of investigation here to further elucidate the contribution of structural

pro¯les in guiding stochastic search toward near-native conformations.

Since structural pro¯les have also been shown e®ective in protein structure

alignment,10 it is relevant to explore their applicability beyond the energy bias set-

ting. The FeLTr framework that employs projections of the conformational space

provides a reasonable setting for this purpose. We pursue a novel direction and

employ structural pro¯les to associate projection coordinates to conformations

sampled by FeLTr and so construct a lower-dimensional projection layer,

where it is easier to keep statistics for the purpose of guiding search to diverse

conformations.

It is worth noting that our investigation of structural pro¯les in the context

of energy bias here employs exact pro¯les extracted from the native structure. While

in principle these pro¯les can be predicted from sequence, their investigation in

the context of stochastic search is a necessary ¯rst step into providing further

understanding of their role and e®ectiveness. Employment of these pro¯les as pro-

jection coordinates does not use any information about the native structure.
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2. Methods

Since structural pro¯les in this paper are employed in two di®erent settings, we ¯rst

describe their computation. We then relate details on each of the two settings. We

¯rst describe how structural pro¯les are incorporated in a pseudo-energy function and

employed in the context of MMC search. We then relate details on their employment

instead as projection coordinates in the context of the FeLTr framework.

2.1. One-dimensional structural pro¯les

The structural pro¯le employed here is the principal eigenvector (PE) of the contact

matrix that can be associated with a conformation. The contact map C is an N �N

binary symmetric matrix, where Cij is 1 or 0 depending on whether or not amino

acids i and j are in contact. Two amino acids are in contact if the Euclidean distance

between their C� atoms is less than a given threshold, and they are more than three

amino acids apart in the protein sequence (ji� jj > 3). We tested a range of

threshold values from 4.5Å to 8.5Å also employed in other studies6,7,11 and found

values in the 7.5�8.5Å range to be equally e®ective. For consistency, all results in

this paper use a threshold of 7.5Å. The constraint on the sequence distance between

amino acids i, j ensures that the structural pro¯le captures non-local interactions.

C is a real symmetric matrix and so has N real eigenvalues. The PE is the

eigenvector with the largest corresponding eigenvalue. PE encodes each amino acid's

connectivity, essentially associating higher connectivity to amino acids with a larger

number of contacts. The strong correlation of this structural pro¯le to hydro-

phobicity, studied in detail in Ref. 9, follows from the fact that amino acids with high

connectivity are often those buried in the hydrophobic interior of a structure.

Another equally expressive de¯nition of a structural pro¯le, referred to as e®ective

connectivity (EC), employs a linear combination of all eigenvectors weighted by their

corresponding eigenvalues. Research has shown that the main contribution to EC

comes from PE; the correlation between the two is about 95% for single-domain

proteins.22 Multi-domain proteins have been shown to be captured better in terms of

their contact map through EC rather than PE.23,24 Since our focus is on single-

domain proteins (multi-domain proteins remain beyond the applicability of ab initio

structure prediction), we investigate PE in this paper.

2.2. Employing structural pro¯les to bias MMC search

2.2.1. De¯ning a pseudo-energy term based on PE

PE can easily be employed to de¯ne a pseudo-energy term that achieves its lowest

value (0), when the PE of a computed conformation (let us refer to it as c) reaches the

PE of the known native structure (let us refer to it as t). The term, which we refer to

as EPE, can essentially be the sum of di®erences in the vector entries per amino acid i

as in: EPE ¼ P
i minðjci � tij; 0:25Þ. The cuto® of 0.25, suggested by previous

research that tests EPE on small proteins,7 limits the contribution of each vector

Guiding Probabilistic Search of the Protein Conformational Space
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entry. This cuto® has no signi¯cant e®ect on conformations that are close to the

native structure, but it helps escape local minima at early stages in the search.

The above de¯nition of PE considers all contacts before the eigendecomposition.

Variations have emerged in literature, which do not consider all contacts.6,7 For

instance, a distinction is made between cooperative and non-cooperative contacts.

Cooperative contacts are de¯ned as those assisting in secondary structure formation.

All other contacts, which essentially encapsulate tertiary structure, are considered

non-cooperative. The MMC we employ in this work, described below, readily forms

secondary structures through fragment-based assembly and does not need to limit

PE to cooperative contacts. The non-cooperative contacts, on the other hand, are

investigated here and compared to the utilization of all contacts in PE. We also

investigate the role of restricted contacts, which are contacts only between amino

acids in secondary structures. Restricted contacts still capture tertiary structure,

namely the folding of secondary structures, but do not consider coil-like regions

(these regions are somewhat easier to address once the fold has been found).

2.2.2. Incorporating EPE in a pseudo-energy function

Employing EPE as the pseudo-energy function may lead an MMC simulation to

conformations that contain steric clashes and other unfavorable interatomic inter-

actions not captured in this simplistic pseudo-energy function. For this purpose, it is

worth investigating the role of EPE not only in comparison to a physically realistic

energy function but also in conjunction. Essentially, a pseudo-energy function can be

de¯ned by summing the terms of a physically realistic energy function with EPE. Our

analysis employs both a simple energy function whose sole purpose is to penalize

steric clashes and a sophisticated physics-based energy function, the Associative

Memory Hamiltonian with Water (AMW). The AMW has been developed by the

Wolynes lab25 and shown successful in ab initio structure prediction by us and

others.12,14�16,19,26 Our employment of AMW does not include local interactions,

since fragment con¯gurations are extracted from realistic structures in the Protein

Data Bank (PDB)27 and further idealized. The modi¯ed AMW is essentially a linear

combination of the non-local terms ELennard�Jones, EH�Bond, Econtact, Ewater, and

Eburial. The last three terms model water-mediated interactions in coarse-grained

conformations. Details can be found in Ref. 25.

The range of energy values returned by a physically realistic energy function, such

as EAMW, and a pseudo-energy term, such as EPE, can be quite di®erent, and

weighting each of them to form a pseudo-energy function essentially modulates their

contributions. Here we employ a parameter � to essentially weight the contribution

of EPE relative to EAMW. The value of � can be static and not change through the

search, or it can change according to a dynamic schedule that reweights the con-

tribution of EPE depending on where in the energy surface the search is. Our analysis

in Sec. 3 employs a static value for �, but a dynamic schedule is under investigation

in ongoing work.

B. Olson et al.
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2.2.3. Investigating structural pro¯les in an MMC search setting

Our analysis of the role of PE and its variants in biasing toward near-native con-

formations does so in the context of an MMC search. It is worth noting that this

setting is di®erent from previous work that investigates structural pro¯les also in

MMC simulations for small proteins of up to 50 amino acids.6,7 Instead of sampling

values for the dihedral angles to obtain consecutive conformations in the MMC

trajectory, we employ fragment-based assembly. The fragments are of length 3, and

their con¯gurations are extracted from libraries that include con¯gurations extracted

from structures of sequence-homologous proteins. The con¯gurations are limited,

however, to a subset that contain secondary structures consistent with predictions

from the sequence of the protein under consideration. More details about the con-

struction of these libraries and their employment can be found in Ref. 14. Signi¯cant

e®orts in previous work on employing EPE went to seeding conformations with sec-

ondary structures predicted from sequence. The fragment con¯gurations we employ

readily provide protein-like conformations with reasonable secondary structures.

The analysis in Sec. 3 investigates the role of PE in biasing an MMC simulation

with fragment-based assembly when employing only EPE as the pseudo-energy

function, when combining it with a simplistic collision-avoidance energy term, and

when combining it with a sophisticated physics-based energy function that is shown

successful for structure prediction. All variants of PE are explored, whether con-

sidering all contacts, only non-cooperative contacts, or restricted contacts.

2.3. Employing structural pro¯les to organize conformational space

The employment of structural pro¯les to provide an energy bias through a pseudo-

energy function relies on knowledge of the PE of the native structure. While this can

be predicted from sequence with about 70% accuracy,20 the employment of struc-

tural pro¯les as projection coordinates does not rely on the native PE. Instead, the

PE can be calculated for each sampled conformation and regarded as a succinct

representation of the topology of that conformation. Given a set of conformations,

their PEs can be employed for clustering, for instance, to group together structurally

similar conformations and organize the explored conformational space.

Employment of Projections in the FeLTr Framework: Organization of the

conformational space in a lower-dimensional embedding is central to the success of the

robotics-inspired FeLTr framework proposed in our lab to enhance sampling of geo-

metrically diverse low-energy conformations.14,15 FeLTr essentially explores the

conformational space by growing a tree. Branches are short MMC trajectories that

employ fragment-based assembly. The tree biases its growth by selecting confor-

mations from which to grow branches through a two-level projection layer. Confor-

mations in the tree are projected onto a one-dimensional grid based on their potential

energy. To select a vertex for expansion, FeLTr selects ¯rst an energy level in the grid

through a weighting function that biases toward low-energy levels. The goal is to bias

Guiding Probabilistic Search of the Protein Conformational Space
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the tree toward low-energy regions of the energy surface. Once an energy level is

selected, FeLTr has access to all sampled conformations associated with the selected

energy. These conformations are projected onto a three-dimensional (geometric) grid

using three coordinates based on the ultrafast shape recognition (USR) features.

A second weighting function is used to select a geometric cell that has not been

selectedmany times and does not contain many conformations in it. The goal is to bias

the tree away from oversampled regions of the conformational space. Further details

on the FeLTr framework can be found in Refs. 14�16.

USRCoordinates: Our previous work employs projection coordinates based on the

USR features proposed in Ref. 17. These features encode molecular shape as a vector

of geometric descriptors based on a subset of interatomic distances. Only three

descriptors are employed (see Ref. 15 for details), resulting in FeLTr using a three-

dimensional grid. Each dimension is split into 30 cells, with the range of the grid

calculated based on the minimum and maximum possible radii of gyration for a given

protein sequence. The result is an e±cient process for grouping together geome-

trically similar conformations sampled during the search.

2.3.1. Employing PE to project conformational space in FeLTr

While the PE associated with each conformation in FeLTr succinctly captures

structural information in that conformation, its direct employment as a projection

coordinate is infeasible. If one were to do so, the result would be an N-dimensional

grid (the length of PE is the number of amino acids N). Such a high-dimensional grid

would not be e®ective at organizing conformations. Since PE is already an

approximation of a conformation's topology, we employ the Locally-Sensitive Hash

(LSH) technique, which has been shown e®ective on high-dimensional data.28

The LSH function generates a hash key for each PE corresponding to a conformation

in the FeLTr tree, mapping geometrically similar conformations to the same key. The

PE of a conformation represents a single point in N-dimensional space. In LSH, h <

N � 1 hyperplanes are randomly generated. A hash key is computed by calculating the

normal vector to a given (PE) point from each hyperplane. If the direction of the normal

vector is negative, the hash value is 1; otherwise it is 0. The result is a bit vector of length

h, which can be represented as an integer, thus giving the hash key.

A large value for h results in too many cells, but a small h may group together

dissimilar conformations. The analysis in Sec. 3 shows that h ¼ 15 is a good com-

promise. It results in 215 cells, which is close to the number of USR-based cells used in

our previous work on FeLTr. More importantly, conformations in a PE-based cell are

shown to be structurally very similar and more similar than conformations projected

to the same USR-based grid cell.

3. Results

Systems of Study: We consider an extensive list of 13 proteins of varying sizes and

folds with known native structures in the PDB. The list is shown in Table 1.
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Experiments: The e®ectiveness of PE is investigated in two experimental settings.

(I) An MMC search is conducted on each protein sequence. Three di®erent scenarios

are analyzed: (a) employing only EPE as the pseudo-energy function, considering its

variants of non-cooperative contacts (nPE) and restricted contacts (rPE);

(b) employing EPE in conjunction with a collision-avoidance energy term; and

(c) employing EPE in conjunction with EAMW. (II) PE is employed to project the

conformational space through LSH in FeLTr, and results are compared to those

obtained when the USR-based grid is used instead.

Measurements: For each experimental setting, three quantities are shown: the

lowest lRMSD to the native structure, the lRMSD to the native structure of the

lowest-energy conformation sampled, and the highest Q value sampled. It is worth

noting that lRMSD and Q value are two complementary measures to determine the

proximity of a conformation to the native structure. In particular, Q is an unfor-

giving measure. Often, low lRMSDs can be obtained on conformations that do not

contain many native contacts. In this respect, showing higher Q values is a stronger

result than showing lower lRMSDs. Additionally, while the interpretation of low

lRMSDs depends on protein size, higher Q values are more indicative of higher-

quality conformations. In particular, while most of cooperative folding occurs during

the collapse of a protein chain until Q values around 0.4 are reached, values above

this threshold are strong indicators that the native topology has been reproduced.18

Implementation Details: MMC search is run for a total of 106 energy function

evaluations. This provides a fair setting, whether the sequence considered is short or

long (energy function evaluations are more expensive on longer chains). FeLTr is run

until a total of 100,000 conformations have been added to the tree. This allows direct

comparison with previous work. For protein chains longer than 100 amino acids, the

running time for MMC or FeLTr can exceed 48 hours of CPU time.

3.1. EPE guides MMC search

In this setting, the only energy function guiding MMC is EPE. Three variants of PE

are compared to one another, the full PE, which considers all contacts, the one that

considers only non-cooperative contacts, and the one that considers only restricted

contacts. We refer to the respective energy terms as EPE, EnPE, and ErPE. Table 2

shows the lowest lRMSD (lR), the lRMSD of conformation with lowest energy (RlE),

and maximum Q (mQ) in each setting.

Inspection of the mQ values in Table 2 indicates that the MMC simulation in each

setting has converged to conformations very similar to the native structure (all mQ

Table 1. PDB id, number of amino acids, and fold are shown for each protein.

Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13

PDB 2i2v4 1isuA 1c8cA 1hz6A 1wapA 1fwp 1ail 4icb 1cc5 2ezk 1hhp 2hg6 2h5nD

N 38 62 64 67 68 69 70 76 83 93 99 106 123
Fold � �=� �=� �=� � �=� � � � � � �=� �
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values are > 40%). Overall, mQ values > 70% correspond well to lRMSDs � 6:0Å to

the native structure, with few exceptions. Comparison of the lowest lRMSD and

maximum Q values suggests that neither PE variant has a clear advantage.

3.2. EPE and steric clash avoidance guide MMC search

The experiments above are repeated with the pseudo-energy function Esteric þ �EPE.

Esteric is set to a high value when two atoms are in a collision and 0 otherwise, and

� ¼ 10, as in Ref. 7 (this results in EPE being in the order of one per residue for non-

native conformations). The goal is to obtain collision-free conformations with similar

contact topology to the native structure. The results are shown in Table 3.

A comparison of the lowest lRMSD and maximum Q values between Tables 2

and 3 shows that similar results are obtained. These ¯ndings suggest that Esteric does

not prohibit EPE from leading the MMC search toward near-native conformations in

terms of lRMSD and contact topology, but further improves the quality of these

conformations by removing steric clashes.

3.3. EPE in conjunction with EAMW guides MMC search

Optimizing a physics-based energy function can often lead to non-native yet low-

energy conformations (determined, for instance, through high lRMSDs from the

native structure or low Q values). On the other hand, the results above show that

biasing stochastic search toward conformations with structural pro¯les similar to the

native structure leads to near-native conformations. In this experiment, we investi-

gate whether combining EPE with EAMW, a physics-based energy function, will lead

to both physically realistic and near-native conformations.

Here Esteric is replaced with EAMW. The range of values for EAMW is shifted by the

minimum energy value that an MMC trajectory reaches, so that the minimum

Table 2. lR and RlE (in Å) and mQ (in %) are shown when using full PE, non-
cooperative PE, and restricted PE to de¯ne the pseudo-energy function.

EPE EnPE ErPE

Nr. PDB ID lR RlE mQ lR RlE mQ lR RlE mQ

1 2i2v4 3.2 4.9 91 3.2 5.9 86 3.8 6.1 82

2 1isuA 5.7 10.9 65 5.3 12.9 63 5.3 11.7 60

3 1c8cA 5.8 10.4 79 6.5 19.2 69 5.0 13.5 76
4 1hz6A 4.6 12.4 77 6.5 17.1 60 4.4 5.3 74

5 1wapA 5.9 12.1 67 7.0 16.3 49 5.6 12.2 71

6 1fwp 6.2 9.8 64 6.8 13.9 52 6.2 11.8 65
7 1ail 4.2 8.7 78 4.8 10.0 69 4.0 10.0 76

8 4icb 4.3 11.8 79 4.7 8.7 77 5.2 19.9 76

9 1cc5 5.5 10.0 64 6.1 12.2 57 6.0 11.2 70

10 2ezk 5.0 15.8 88 6.2 17.2 82 5.2 13.4 83
11 1hhp 7.5 11.5 64 8.6 14.3 42 7.7 12.8 53

12 2hg6 8.5 13.6 56 9.6 34.0 48 9.2 25.1 56

13 2h5nD 7.5 21.1 69 7.5 18.7 63 7.4 14.7 69
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energy value for EAMW is 0, as for EPE. The value of � is kept as above, as it allows

both EAMW and EPE to cover the same range of energy values. Table 4 repeats the

analysis employing all three di®erent versions of PE. The results are compared with

those obtained when using only EAMW for the energy bias as a point of reference.

The results in Table 4 allow drawing the following conclusions: (i) the incorpor-

ation of EAMW does not prohibit EPE and its variants in obtaining similar near-native

conformations in terms of lowest lRMSDs and maximum Q values (in comparison to

results shown in Table 2 obtained employing only EPE); (ii) comparison of the

maximum Q values shows that combining PE and its variants with a physics-based

energy function, such as EAMW, leads to conformations that are both physically

Table 3. lR and RlE (in Å) and mQ (in %) are shown when using full PE, nPE,
and rPE in conjunction with a steric clash avoidance energy term.

Esteric þ �EPE Esteric þ �EnPE Esteric þ �ErPE

Nr PDB ID lR RlE mQ lR RlE mQ lR RlE mQ

1 2i2v4 3.6 7.2 73 3.6 7.7 70 3.8 10.1 72

2 1isuA 6.1 9.9 46 6.1 9.3 51 6.7 11.6 44

3 1c8cA 6.5 14.7 68 6.5 18.7 60 6.2 13.5 67
4 1hz6A 5.3 7.7 57 6.8 17.6 50 5.8 12.3 61

5 1wapA 6.9 11.7 46 7.7 18.7 43 7.3 14.2 47

6 1fwp 6.8 11.3 48 7.6 19.7 43 5.9 8.9 47
7 1ail 4.1 5.0 74 3.9 8.7 73 5.5 9.8 71

8 4icb 4.1 9.2 72 4.9 11.0 72 4.6 9.7 72

9 1cc5 6.0 11.7 54 5.7 11.5 51 6.2 12.2 52

10 2ezk 5.7 12.2 84 6.9 26.0 76 5.3 13.3 84
11 1hhp 9.9 13.4 35 10.4 16.4 28 10.6 19.5 28

12 2hg6 9.3 27.1 43 10.0 23.6 40 9.9 17.2 49

13 2h5nD 8.2 20.6 60 NA NA NA 9.3 27.6 56

Table 4. lR and RlE (in Å) and mQ (in %) are shown when using full PE, nPE, and rPE in con-

junction with AMW.

EAMW EAMW þ �EPE EAMW þ �EnPE EAMW þ �ErPE

Nr. PDB ID lR RlE mQ lR RlE mQ lR RlE mQ lR RlE mQ

1 2i2v4 4.2 9.9 56 3.8 7.7 68 3.8 5.2 65 4.0 8.7 67

2 1isuA 5.3 11.3 49 5.0 10.5 56 5.5 10.0 50 5.2 11.6 46
3 1c8cA 6.5 17.8 53 6.8 11.1 64 7.3 17.3 63 6.2 11.6 72

4 1hz6A 6.4 12.3 47 5.6 12.5 54 6.1 14.3 51 4.3 11.8 73

5 1wapA 7.6 13.5 40 5.7 12.7 60 7.1 15.2 44 6.3 10.3 47
6 1fwp 7.5 10.7 40 6.0 9.0 51 4.8 5.8 62 5.4 10.4 46

7 1ail 3.8 8.3 85 4.8 7.2 80 4.0 6.6 82 4.5 5.8 84

8 4icb 4.7 11.1 69 4.3 12.2 72 3.6 9.4 76 4.0 8.1 76

9 1cc5 6.5 10.8 52 6.5 10.9 55 6.1 14.8 56 5.0 10.5 54
10 2ezk 4.7 16.8 87 5.9 14.4 89 6.7 17.1 79 5.2 16.2 88

11 1hhp 9.9 14.2 43 9.1 15.1 36 9.4 13.8 37 9.3 15.4 36

12 2hg6 9.7 21.7 43 8.8 17.1 46 9.4 29.3 43 8.6 15.3 46

13 2h5nD 7.7 15.4 63 6.0 14.5 70 6.4 21.1 65 7.0 11.7 68
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realistic and closer to the native structure (in percentage of native contacts) than

conformations obtained only with EAMW in the MMC search; (iii) comparison of the

lowest lRMSDs to the native structure shows that combining PE and its variants

with EAMW also leads to comparable or lower lRMSDs than when using only EAMW

for the majority of proteins; (iv) in particular, the lowest lRMSDs are most improved

when the restricted PE is employed in combination with EAMW over the other var-

iants. Taken together, these results strongly suggest that combining a contact-based

structural pro¯le with a sophisticated physics-based energy function improves both

conformation quality and proximity to the native state.

3.4. PE-based projection of conformational space in FeLTR

We compare the ability of FeLTr to sample near-native conformations when using

USR (FUSR) over PE with LSH (FPE). Table 5 reports lR, Rle, and mQ in each

setting. It is worth noting that the number of conformations sampled in FeLTr is an

order of magnitude smaller than that sampled in the above MMC runs. Previous

research on FeLTr has shown that in a fair setting, FeLTr obtains more native-like

conformations that MMC.14�16 Our goal, here, however, is simply to compare the

USR-based to the PE-based projections. Only the full PE vector is employed rather

than its variants, since PE is now part of the projection and not energy. Two main

conclusions can be drawn from the results shown in Table 5. First, employing PE

with LSH to project the conformational space is just as e®ective as USR in allowing

FeLTr to obtain low lRMSDs to the native structure. Comparable and in some cases

even lower lRMSDs are obtained through FPE over FUSR. Second, even though PE is

used here to project the conformational space rather than provide an energy bias,

comparable or higher maximum Q values are reached over FUSR. This is an inter-

esting result, as it shows that the quality of near-native conformations is improved

even when using PE to project conformations.

A detailed analysis of the PE-based projection actually shows that this projection

is more e®ective at decomposing the conformational space. The grouping of similar

conformations is tighter than when employing USR-based projection coordinates.

Figure 1 summarizes the results as follows. The conformations in the FeLTr tree that

Table 5. PDB id, number of amino acids, and fold are shown for each protein.

Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13
PDB 2i2v4 1isuA 1c8cA 1hz6A 1wapA 1fwp 1ail 4icb 1cc5 2ezk 1hhp 2hg6 2h5nD

FUSR

lR 5.0 7.2 7.5 6.0 7.7 6.7 4.2 5.0 7.0 4.9 10.7 10.8 8.8

RlE 8.5 10.7 9.7 10.5 10.7 14.0 6.7 10.1 10.9 16.3 15.2 15.9 15.4

mQ 37 23 36 37 22 29 65 48 39 65 13 25 43

FPE

lR 4.2 6.8 6.5 6.5 6.9 7.3 3.8 5.0 6.1 6.4 9.6 11.3 9.6

RlE 8.0 9.6 11.7 12.9 9.2 10.9 9.8 9.2 9.4 12.9 14.6 16.1 13.5
mQ 41 31 48 33 26 27 70 56 39 73 13 23 41
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correspond to energy levels below the average energy sampled are analyzed in terms

of their diversity. By using a USR-based or PE-based projection, the lRMSD between

any two conformations in a cell is computed, and the minimum and median pairwise

lRMSDs are recorded for each cell. The distribution of these values over all cells

belonging to an energy level is summarized with the minimum and median statistics.

Figure 1 plots the minimum and median statistics for each energy level below the

average energy. A segment is drawn connecting the two statistics per energy level to

provide a visual representation of conformational diversity. Figure 1 superimposes

statistics obtained from the analysis of the PE-based projection over conformations

obtained with FPE in black over the statistics obtained from the analysis of the USR-

based projection over conformations obtained with FUSR. Results are shown on two

selected proteins.

Figure 1 shows that the di®erence between the statistics grows narrower with

lower energy values. While this is expected, as the protein energy surface is funnel-

like, the PE-based projections capture this feature better. A comparison of the

statistics between FPE and FUSR shows that the range is narrower for FPE, suggesting

that PE with LSH is more sensitive than USR and groups together conformations

that are overall structurally more similar. This observation is in agreement with the

fact that PE captures more detailed information about the topology of a confor-

mation than the coarse information that the USR features capture about molecular

shape.

4. Discussion

This work has conducted a comprehensive investigation of the e®ectiveness of contact-

based structural pro¯les in assisting stochastic search of the protein conformational

0 2 4 6 8 10
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−100
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−75
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−100

−95
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Fig. 1. Segments in black for statistics computed over the PE-based projection are superimposed over

those in gray for the USR-based projection.
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space in sampling near-native conformations. Two settings have been explored, one in

which the structural pro¯le provides an energy bias to the search through a pseudo-

energy function, and another where the pro¯le is employed instead to organize the

protein conformational space. A detailed analysis in the context of an MMC search

shows that structural pro¯les are most e®ective in producing both near-native and

physically realistic conformations when employed in conjunction with physics-based

energy functions. The combination allows obtaining high-quality conformations closer

to the native structure than when employing only physics-based energy functions.

The analysis shows that structural pro¯les are just as e®ective in leading to near-

native conformations when employed to project the conformational space. These

pro¯les allow better grouping together structurally similar conformations than

coarse descriptors of molecular shape, mainly because contact-based structural

pro¯les capture more details about the topology of a conformation. In light of their

e®ectiveness in organizing conformational space, it is worth exploring di®erent values

of h in the LSH mapping to directly control cell width.

The detailed investigation of the role of contact-based structural pro¯les in

assisting stochastic in this paper is a ¯rst step into providing further understanding.

Future work will investigate pro¯les predicted from sequence in the context of energy

bias. The current literature on predicting the native PE from sequence data requires

some modi¯cations to how contact matrices are interpreted. For instance, the con-

tact matrix predicted from sequence is a real-valued symmetric matrix, where an

entry records the probability of a contact rather than the presence of the contact or

not. In this case, interpretation of the matrix is needed so that a binary symmetric

one can be computed for the eigendecomposition that follows. We are currently

pursuing this line of investigation.

Additionally, since the combination of EPE with EAMW was shown in this paper to

be more powerful than each of the terms alone, as demonstrated in an MMC search

setting, the pseudo-energy function that combines both terms can be employed

instead of EAMW in the FeLTr framework. In this way, the structural pro¯le would

provide both an energy bias to FeLTr and organize conformations in the tree through

the LSH-based projection described in the paper. Future work will also pursue a

dynamic schedule to weight the contribution of these pro¯les relative to a physics-

based energy function as the search proceeds.
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