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Since its introduction, the basin hopping (BH) framework has proven useful for hard nonlinear optimization problems with
multiple variables and modalities. Applications span a wide range, from packing problems in geometry to characterization of
molecular states in statistical physics. BH is seeing a reemergence in computational structural biology due to its ability to obtain a
coarse-grained representation of the protein energy surface in terms of local minima. In this paper, we show that the BH framework
is general and versatile, allowing to address problems related to the characterization of protein structure, assembly, and motion
due to its fundamental ability to sample minima in a high-dimensional variable space. We show how specific implementations
of the main components in BH yield algorithmic realizations that attain state-of-the-art results in the context of ab initio protein
structure prediction and rigid protein-protein docking. We also show that BH can map intermediate minima related with motions
connecting diverse stable functionally relevant states in a protein molecule, thus serving as a first step towards the characterization
of transition trajectories connecting these states.

1. Introduction

Global optimization is an objective of many disciplines, both
in academic and industrial settings [1, 2]. Characterization of
complex systems often poses very hard global optimization
problems with many variables [3, 4]. Algorithms that target
such problems largely build on or combine four main
approaches: deterministic, stochastic, heuristic, and smooth-
ing [3, 5–7]. All these algorithms are challenged by systems
where the variable space contains multiple distinct minima.
While most algorithms can efficiently find a minimum, not
all can feasibly locate the global minimum.

Some of the most successful applications of global
optimization algorithms on characterizing physical and
biological systems build on the stochastic Monte Carlo (MC)
procedure and its Metropolis variant [8]. For instance, sim-
ulated annealing is one of the most widely used algorithms
for finding the global minimum of a multivariable function
for different complex systems [4, 9, 10]. Adaptations that

build on deterministic and stochastic numerical procedures,
such as molecular dynamics (MD) and MC, are abundant in
computational biology for the structural characterization of
biological macromolecules (cf. [11, 12]).

Basin hopping (BH) is a global optimization framework
that is particularly suited for multivariable multimodal
optimization problems [13], and it is our thesis in this paper
that BH is an effective framework for the characterization
of biological macromolecules. The basic BH framework
is well studied and understood, but modifications to its
core components are necessary for application to complex
biological systems. In what follows, we first summarize the
basic BH framework and some of its salient properties
before proceeding to identify modifications necessary for
application to biological macromolecules.

BH combines heuristic procedures with local searches
to enhance its exploration of the given variable space,
conducted as a series of perturbations followed by local
optimization. As shown in pseudocode in Algorithm 1,
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(1) i← 0
(2) Xi ← random initial point in variable space
(3) Yi ← LOCALSEARCH (Xi)
(4) while STOP not satisfied do
(5) Xi+1 ← PERTURB (Yi)
(6) Yi+1 ← LOCALSEARCH (Xi+1)
(7) if f (Yi+1) < f (Yi) then
(8) i← i + 1

Algorithm 1: Basic BH framework in pseudocode.

the framework can be described in terms of a local search
procedure LOCALSEARCH that maps a point Xi in variable
space to its nearest minimum Yi, a perturbation move
PERTURB that modifies a current minimum Yi to obtain
a new point Xi+1 in variable space, and a stopping crite-
rion STOP that terminates these repeated applications of a
structural perturbation followed by a local optimization. The
repeated applications result in a trajectory of local minima
Yi. As shown in Algorithm 1, only the lowest minimum needs
to be retained in memory when seeking the global minimum
of some function f . It is important to note that Algorithm 1
shows a specific realization of the BH framework, known as
monotonic BH (MBH), where the current minimum is not
accepted if it does not lower the lowest value obtained for
the function f so far. In this case, another perturbation is
attempted in order to obtain a new starting point for the local
optimization that follows.

While this basic framework is easy to describe and
employ for global optimization, effective implementations
exploit specific domain expertise about the system at hand
[14–19]. Heuristics are designed based on specific system
knowledge to implement an effective perturbation compo-
nent. Domain-specific expertise is also employed for an
effective implementation of the local search component.
The stopping criterion is often implemented in terms of a
maximum number of function evaluations or in terms of no
improvements over a window of the last sampled minima. It
is important to note that the stochasticity in BH is mainly
due to the implementation of the perturbation component,
which seeks to take the exploration out of the current local
minimum. The local optimization component, on the other
hand, can employ deterministic numerical techniques to
locate the local minimum with arbitrary accuracy [20].

The core advantage of the BH framework over a
multistart method that essentially samples local minima at
random is that BH moves between adjacent local minima
in the variable space. This strategy is more effective when
exploring high-dimensional variable spaces associated with
complex physical systems, where the addition of new dimen-
sions can result in an exponential increase in the number of
minima in the space [21]. The adjacency is a result of a deep
connection between the perturbation and local optimization.
Despite the application setting, a good general rule is for the
perturbation to preserve some structural characteristics of
the local minimum Yi it is disrupting to obtain a new starting
point Xi+1 for the next application of the local optimization.

If the magnitude of the perturbation jump in the variable
space, measured through some distance function d(Yi,Xi+1),
is small, thenXi+1 may remain in the basin of attraction of Yi,
and the local optimization will bring Xi+1 back to Yi. On the
other end of the spectrum, the perturbation can completely
disrupt Yi and obtain an Xi+1 that could have essentially
been obtained at random. While the local optimization will
yield a new local minimum Yi+1 /=Yi, the BH will degenerate
to a multistart method in this case. Different studies have
shown that the perturbation needs to preserve some of
the structure of the current minimum for BH to be more
effective than the multistart method [20, 22]. It is the careful
implementation of the perturbation component that allows
BH to organize the local minima it samples according to an
adjacency relationship [21].

The BH framework is sometimes referred to as a funnel-
descent method, because its core behavior of iterating over
adjacent local minima has turned out to be an effective
optimization strategy for functions with a funnel landscape
[21]. The generality of the framework and its ease of adaption
for different systems has resulted in diverse applications,
which span from geometry problems, such as packing circles
in circular containers [20], to statistical physics problems of
characterizing low-energy states of small atomic clusters [3].

The BH framework originated in the computational
biology community dating back to the pioneering work
of Wales [3], where the objective was to characterize the
minima of the Lennard-Jones energy function in small
atomic clusters. The term basin hopping was coined in this
work, though to an extent, the stated motivation for the BH
framework was from related optimization algorithms in the
evolutionary search community. In fact, BH can be viewed
as a special case of Iterated Local Search, which is popular
for solving discrete combinatorial optimization problems
[23]. An algorithmic realization of the BH framework was
available prior to the work of Wales, most notably in
Scheraga’s MC with minimization algorithm [9, 24].

The BH framework is particularly suited to deal with
molecular spaces, where the function sought for optimiza-
tion is a complex nonconvex potential energy function sum-
ming over the interactions among atoms in a 3-dimensional
molecular structure. The global minimum of the function
corresponds to the structural state of the molecule that is
most stable under equilibrium conditions and so relevant
for biological activity. Structural characterization of the bio-
logically active (native) state of biological macromolecules is
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an important problem in computational structural biology.
A grand-standing challenge nowadays is to characterize such
states for protein molecules, which are central in many
chemical pathways in the cell and are the focus of this paper.

Proteins are complex systems with hundreds to thou-
sands of atoms. These atoms are organized in amino-acid
building blocks which connect serially to form a polypeptide
chain (the N-terminus of one amino acid connects to the C-
terminus of the other to form a peptide). Figure 1(a) shows
a short polypeptide chain. Depending on the representation
employed, a spatial arrangement of the atoms that constitute
a polypeptide chain, also referred to as a conformation, may
require the specification of a prohibitive number of variables.
A popular representation in computational structural biol-
ogy employs only the angles shown in Figure 1(a). These
angles can be used to define the variable space, as their
modification gives rise to different conformations.

The variable, or conformational, space of a polypeptide
chain is associated with a funnel-like energy surface [25,
26]. The size and ruggedness of this surface, illustrated in
Figure 1(b), are the primary reasons why obtaining struc-
tural information on native state of a protein polypeptide
chain based on the chain’s amino-acid sequence alone is an
outstanding challenge in computational structural biology
[27]. Meeting this challenge, often known as ab initio protein
structure prediction, is needed, however, to close the gap
between the wealth of protein sequence data and the scarce
information on their native structures. Obtaining structural
information ab initio promises to elucidate the structure-
function relationship and advance structure-driven studies
and applications on protein molecules [28–30].

The funnel-like but rugged energy surface of protein
molecules seems suitable for the BH framework. In general,
it is challenging to locate the global minimum in this surface
and so elucidate the native structure of a protein. One
of the main reasons relates to imperfect modeling. The
energy functions currently available to probe the protein
energy surface are semiempirical and contain inherent
errors [31]. Due to the specific process undertaken in
computational chemistry to design such functions, the actual
global minimum of a designed protein energy function
may deviate significantly from the true global minimum
(the native structure obtained by experiment in the wet
laboratory). Studies report deviations in the 2–4 Å range
[32]. Due to these deviations, computational approaches
that aim to obtain a broad view of the energy surface are
more appropriate, particularly if they are to be followed
by detailed heavy-duty optimization techniques on select
conformations.

A common strategy among protocols for ab-initio pro-
tein structure prediction is the sampling of a large number
of low-energy conformations. These are end points of many
independent MD or MC trajectories optimizing some chosen
energy function [28, 33–39]. Alternatively, the trajectories
can be integrated in a tree to better control the exploration
and use online analysis to bias the tree away from high-
energy oversampled regions [40, 41]. The conformations are
then grouped by structural similarity to reveal local minima
from which it is worth continuing the exploration at higher

representational detail. The goal then becomes obtaining
convergence to a region of the space that can be predicted
to represent the native state.

In the context of ab-initio protein structure prediction,
BH can be employed to explicitly sample local minima in
the protein energy surface. At a superficial level, this would
require the retainment of an ensemble of local minima and
not just the current one. In addition, while the pseudocode in
Algorithm 1 shows a simple realization of the BH framework,
MBH, applications of BH on molecular spaces often make
probabilistic decisions on whether to accept a current
minimum. Procedurally, the framework still consists of
repeated applications of a structural perturbation followed
by an energy minimization. However, a Metropolis criterion
[42] biases the sampling of local minima towards lower
energy ones over time. Essentially, the decision to accept
Yi+1 is made with probability exp(−[E(Yi+1)−E(Yi)]/[KBT]),
where E refers to the energy function, KB is the Boltzmann
constant, and T is temperature. Temperature does not need
a physical meaning, as its main role is to scale the height of
an energy barrier.

The appeal of the BH framework is that it transforms the
protein energy surface into a collection of interpenetrating
staircases, as illustrated in Figure 1(c). A succinct discrete
representation is obtained for this surface in terms of local
minima. It is important to note that BH does not modify
the energy surface in any way. Instead, it projects each point
(conformation) to its closest local minimum to effectively
reveal a map of the energy surface in terms of local minima.
The details of the energy surface between local minima are
lost, but this degree of resolution is still very useful for a
structural characterization of protein molecules.

Given its ease of implementation, BH is starting to
gain popularity as an optimization framework for biological
systems. Current applications of BH for structural charac-
terization of biological molecules essentially differ in the
specific implementations for the perturbation and local
optimization components. Local optimization, for instance,
is implemented as gradient descent or Metropolis MC at
low temperature, whereas the perturbation component, on
the other hand, directly modifies atomic coordinates in
existing work. These implementation choices have allowed
BH algorithms to capture local minima of small atomic
clusters and even map energy surfaces of polyalanines and
other small proteins [14, 32, 43, 44]. However, applications to
structure prediction [45] have been limited to small proteins,
mainly because representation of conformations through
atomic coordinates results in a prohibitive variable space.
In particular, the BH algorithm in [45] succeeds in locating
conformations closer to the experimentally determined
native structure than MD with simulated annealing, but its
efficiency drops on sequences longer than 75 amino acids.

In this paper, we show that BH is a useful framework for
structural characterization beyond structure prediction. We
recognize that BH is general and can be employed to map
the equilibrium conformational space of a biological system.
For instance, we show that with suitable modifications to
the perturbation and local optimization components, BH
can be applied to protein-protein docking to reveal native
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Figure 1: (a) A short polypeptide chain of 4 amino acids, alanine, lysine, lysine, and valine, is shown. The backbone atoms shared by all
amino acids are N, Cα, C, and O. Side-chain atoms unique to 20 types of amino acids are in gray. The backbone (φ,ψ) dihedral angles are
annotated over the chain. (b) A model energy surface is illustrated, adapted from [25]. The surface is funnel-like but rugged. The native
state at the bottom is denoted by N. Conformations associated with it (obtained from experiment) are illustrated for a particular protein
molecule. (c) The BH framework essentially converts the function into a stepwise one. The perturbation and local optimization components
are illustrated here with differently colored arrows. A minimum is shown here which fails the Metropolis criterion and is thus not accepted,
prompting a new perturbation move.

lowest-energy configurations of protein molecules resulting
from the assembly of various polypeptide chains. Specifically,
in the context of ab-initio protein structure prediction, we
show that implementations of the main components in BH
that employ domain-specific knowledge result in increased
efficiency and allow application to longer protein chains.

We also show that the ability of BH to provide a map
of the energy surface in terms of minima is useful not only
when the goal is to locate the global minimum (whether
that minimum corresponds to the native structure of one
protein polypeptide chain or of a complex resulting from
assembly of multiple chains), but also when the objective
is to characterize proteins with more than one functionally
relevant state. Such proteins are abundant in biology as

effective biological machines that can tune their biological
function through molecular motions [46–49]. A map of the
minima surrounding the functionally relevant states is useful
for understanding how the protein hops between minima in
transition trajectories connecting these states [33, 49, 50].

The presentation in this paper of BH as a general,
versatile framework builds over our recent work on ab-
initio structure prediction and rigid protein-protein dock-
ing [22, 51]. In particular, in the context of structure
prediction, we show that employment of the molecular
fragment replacement technique allows BH to efficiently
capture the native structure. In the context of protein-protein
docking, we incorporate geometric hashing to efficiently
obtain structural perturbations of a dimeric configuration.
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Additional information from evolutionary sequence analysis
allows restricting the variable space. Finally, we provide here
a proof-of-concept demonstration that BH can be applied
to understand the connectivity between functionally relevant
states in a protein in terms of the minima surrounding
these states. Obtaining a view of minima in the equilibrium
conformational space of a protein molecule is the first step
into elucidating motions and transition trajectories that take
a protein between the states it uses for biological function.

2. Methods

The basic BH framework was showcased in Algorithm 1 in
Section 1. Our algorithmic treatment in this section focuses
on modifications to the basic components of BH which
allow its application to the three different problems on
which we focus in this paper. As described in Section 1,
two modifications that allow application to these prob-
lems concern accepting a newly obtained local minimum
according to the Metropolis criterion (unlike the basic MBH
algorithm) and adding that minimum to a growing ensemble
of BH-obtained local minima (unlike recording only the
last one as in the basic MBH framework). The description
of BH below is organized according to the three different
applications showcased in this paper in Sections 2.1, 2.2, and
2.3, respectively. The treatment of BH in each application
is limited to description of four main components: (1)
representation of the system being modeled, which allows
defining the variable space; (2) description of the energy
function being optimized by BH; (3) implementation of the
structural perturbation move; and (4) implementation of the
local search procedure for the local optimization.

2.1. BH for Sampling Decoy Conformations for Ab Initio
Protein. As described above, the BH framework can be
employed to obtain a broad view of the energy surface
in terms of low-energy local minima. This can be done
efficiently at a coarse-grained level of detail, employing an
energy function that sacrifices detail and some accuracy
to save computational time. The sampled conformations
corresponding to the local minima are low-energy decoy
conformations, which can then be fed to any structure pre-
diction protocol for further analysis and refinement of select
conformations with dedicated computational resources. The
refinement will allow adding further detail, discriminating
between decoy conformations, and making a prediction on
which refined conformation can be considered to represent
the native structure.

2.1.1. Employed Representation. As illustrated in Figure 1(a),
a polypeptide chain of n amino acids contains 2n backbone
(φ,ψ) dihedral angles. Our representation of a protein
conformation employs only these angles, which constitute
the variable space. Side chains are sacrificed, as any structure
prediction protocol can pack them as part of the ensuing
refinement of decoy conformations [52]. The representation
here is essentially the idealized geometry model, which fixes
bond lengths and angles to idealized (native) values. Forward

kinematics allows computing Cartesian coordinates of the
backbone atoms (on which the energy function described
below operates) from the φ,ψ angles in the representation
[53].

2.1.2. Energy Function. The energy function is a modifi-
cation of the associative memory Hamiltonian with water
(AMW) [54]. This function has been used previously by us
and others in the context of ab-initio structure prediction
[40, 41, 55–57]. AMW sums nonlocal terms (local inter-
actions are kept at ideal values in the idealized geometry
model): EAMW = ELennard-Jones + EH-Bond + Econtact + Eburial +
Ewater + ERg. The ELennard-Jones term is implemented after the
12–6 Lennard-Jones potential in AMBER9 [58] but allows
a soft penetration of van der Waals spheres. The EH-Bond

term allows modeling hydrogen bonds and is implemented
as in [59]. The other terms, Econtact, Eburial, and Ewater, allow
formation of nonlocal contacts, a hydrophobic core, and
water-mediated interactions, and are implemented as in [39].

The listed energy terms of EAMW sum over pairwise
interactions. For instance, the 12–6 functional form of the
Lennard-Jones term is −4εi j[(σi j /ri j)

12 − (σi j /ri j)
6], where

εi j is a constant characteristic of the types of atoms at
positions i and j, σi j is the average diameter of the atoms,
and ri j is their distance. This functional form illustrates
the quadratic running time of a typical energy function
modeling pairwise interactions. More importantly, the terms
summed together in an energy function are competing;
minima of one term are obtained by suboptima of the other.
This competition is known as frustration and refers to the
fact that slight changes in atomic positions may lower the
value of one term but increase that of another term. The
result of summing competing terms in an energy function
is a complex multimodal function, whose optimization is
nontrivial. More details on the functional form of the other
terms of the AMW energy function can be found in [33, 54].

2.1.3. Implementation of Structural Perturbation. The realiza-
tion of the BH framework we describe here hops between
two conformations representing two consecutive minima Ci
and Ci+1 through an intermediate Cperturb,i conformation.
The perturbation modifies Ci to obtain a higher-energy
conformation Cperturb,i to escape the current minimum.
Essentially, 6 backbone dihedral angles of a fragment of
the polypeptide chain associated with three consecutive
amino acids in the current conformation Ci are modified
simultaneously. This process is referred to as the molecular
fragment replacement technique, because it allows replacing
the current configuration (in terms of angles) of a selected
fragment with another fragment configuration [60].

Molecular Fragment Replacement. The fragment replace-
ment technique has allowed ab-initio structure prediction
methods to make great advancements [28, 34–37]. Its key
advantage is that it allows obtaining physically realistic
modifications if the fragment configurations are sampled
from a library of actual native structures obtained in the wet
laboratory. The basic idea is that a subset of nonredundant
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protein structures are obtained from the Protein Data
Bank [61], and configurations of all fragments that can be
defined for k consecutive amino acids are excised from these
structures and stored in a library. We direct the reader to
[28, 41] for a detailed description of how the library is
constructed. In this work, we employ a fragment of length
3 rather than a longer fragment, so that the magnitude of
the jump resulting from the fragment replacement in variable
space is limited.

The perturbation component is implemented as follows.
Given a conformation Ci, a fragment of length 3 is selected
at random over the polypeptide chain (n − 2 fragments can
be defined with overlap over a chain of n amino acids). Once
the fragment is selected, a configuration for that fragment is
then sampled at random over those available for the fragment
from the fragment configuration library. The replacement
of the angles of the fragment in Ci with those of the
configuration obtained from library results in Cperturb,i.

Since low-energy conformations tend to be compact and
leave little room for movement without raising energy (a
concept known as frustration in protein biophysics), this
implementation of the perturbation component is sufficient
to obtain a high-energy conformation through which to
escape the current local minimum. Additionally,Cperturb,i will
share nearly all of its local structural features with Ci, but the
new conformation will have a higher energy and a different
overall global structure. We note that the first conformation
to initiate BH is obtained after n− 2 fragment configuration
replacements over an extended conformation.

2.1.4. Implementation of Local Optimization. Our imple-
mentation of the local optimization conducts a series
of modifications starting from Cperturb,i to reach a new
minimum Ci+1. While numerical techniques can be used
here, they tend to be inefficient [45]. We employ instead a
greedy search, which essentially attempts a maximum of m
consecutive fragment replacements (as described above for
the perturbation component) until k consecutive attempts
fail to lower energy. The resultingCi+1 conformation is added
to the trajectory according to the Metropolis criterion based
on the energetic difference with Ci.

Our implementation of the local optimization is prob-
abilistic due to the fragment replacement technique. More-
over, the true bottom of a current basin may not be found. A
working definition of a local minimum is employed instead
in terms of the parameter k. Finding true local minima in
the energy surface can be computationally intensive while
unnecessary. For instance, analysis of the AMW surface in
related work in [22] shows that the native structure is near
but not at a minimum. In addition, the results in Section 3
make the case that a working definition of a local minimum
is sufficient to discover near-native conformations.

2.2. BH for Sampling Decoy Configurations for Rigid Protein-
Protein Docking. In this application, the native structures of
two protein polypeptide chains (referred to as monomers)
are known atomic coordinates obtained for each of the
chains from experiment or structure prediction protocols.

The objective is to find the native quaternary structure that
brings the two monomers together. The assumption here is
that the monomers do not change structure upon docking
but bind rigidly with each other. Under this assumption, the
objective is to find the spatial arrangement that brings one
monomeric structure over the other and results in a dimeric
configuration of lowest energy.

2.2.1. Employed Representation. In rigid docking, the only
variables of interest are those that allow representing a spatial
arrangement of one monomeric structure over another. A
natural way to do so is through rigid-body transformations,
which can be represented as vectors of 6 variables (3 for
translation and 3 for rotation in 3-dimensional space).
Hence, the variable space here is the 6-dimensional SE(3)
space consisting of rigid-body motions or transformations.

The variable space we consider here is not the entire
SE(3) but is constrained to rigid-body motions that align
geometrically complementary and evolutionary conserved
regions of the molecular spaces associated with each of the
monomers. This builds upon earlier work by us on rigid
docking which makes use of geometric hashing [51, 62].
Geometric hashing is a popular technique that essentially
discretizes the space of rigid-body transformations by defin-
ing these transformations as alignments of geometrically
complementary regions on monomeric molecular surfaces
[63–66]. In recent work [51, 62] we show that the number
of regions relevant for alignment can be further reduced
by focusing on regions with high evolutionary conservation.
Such regions are often found to be on contact interfaces [67].

While details of the process through which rigid-body
transformations are defined are available in previous work
[51, 62], we provide here a brief summary. The Connolly
representation is first obtained for each monomeric surface
[68]. The representation stores geometrical information for
points on the surface, including whether the point represents
a convex, saddle, or concave region. The representation
is made less dense by only storing key locations on the
molecular surface, known as critical points [69]. Triangles
can be defined over these points. Associating evolutionary
information with a critical point (through an analysis
of related biological sequences [67]) allows focusing on
triangles with high sequence conservation. We refer to these
as active triangles. Once two geometrically complementary
(e.g., concave with convex) active triangles TA and TB are
obtained (from the molecular surfaces of monomers A and
B, resp.), a rigid body transformation is easily defined as the
one that aligns the local coordinate frame associated with TB
over that associated with TA.

2.2.2. Energy Function. Each rigid-body motion can be
represented as a transformation, a vector of 3 translation
and 3 rotation components (details below) that when applied
to the moving monomer (one monomer is designated as
moving and the other as reference or base) move that
monomer in space and bring it over the reference monomer.
Atomic coordinates are then obtained for the resulting
dimeric configuration, which can now be evaluated in terms



Advances in Artificial Intelligence 7

of the interaction energy. The energy function we employ
combines three nonlocal terms useful for contact interfaces:
E = EVdW + Eelectrostatic + Ehydrogen-bonding. The first term
implements the standard 12–6 Lennard-Jones potential as
in the CHARMM force field [70]. The electrostatic term
implements Coulomb’s law, also as in the CHARMM force
field [70]. The hydrogen-bonding term is calculated as in
[71] through the 12–10 hydrogen potential: Ehydrogen-bonding =
5 × [(r0/di j)

12 − 6 × (r0/di j)
10], where di j is the distance

between acceptor and donor atoms i and j, and r0 = 2.9 Å
is the optimal distance for hydrogen bonding. Energy is
computed only for the contact interface, which is defined
over pairs of atoms in one monomer in contact with the
atoms in the other monomer. Two atoms are in contact if
their Euclidean distance is not higher than 4.0 Å.

2.2.3. Implementation of Structural Perturbation. The expo-
sition above describes that a rigid-body motion is obtained
by aligning an active triangle TB on the surface of monomer
B with a geometrically complementary active triangle TA on
the surface of the base monomerA. Let the current minimum
Ci be the configuration corresponding to the transformation
aligning TB with TA. In other words, the contact interface
in Ci is that obtained by aligning TB with TA. As described
in Section 1, an effective structural perturbation needs to
preserve the adjacency relationship. For this reason, an
effective perturbation in this context needs to modify the
contact interface in Ci but limit the magnitude of the
perturbation. The implementation we pursue here seeks a
new pair of triangles, T′A and T′B, to perturb Ci and obtain
Cperturb,i. In order to limit the magnitude of the perturbation
and preserve some of the contact interface of Ci in Cperturb,i,
T′A needs to be close to TA, and T′B needs to be close to TB.

This is implemented as follows. The molecular surface
of each monomer is precomputed and represented in terms
of a finite list of active triangles. The center of mass of each
triangle is computed, and reverse indexing is used in order to
sample a triangle T′A and a triangle T′B whose center of mass
is within d Å of the center of mass of triangles TA and TB,
respectively. The process repeats until a pair T′A and T′B are
found which are geometrically complementary. A new rigid-
body transformation aligning T′B with T′A is then defined,
resulting in the perturbed configuration Cperturb,i. Sampling
in a d-radius neighborhood allows controlling and limiting
the extent to which Cperturb,i perturbs the structural features
of Ci (in this context, the contact interface).

2.2.4. Implementation of Local Optimization. As in the
realization of the BH framework for protein structure
prediction, the local optimization here also attempts at
most m structural modifications starting with Cperturb,i.
The optimization terminates early if k consecutive modi-
fications fail to lower energy. A naive implementation of
the local optimization could employ the same structural
modifications as the perturbation component; that is, new
pairs of geometrically complementary active triangles are
sought, but using a smaller d value. Our recent work on
docking shows, however, that it becomes difficult to find

geometrically complementary active triangles with smaller
values of d [72]. A more effective alternative is to sample new
rigid-body transformations directly rather than through new
pairs of geometrically complementary active triangles and
to do so in a continuous small neighborhood of an initial
transformation.

Let the vector 〈t,u, θ〉 be a rigid-body transformation,
where t refers to the translation component, and 〈u, θ〉 is
an axis-angle representation of the orientation component
(implemented through quaternions). In each move in the
local optimization, a new random transformation is sampled
in a small neighborhood of the transformation representing
the configuration resulting from the previous modification.
A new translation component t′ is sampled in a δt neigh-
borhood of t. A new axis u′ is sampled by rotating around u
by a sampled angle value δφ; a new angle θ′ for the rotation
component is obtained by sampling in a δθ neighborhood
around θ. The result is that each move is a small modification
of the contact interface to project a configuration onto its
nearest local minimum. We note that, as before in the context
of structure prediction, a working definition is employed
here for the local minimum.

The result is a trajectory of low-energy dimeric configu-
rations that are useful as decoys for the purpose of docking
protocols. As in protein structure prediction, protein-protein
docking protocols rely on first obtaining low-energy decoy
configurations. Structural and energetic analysis then allows
selecting a subset for further refinement in order to make a
prediction on the native quaternary structure.

2.3. BH for Mapping Minima Connecting Diverse Stable States
of a Protein Molecule. Many proteins employ motions to
access different structures that allow them to tune their
biological function [73, 74]. An important problem is to
understand how a protein transitions between different
functionally relevant states [50, 75, 76]. The problem of
obtaining transition trajectories is directly related to that
of obtaining the connectivity of the space around stable
states. Computing transition trajectories is challenging [77],
as such trajectories can connect structural states far away
in the variable space. By taking into account a system’s
dynamics, the typical MD framework is in principle desirable
to provide information on the time scales associated with
conformational changes in a transition trajectory. However,
its practical application is limited. Long simulation times
may be needed to observe a transition trajectory to go over
energy barriers.

In this proof-of-concept application, we propose that the
BH framework can be a valuable tool as a first step towards
elucidating transition trajectories. BH can be employed to
map the minima connecting two given structural states and
thus elucidate energetically credible conformational paths.
Treating conformations in the path as important milestones,
MD-based techniques can then be employed to locally
deform a conformational path into an actual transition
trajectory that incorporates dynamics [78].

In this application, the representation, energy function,
and the implementations of the perturbation and local search



8 Advances in Artificial Intelligence

components of BH are as in Section 2.1. Here we pursue a
proof-of-principle demonstration as follows. Let us suppose
we are given two stable structural states of a protein, A and
B. One of them can be regarded as the initial conformation
to initiate a BH trajectory of local minima, and the other as
the goal. A given number, let us say h, of BH trajectories can
be initiated from the initial structure. The trajectories are
allowed to grow for a fixed number of energy evaluations.
In the unbiased scenario, the trajectories do not employ
information about the location of the goal conformation
in variable space. The results in Section 3 show that with
sufficient sampling, if the initial and goal conformations are
low-energy (i.e., stable), even unbiased BH trajectories are
successful at approaching the goal conformation.

In a second scenario, the trajectories can be biased. Let
us define an ε-radius ball around the goal conformation.
As long as a BH trajectory stays outside this volume of
the variable space (i.e., no minima are ε or closer to the
goal), the BH exploration proceeds unbiased. When the
trajectory enters the designated goal region of the variable
space, say through its current minimum Ci, the exploration
is biased towards obtaining minima that stay within the
goal region. Given Ci, multiple perturbations followed by
local optimization are attempted until a Ci+1 is found which
remains in the goal region. While the number of attempts
is limited to a maximum of l consecutive failures before the
BH exploration returns to its unbiased setting, in practice it
is possible to remain in a goal region for a sufficiently large
ε. The exploration terminates when the goal conformation is
approached within some determined tolerance.

The value of ε is related to that of l. Moreover, a
meaningful value for ε depends on the distance metric used
and its effectiveness on a particular system. For instance,
on small proteins, lRMSD can be used to determine the
radius of the goal region. On other systems, instead, other
measurements allow circumventing some of the issues with
lRMSD. For instance, the TM-score [79] and GDT TS [80]
allow better capturing structural similarities than lRMSD
when motions are localized to specific regions. The two are
also less sensitive to noise. Familiarity with the system to
be modeled allows better determining which measurement
should be used and what values will be effective for ε
and l. As the goal in this paper is to show a proof-of-
concept demonstration that BH can be useful to obtain
information on minima connecting diverse stable states in
the equilibrium conformational space of a protein, we do
not devote time to fine tuning parameters. The results in
Section 3 show that values exist for these parameters that
allow BH to come in closer proximity to the goal structural
state in the biased over the unbiased implementation.
Further tuning of the parameters is expected to improve the
results and provide interesting directions for researchers to
explore the viability of BH in this application context.

3. Results

Experimental Setup. The stopping criterion in each experi-
mental setting to evaluate the performance of BH is set to

a fixed number of energy evaluations. This number is 107

energy evaluations for the application of BH on structure
prediction and 106 on our last application of connecting
between different stable states. Results for the protein-
protein docking do not change after 10, 000 conformations,
so this number is employed as a stopping criterion. Addi-
tionally, m and k are set to 100 and 20, respectively. In the
application on docking, different values are tried for δt, δφ,
δθ, and the ones employed for the experiments presented
below are 1.5 Å, 10◦, and 30◦, respectively. On the last
application of BH, h is set to 10 trajectories, ε is set to a TM-
score of 0.4, l = 100, and the exploration terminates earlier
than 106 energy evaluations when the current minimum is
within a TM-score of 0.9 of the goal conformation.

We present three main sets of results according to the
three different BH applications analyzed here. Where possi-
ble, results are compared to those reported by other state-
of-the-art structure prediction or protein-protein docking
methods (Tables 1 and 2 in the results presented in Sections
3.1 and 3.2, resp.). In addition, analysis of the BH-obtained
minima is conducted, and distributions of the distances
between consecutive minima are shown. This allows eval-
uating whether the implementations for the perturbation
and local optimization in each application setting preserve
the adjacency relationship between consecutively obtained
minima. The comparison with state-of-the-art methods and
the adjacency analysis employ the least Root-Mean-Squared
Deviation (lRMSD) semimetric. Analysis of results obtained
on the third application of BH on connecting stable states of
a protein molecule employs additional measurements, such
as GDT TS and TM-score (Tables 3 and 4 in the results
presented in Section 3.3). The minima sampled by BH in the
context of this third application are also visualized on a low-
dimensional projection of the variable space (the projection
coordinates are detailed below) that reveals where the BH
sampling focuses.

The main measurement used in the analysis below is
lRMSD. Briefly, lRMSD measures the weighted Euclidean
distance between corresponding atoms after optimal super-
position of the two conformations under comparison (or
configurations, if consisting of more than one polypeptide
chain). The optimal superposition refers to the rigid-body
motion or transformation in SE(3) minimizing this weighted
Euclidean distance [81]. lRMSD captures structural dissimi-
larity, but it is not a Euclidean metric, as it does not obey the
triangle inequality. Low values indicate high similarity, and
high values indicate high dissimilarity, but interpretation of
intermediate values is difficult. Interpretation has been the
subject of many studies [82]. For instance, lRMSD has been
found to depend on system size. A 5 Å lRMSD between a
computed conformation and the native structure of a short
protein chain of no more than 30 amino acids is considered a
large deviation, but the same dissimilarity is less significant
for a medium-size protein of 100 amino acids or more.
Working interpretations abound. In general, for medium-
size proteins, if the lowest lRMSD obtained over computed
conformations to the known native structure is more than
6-7 Å, the native structure is not considered to have been
captured in silico.
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Table 1: Comparison of the lowest lRMSDs obtained by BH to those obtained by other methods on the protein dimers studied here. MBH
refers to monotonic BH. lRMSDs reported by BH, MBH, and the work in [56] in columns 5–7 are over backbone atoms, whereas those
reported by the work in [36, 84] in columns 8-9 are over alpha carbons of the backbone chain.

Number PDB ID Length Fold BH (Å) MBH (Å) [56] (Å) [36] (Å) [84] (Å)

1 1dtdB 61 α/β 6.9 6.6 7.5 6.5 5.7

2 1isuA 62 α/β 6.3 6.5 6.5 6.5 6.9

3 1c8cA 64 α/β 6.5 5.7 7.2 3.7 5.0

4 1sap 66 α/β 6.5 6.0 7.36 4.6 6.6

5 1hz6A 67 α/β 5.7 6.0 6.6 3.8 3.4

6 1wapA 68 β 7.4 8.1 7.3 8.0 7.7

7 1fwp 69 α/β 6.3 6.7 7.1 8.1 7.3

8 1ail 70 α 3.2 4.2 4.0 5.4 6.0

9 1aoy 78 α/β 5.7 6.1 5.8 5.7 5.7

10 1cc5 83 α 5.8 5.6 5.8 6.5 6.2

11 2ezk 93 α 4.3 5.8 6.0 5.5 6.6

12 1hhp 99 β 10.4 10.5 11.0 NA NA

13 2hg6 106 α/β 8.8 9.3 9.7 NA NA

14 3gwl 106 α 4.9 4.9 6.3 NA NA

15 2h5nD 123 α 7.5 7.8 8.6 NA NA

Table 2: Comparison of the lowest lRMSDs obtained by BH to
those obtained by other methods. Systems that are CAPRI targets
are denoted by an asterisk.

Number PDB ID
(chains)

Size BH (Å) [66] (Å) [91] (Å)

1 1c1y (A,B) 1376, 658 1.8 1.2 N/A

2 1ds6 (A,B) 1413, 1426 3.4 1.2 N/A

3 1tx4 (A,B) 1579, 1378 2.4 1.4 N/A

4 1www (W,Y) 862, 782 2.6 11.4 N/A

5 1flt (V,Y) 770, 758 2.7 1.5 N/A

6 1vcb (A,B) 755, 692 3.4 0.8 N/A

7 1vcb (B,C) 692, 1154 2.7 13.1 N/A

8 1ohz∗ (A,B) 1027, 416 2.7 1.7 0.6

9 1t6g∗ (A,C) 2628, 1394 3.6 1.7 3.8

10 1zhi∗ (A,B) 1597, 1036 4.6 25.3 3.4

11 2hqs∗ (A,C) 3127, 856 2.6 29.1 2.5

12 1qav (A,B) 663, 840 2.6 1.4 N/A

13 1g4y (B,R) 682, 1156 4.1 0.8 N/A

14 1cse (E,I) 1920, 522 2.4 0.7 N/A

15 1g4u (R,S) 1398, 2790 3.2 1.0 N/A

However, high values of lRMSD cannot be automatically
interpreted to indicate significant structural dissimilarity.
Since lRMSD weighs each atom equally, it cannot capture
global topology changes and overly penalizes cases where the
differences are localized to a specific region of the molecule
due to, say, a large-scale motion. For instance, the lRMSD of
two conformations can be high even if structural deviations
are limited to a loop that has a different orientation in the two
conformations under comparison [83]. In such cases, other
measurements, such as GDT TS and TM-score, can be more
appropriate. While different in implementation details, these

two scores essentially locate a maximum subset of atoms
between two conformations under comparison which are
close in space after optimal superposition and minimizes an
overall lRMSD-based error. While GDT TS is reported in %,
TM-score is unitless. Both capture similarity, so higher values
are better. While lRMSD and GDT TS depend on system size,
TM-scores are found to be more reliable [83], which is why
we employ them here in the analysis in Section 3.3 on the
third BH application on connecting diverse stable states.

3.1. Analysis of BH-Obtained Decoy Conformations of a Pro-
tein Polypeptide Chain. Our realization of the BH framework
for the purpose of ab-initio structure prediction is applied
to a comprehensive list of 15 target protein systems. These
systems, listed in Table 1, range from 61–123 amino acids in
length and cover the α, β, and α/β folds. Many of them are
selected due to the availability of data reported on them by
structure prediction protocols. On these systems, computing
107 energy function evaluations takes 1–4 days of CPU time
on a 2.4 Ghz Core i7 processor, depending on chain length.

3.1.1. Comparison with State-of-the-Art Methods. Table 1
shows comparisons to state-of-the-art methods in ab-initio
structure prediction in terms of lRMSD. Over all minima
obtained from each amino acid sequence by BH, the confor-
mation with the lowest lRMSD to the known native structure
of that sequence (experimentally obtained structure with
PDB ID shown in this table) is recorded, and that value
is reported in column 5 in Table 1. To take into account
stochasticity, we report in Table 1 the average lowest lRMSD
obtained over 3 independent runs. This value is compared
to lowest lRMSDS reported by methods that are popular in
ab-initio structure prediction [36, 84]. We also compare to
data obtained with our previous work on ab-initio structure
prediction with a robotics-inspired tree-based exploration
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Table 3: Initial conformations of calmodulin are in the rows, whereas goal conformations are denoted in the columns. Three measurements,
lowest lRMSD, highest TM-score, and highest GDT TS scores to any of the goal conformations, are reported over the 10 trajectories started
from each initial conformation.

PDB 1cfd 1cll 2f3y

ID lRMSD (Å) TM-score GDT TS (%) lRMSD (Å) TM-score GDT TS (%) lRMSD (Å) TM-score GDT TS (%)

1cfd 6.70 0.57 56 6.48 0.60 50 8.20 0.44 38

1cll 5.84 0.50 43 2.38 0.84 78 6.24 0.53 54

2f3y 6.7 0.47 40 2.50 0.82 74 2.87 0.77 73

Table 4: Initial conformations of adenylate kinase are in the rows, whereas goal conformations are denoted in the columns. Three
measurements, lowest lRMSD, highest TM-score, and highest GDT TS scores to any of the goal conformations, are reported over the 10
trajectories started from each initial conformation.

PDB 1dvr 2aky 2ak3 4ake

ID TM-score GDT TS (%) TM-score GDT TS (%) TM-score GDT TS (%) TM-score GDT TS (%)

1dvr 0.99 99 0.83 74 0.41 25 0.32 20

2aky 0.84 76 1.00 100 0.44 28 0.31 18

2ak3 0.41 25 0.44 28 0.99 99 0.39 25

4ake 0.31 18 0.29 17 0.41 26 1.00 100

method [40, 41]. Monotonic BH (MBH) is also included in
the comparisons (column 6).

The results in Table 1 make the case that BH performs
just as well as state-of-the-art methods in structure predic-
tion in terms of its ability to obtain low-lRMSD conforma-
tions in an ab-initio setting. The role of the energy function
may partially explain some differences among the methods,
as they employ different energy functions (MBH and [41]
also employ AMW). It is interesting to note that, while our
realization of BH (which uses a Metropolis criterion to add
the next minimum to its trajectory) obtains lower lowest
lRMSDs on more proteins than MBH, the performance of
MBH is comparable to the other methods in many cases.
MBH can be regarded as a special case of the BH framework
with the Metropolis criterion, where temperature T = 0.
The T value we use here for our realization of BH allows a
2.6 kcal/mol energy increase between two consecutive local
minima with probability 0.1.

3.1.2. Evaluation of Adjacency Relationship. Adjacency
between local minima obtained consecutively by BH is
often stated as important for global optimization. Here
we show concretely, in the context of ab-initio structure
prediction, how this adjacency correlates with the lowest
lRMSD reported by BH to the known native structure of
each of the protein systems studied. The lRMSD between
two consecutive local minima is computed, and the average
is recorded for a given protein system. This value is plotted
against the lowest lRMSD from the native structure obtained
by BH on each protein system in Figure 2. A strong
correlation of 94% is observed in Figure 2 between the
average consecutive local minima distance and the lowest
lRMSD to the native structure. This result suggests that
adjacency of consecutively sampled local minima is related
to the ability of BH to locate the native structure. Figure 2
shows that, in cases where the average consecutive local
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Å
)

2h5nD1isuA

1hz6A

1wapA

Figure 2: The mean consecutive local minima distance is drawn
against the lowest lRMSD obtained for each protein.

minima distance is large, BH does not come close to the
native structure.

Further detail is provided in Figure 3 on two protein
systems. These systems are selected to represent two diamet-
rical cases that correspond to the bottom left and top right
portions in Figure 2. The lowest lRMSD structures obtained
for each of these two systems by BH are superimposed over
their respective native structures in Figures 3(a)-3(b). The
entire distribution of consecutive local minima distances is
shown for these two proteins in Figures 3(c)-3(d). Figures
3(c)-3(d) further show that, in cases where the majority of
consecutive minima are not adjacent in variable space, the
overall performance of BH in terms of lowest lRMSD to the
native structure suffers. One reason for the poor adjacency
is that the fragment replacement may perturb too much
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Figure 3: (a and b) The lowest-lRMSD conformation (in opaque red) is superimposed over the known native structure (in transparent blue)
for the protein with native PDB ID 2ezk in (a) and 1hhp in (b). (c and d) The distribution of consecutive local minima distances in terms of
lRMSD is shown in (c and d) for the two proteins, respectively. (e and f) The distribution of energies obtained by BH is superimposed over
that obtained by the multistart method on each of the two proteins.
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of a conformation. In a recent analysis [85], we show that
this can be controlled by biasing the sampling of fragment
replacements towards those that will result in small structural
changes in terms of lRMSD between Ci and Cperturb,i.

Comparison of BH with Multistart Sampling. Adjacency of
consecutive local minima in BH is often stated as a key
distinguishing characteristic over a multistart method, where
initial points for local optimization are essentially sampled
at random over the variable space. Here we show the
effect of the adjacency relationship in a concrete setting
in terms of the energetic quality of the sampled minima.
On the same two protein systems where the above analysis
highlights consecutive local minima distances, we show in
Figures 3(e)-3(f) the distribution of energies. Figures 3(e)-
3(f) superimposes the distribution obtained by BH over that
obtained by the multistart method. The results show that BH
obtains lower-energy minima than the multistart method. In
the context of ab-initio structure prediction, the quality of
decoy conformations obtained by BH is superior over that
obtained by a multistart method.

Sampling Redundancy in BH. It is interesting to determine
how often our realization of the BH framework here comes
close to the native structure. We show this visually through
a projection of the variable space in a few dimensions.
The projection coordinates we choose are based on the
ultrafast shape recognition (USR) features [86], which we
have employed in previous work to guide a tree-based
exploration of the variable space with measurements taken
over a low-dimensional projection [40, 56]. These coordi-
nates give a coarse representation of the molecular shape.
They are first momenta of distance distributions of atoms
in a molecule from selected points on the molecule. The
selected (reference) points are the centroid (ctd), point
closest to centroid (cst), point farthest from centroid (cfd),
point farthest from cfd, and so on. More reference points
can be defined this way, but the ones we employ for the
visual representation here use only ctd and cfd. It is worth
noting that, while coarse, the USR-based projection is fast to
compute for each conformation, unlike PCA- or ISOMAP-
based decompositions [87–89], which are time consuming
and hard to use in an online setting and contain several other
shortcomings noted for conformational space [90].

Figure 4 shows the projection of BH-sampled minima
over the two USR-based coordinates measured using the ctd
and cfd reference points. The projection is discretized so
that cells can be defined in a 2d grid for the purpose of
measuring how often BH samples similar minima in terms
of their coarse 2d USR-based representation. The 2d grid in
Figure 4 is color coded with a blue-to-red color scheme that
corresponds to cells with low-to-high number of minima
projected to them. The cell that contains the projection of
the native structure is marked with an ×.

The projection of the sampled minima in this USR-
based 2-dimensional space allows visualizing highly sampled
regions by BH. The representation is coarse (e.g., cell
widths used here for visualization can be made smaller), as

conformations that map to the same cell may be several Å
apart, but the projection is useful to draw two conclusions.
First, compared to the vast variable space (sea of blue in
Figure 4), BH sampling seems to focus in regions near the
native structure. These regions represent the equilibrium
conformational space. Second, sampling can be redundant;
some regions are more populated than others. Future
research can address redundancy in order to enhance the
capability of BH to sample the equilibrium conformational
space of a protein molecular in terms of local minima.

3.2. Analysis of BH-Obtained Decoy Configurations of Protein-
Protein Dimers. Our realization of the BH framework for
the purpose of protein-protein docking is applied to a
comprehensive list of 15 different dimers. These vary in size,
represent diverse functional classes, and have been tested by
other protein-protein docking methods, and some are even
CAPRI targets. Testing is carried out on a 2.66 GHz Opteron
processor with 8 GB of memory. Depending on system size,
obtaining 10, 000 conformations takes 6–12 CPU hours.

3.2.1. Comparison with State-of-the-Art Methods. Table 2
shows the lowest lRMSD from the known native structure
(with PDB ID shown in column 1) obtained by BH in
column 3. Lowest lRMSDs reported on these systems by
other methods are shown in columns 4-5. System size in
terms of number of atoms in each of the chains is shown in
column 2. Table 2 shows that BH achieves low lRMSDs to the
native structure on each system. Moreover, these are compa-
rable to the lRMSDs reported by other related methods. In
particular, the method presented in [66] employs geometric
hashing, whereas that in [91] uses long optimizations with
a carefully designed energy function that employs infor-
mation on evolutionary conservation to sample low-energy
conformations. In addition to a comparable performance
with these methods, BH samples many configurations within
5 Å lRMSD of the native structure (data not shown). These
configurations, if selected and further refined in the course of
a multistage docking protocol, will allow obtaining the native
structure in great detail.

3.2.2. Evaluation of Adjacency Relationship. We investigate
here the adjacency between consecutively sampled local min-
ima. Figure 5(a) plots the mean consecutive local minima
distance in terms of lRMSD for each protein against the
lowest lRMSD obtained to the native structure. A positive
correlation of 73% is observed. The mean consecutive local
minima distance is less than 15 Å for about half of the
systems. While this may seem like a large number compared
to the related results on ab-initio structure prediction, the
range is larger due to the size of the dimeric systems (lRMSD
depends on size). The strong correlation suggests that
adjacency of consecutively sampled minima directly relates
with the ability of BH to locate a global minimum. Lower
lowest lRMSDs (<5 Å) are obtained here compared to the ab-
initio structure prediction setting. This is not surprising, as
the variable space here is 6-dimensional, whereas the space
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Figure 4: The 2d grids show projections of BH-sampled minima using two USR-based coordinates (with ctd and cfd as reference points).
The projection for the protein with native PDB ID 2ezk is shown in (a), and that for the protein with native PDB ID 1hhp is shown in (b).
The grids are color coded with a blue-to-red color scheme to show cells with low-to-high number of minima projected to them. The cell that
contains the projection of the native structure is marked with an ×. The range of values of each of the coordinates is estimated as in [40].
Maximum values are based on an extended chain, and minimum values are based on the Flory compact self-excluding model of a chain of n
amino acids. To improve visualization, the ranges are limited here, and the grids are clipped to allow focusing to regions with some minimal
population.

in the ab-initio structure prediction application contains
hundreds of dimensions.

Further detail is provided in Figures 5(d)-5(e), which
shows the distribution of lRMSDs between consecutively
sampled local minima on two protein systems. These
systems are selected to represent two diametrical cases that
correspond to the bottom left and top right portions in
Figure 5(a). The actual lowest-lRMSD structures obtained
on these systems are shown in Figures 5(b)-5(c), super-
imposed over the corresponding native structures of these
proteins. The distributions in Figures 5(d)-5(e) show that
more pairs of consecutive minima with low lRMSDs are
obtained for the protein where BH also obtains a lower lowest
lRMSD to the native structure.

3.3. Analysis of BH Trajectories in Connecting Diverse Stable
States of a Protein. The unbiased setting of BH is tested
here in detail on two proteins, calmodulin and adenylate
kinase. Some encouraging results are shown for the biased
setting as well, but a detailed investigation of the biased
implementation and parameter tuning is beyond the purpose
of this work.

3.3.1. Mapping Minima between Stable States in Calmodulin.
Calmodulin is a 144 amino-acid long EF-hand protein
that binds calcium and regulates more than 100 proteins,
including kinases, phosphodiesterases, calcium pumps, and
motility proteins [46–48]. The protein resembles a dumbbell,
with the terminal domains linked by a flexible α-helix and
the termini in a transorientation from each other on either

side of the central linker. The partial unfolding of the central
linker around position 77 gives calmodulin flexibility.

Calmodulin has been captured in three different func-
tionally relevant structural states in the wet laboratory [92–
94]. These states are documented in the PDB as X-ray
structures under PDB IDs 1cfd (apo state), 1cll (calcium-
binding state), and 2f3y (collapsed peptide-binding state).
The central helix is fully formed in the calcium-binding state,
unfolds in the middle in the apo state, and bends in the
collapsed state. Transitions between the apo and collapsed
states have been observed both in experiment and simulation
[49, 50].

In order to test the unbiased setting of BH in this
application, the following experiment is conducted. Each of
the structures is obtained from the PDB and employed as
an initial conformation. h = 10 Bh trajectories are launched
independently from any of them. The proximity to any of the
other two structures is reported in Table 3. Entry at row i and
column j reports the best proximity over the 10 trajectories
initiated from structure i to goal structure j.

Proximity to the goal is measured in three ways. Table 3
shows lowest lRMSD, highest TM-score [79], and highest
GDT TS [80]. The results in Table 3 show that BH is able
to capture the structure with PDB ID 1cfd (apo) when
initiated from 1cll (semicollapsed state) and vice versa (TM-
scores above 0.5 are found to capture significant structural
similarity [83]). BH also captures the structure with PDB ID
1cll (semicollapsed state) when initiated from 2f3y (collapsed
state) and vice versa. A very low lRMSD and very high TM-
score and GDT TS score are obtained from 2f3y to 1cll.
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Figure 5: (a) The mean consecutive local minima distance is drawn against the lowest lRMSD obtained for each protein. (b and c) The
lowest-lRMSD dimeric configuration (in opaque, with chains in different colors) is superimposed over the known native structure (in
transparent) for the protein with native PDB ID 1c1y in (b) and 1g4y in (c). (d and e) The distribution of consecutive local minima distances
in terms of lRMSD is shown in (d and e) for each of the proteins, respectively.
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This is an encouraging result, since 1cll captures a partially
closed state, whereas 2f3y captures calmodulin in its close
state. Structurally, 1cfd, the apo state, is further away from
the semicollapsed and collapsed states. Indeed, all three
measurements in Table 3 indicate that BH has not captured
state 1cfd from 2f3y and vice versa.

Table 3 also shows values along the main diagonal, which
record the closest that a BH trajectory comes to its initial
conformation. While this is achieved often through the
very first minimum, the structure with PDB ID 1cfd is the
only exception. This indicates that this structure is not at
a local minimum, and BH quickly steers away from this
initial conformation. This may also explain the difficulty of
capturing that state when initiated from any of the other
two. In addition, analysis of the biased setting for calmodulin
reveals that when an ε value of 0.4 in terms of TM-score
is used, BH is able to come closer to the goal structures.
Improvements are around 0.5 Å (data not shown).

3.3.2. Mapping Minima between Stable States in Adenylate
Kinase. Adenylate kinase is a 214 amino-acid long phos-
photransferase enzyme that maintains energy balance in
cells by catalyzing the reversible reaction Mg2+ · ATP +
AMP � Mg2+ · ADP + ADP [95]. The protein consists of a
CORE domain and two substrate-binding (AMP- and ATP-)
domains. The binding domains move and bind substrates
independently, resulting in different functional states.

Adenylate kinase has been found in four different
structural states in the wet laboratory [96–99]: the apo state,
where both substrate-binding domains are open (available
in the PDB under PDB ID 4ake), the collapsed state, where
both domains are closed (available under PDB ID 2aky), and
two intermediate states, where one of the domains is open
and the other closed (PDB IDs 1dvr and 2ak3). Transitions
between the apo and collapsed states have been observed
both in experiment and simulation [76, 100, 101].

Unbiased BH trajectories are initiated from each of the
four structures, and the best proximity to any of the other
three is reported in Table 4 in terms of TM-score and
GDT TS. lRMSD is not employed, as the chains deposited
under the PDB IDs listed above are of different lengths
(due to differences in the setup of the structure resolution
protocol in the wet laboratory). The results in Table 4 show
that adenylate kinase is indeed a challenging system. The
BH trajectories manage to come close only to the structure
with PDB ID 2aky when initiated from the structure with
PDB ID 1dvr and vice versa. This is an encouraging result,
nonetheless, because the structures with PDB ID 1dvr and
2aky are structurally closer to each other.

Outstanding Challenges. Calmodulin and adenylate kinase
are considered challenging systems for computational inves-
tigation due to their large size [33]. The results above support
the fact that size limits sampling capability in BH. The
upper bound of 106 energy evaluations limits BH to sample
around 1, 500 minima for calmodulin and 1, 000 minima for
adenylate kinase. Considering the small number of minima
sampled, the results above are encouraging. They suggest

that, with improvements to enhance the sampling capability,
BH is a promising tool for mapping the equilibrium confor-
mational space of a protein and elucidating the connectivity
between different stable states.

4. Conclusion

We have shown that BH is a general, versatile framework
that allows structural characterization of important bio-
logical macromolecules, such as proteins. We have selected
three different applications of importance in computational
structural biology on which to show the power and promise
of the BH framework. Domain-specific expertise is used
to implement effective perturbation and local optimization
components. Important generally recognized characteristics
of the BH framework, such as adjacency of local minima and
its relation to the quality of the reported global minimum,
are demonstrated in the applications selected in this paper.

Taken together, the results show that BH is an effective
framework for structural characterization of protein systems.
It is more effective than the multistart method, and the
adjacency of consecutively sampled local minima is directly
related with the ability of BH to come close to the global
minimum. The presented results make the case that BH can
be an effective tool for generating good-quality decoys for
ab-initio structure prediction and protein-protein docking
and a promising framework for mapping the connectivity of
functionally relevant states in flexible proteins.

We note that the implementations we offer here for the
key components in BH are a first step, and further tuning can
result in better performance. Further analysis into different
implementations is necessary to obtain a better understand-
ing of the BH framework and its capability to enhance
sampling of molecular spaces. We are currently pursuing
such a comparative analysis. For instance, in recent work
[85] we show that the implementation of the perturbation
component employed here is sufficient to escape a current
minimum and that the greedy search employed for the
local optimization is just as effective but more efficient than
Metropolis MC searches at low temperature [22, 102].

The application on proteins with diverse stable states
serves as a proof of concept that BH can be employed to
map the intermediate minima that connect stable states.
The results presented here show that the framework is
promising and merits further investigation in this context.
The trajectory of minima obtained by BH in connecting two
stable states can be considered a coarse conformational path.
This path can be transformed into an actual trajectory that
takes the protein through specific molecular motions from
one state to another. The process is not dissimilar from how
paths in robotics motion sampling are converted to actual
execution trajectories with dynamics constraints [103]. The
coarse transition paths can be refined through, for instance,
short steered MD simulations connecting adjacent minima.
Other path deformation techniques are available, and this is
a direction we will explore in future research.

We believe the exposition of BH in this paper will
bring more attention to this framework as a powerful global
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optimization tool for biological systems. Its versatility, as
we show here in the context of three different yet related
applications on proteins, merits further investigation. In
particular, different implementations for the main com-
ponents in BH can be investigated to balance between
accuracy and efficiency. Moreover, related ideas from the
evolutionary computing community on population-based
strategies can be employed to promote diversity of minima,
as proposed in recent work on geometrical problems [20].
Related ideas from our robotics-inspired search of molecular
conformational spaces [40] can be exploited to organize the
BH-sampled minima, steer the exploration away from over-
populated regions in the variable space, and so enhance the
sampling capability in BH.
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