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Abstract—Adequate sampling of the conformational space is a central challenge in ab initio protein structure prediction. In the

absence of a template structure, a conformational search procedure guided by an energy function explores the conformational space,

gathering an ensemble of low-energy decoy conformations. If the sampling is inadequate, the native structure may be missed

altogether. Even if reproduced, a subsequent stage that selects a subset of decoys for further structural detail and energetic refinement

may discard near-native decoys if they are high energy or insufficiently represented in the ensemble. Sampling should produce a decoy

ensemble that facilitates the subsequent selection of near-native decoys. In this paper, we investigate a robotics-inspired framework

that allows directly measuring the role of energy in guiding sampling. Testing demonstrates that a soft energy bias steers sampling

toward a diverse decoy ensemble less prone to exploiting energetic artifacts and thus more likely to facilitate retainment of near-native

conformations by selection techniques. We employ two different energy functions, the associative memory Hamiltonian with water and

Rosetta. Results show that enhanced sampling provides a rigorous testing of energy functions and exposes different deficiencies in

them, thus promising to guide development of more accurate representations and energy functions.

Index Terms—Protein structure prediction, probabilistic conformational search, near-native conformations, energy bias

Ç

1 INTRODUCTION

AB initio protein structure prediction or template-free
modeling is by now recognized as one of the most

difficult problems in computational structural biology [23],
[49]. Ab initio protocols are in principle more broadly
applicable for protein structure prediction than homology-
based methods that rely on the availability of homologs of
known structure to reconstruct a template structure. In the
absence of a template structure, ab initio protocols rely on a
conformational search procedure guided by some energy
function to obtain an ensemble of low-energy (decoy)
conformations. In a thermodynamics treatment [1], [27],
the sought native structure of the target sequence is
expected to be present among the lowest energy decoys.
There are many reasons why this treatment often fails to
lead to the native structure [23].

Despite the challenges, over the last years considerable
advancements have been made, most notably recently by
the well-known Quark [46] and Rosetta protocols [20]. Key
to these advancements has been the employment of the
molecular fragment replacement technique [5], [7], [11]. The
technique allows obtaining realistic decoy conformations by
essentially assembling them with short structural blocks
known as fragment configurations. These are extracted
from known native structures of nonredundant sequences

and are stored as �;  , and ! backbone torsion angles in a
library of fragment configurations [14]. The assembly is
implemented in the context of a Metropolis Monte Carlo
(MMC) trajectory, where an MC move replaces the
configuration of a fragment selected at random over the
currently assembled decoy conformation with a configura-
tion selected for that fragment from the library. The
replacement is accepted if it satisfies the metropolis
criterion, resulting over time in low-energy decoys.

The predominant ab initio protocol consists of generation
of a large number of decoy conformations at low resolution
through the molecular fragment replacement technique
followed by energetic refinement of selected decoys at
higher resolution [23]. Typically, decoys are end points of
MMC trajectories initiated from extended or random
conformations. Many global and local search strategies are
proposed to enhance the sampling capability of the core
MMC exploration in the low-resolution stage. Typical
protocols employ simulated annealing or replica exchange
to enhance sampling [7], [11], [4], [38], [35], [39], [24]. Work
in [36] employs a different strategy that directly enforces
conformational diversity through discretization layers of
the search space.

The molecular fragment replacement technique is di-
rectly related to the ability of a conformational search
procedure to enhance sampling. Employment of fragment
configurations reduces the size and complexity of the
search space. Fragment configurations also capture local
propensities of amino acid segments directly, allowing an
energy function to focus on scoring instead longer range
interactions. While many studies focus on exploring the
relationship between fragment length, size of ensuing
conformational space, and accuracy [18], [15], fragment
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lengths typically employed by ab initio protocols are in the
3-20 range [5], [46].

In addition to the molecular fragment replacement
technique, these protocols employ low-resolution represen-
tational detail for sampled decoy conformations. The low
resolution reduces the dimensionality of the search space
thus controlling the computational demands of sampling
many conformations. However, the energy functions capable
of scoring low-resolution conformations typically contain
many artifacts that result in associating low energies with
conformations sometimes 4-8�A away from the known native
structure of a protein sequence [44], [4], [10], [38].

Despite the employment of fragment configurations and
low resolution, the efficiency and accuracy of ab initio
protocols decrease with target size [17]. Many studies show
that current protocols do not reliably scale to longer protein
chains ofmore than 70 amino acids and topologieswithmany
long-range contacts (often present in all � or �=� proteins)
[15], [30], [31], [39]. It is currently unknown whether the
thermodynamics treatment in ab initio structure prediction
protocols fails due to the quality of the fragment libraries, the
sampling capability of the conformational search procedure,
or a combination of the three [23], [15], [4], [10], [38].

In this paper, we do not focus on investigating the
quality of fragment libraries but employ instead the most
recent ones available in the Rosetta package [20]. Other
studies have shown that while the current quality of the
protein data bank (PDB) [2] allows putting together high-
quality fragment libraries, different fragment lengths can be
more effective for different protein topologies [15]. In this
paper, we employ fragments of length 9 and 3, constructed
through the utilities available in the Rosetta package [20] as
described in [13].

In this paper, we investigate the interplay between low-
resolution sampling and low-resolution energy functions.
We do so in the context of a robotics-inspired framework
with high sampling capability that allows directly investi-
gating the role that energy should play in guiding sampling.
Our investigation of the interplay between sampling and
energy builds on several observations by other studies on
the importance of enhanced sampling versus the accuracy
of the energy function.

The generation of a decoy ensemble that contains near-
native conformations, albeit at low resolution, is of primary
importance in a blind prediction setting. If the sampling is
inadequate, the region containing the native structure may
be missed altogether. However, even if the native structure
is reproduced by some decoy conformation(s), the energy
function may not rank near-native conformations as having
lowest energies. Indeed, this is common with many low-
resolution energy functions and has been demonstrated by
many studies [36], [44], [4], [10], [38]. For instance, work in
[4] demonstrates that the Rosetta force field not only are
weakly funneled (that is, many geometrically dissimilar
conformations can have comparable energies at low resolu-
tion), but they can also lead optimization initiated at the
native structure away from it [4]. Other studies show that
significant deviations of as much as 4 �A can exist between
the global minimum of even an all-atom energy function
and the experimentally available native structure [44].

Inaccuracies in a low-resolution energy function can lead
a highly effective search or optimization technique to
exploit artifacts of the energy function and so populate
the decoy ensemble with very low-energy conformations of
nonnative topologies. In fact, the hallmark of an effective
search procedure is often the presence of nonnative
conformations with much lower energies than the known
native structure [10], [25], [24]. Even if the native structure is
captured by some conformation(s) in the ensemble, the
ensuing selection stage that picks a subset of decoys for
further refinement may discard near-native conformations
if they are high energy and/or insufficiently represented in
the ensemble.

Effective selection of decoys for high-resolution refine-
ment is a significant area of research [50]. The selection can
be improved by building better low-resolution energy
functions to score decoys. Since it is challenging to define
such functions and find an energy threshold below which
all the best decoys lie, the predominant strategy in selection
techniques is to ignore energy altogether. Decoys are
clustered by some measure of geometric similarity (pre-
dominantly, least root mean squared deviation—lRMSD),
and the most populous or lowest energy cluster of decoys is
selected for further refinement [33], [3]. Other approaches
employ distance matrices [12] or structural profiles ex-
tracted from contact matrices [45], take into account
correlations between decoys [42], or filter decoys through
NMR data [9], [37].

The appropriateness and success of the selection
technique are closely tied to the conformational search
procedure employed for the generation of decoys in the
first place. For instance, density-based clustering relies on
the assumption that the sampled conformations are
redundant; that is, the search procedure has sampled
many geometrically similar decoys. This is certainly the
case when numerous independent MMC trajectories
are launched to obtain decoys. Moreover, the extraction
of the most populous rather than the lowest energy cluster
for refinement is based on the working assumption that the
coarse-grained energy function may not preserve the depth
of the native basin (the true global minimum) but may
preserve its width [33], [5].

The predominant approach in many ab initio protocols is
to essentially rely on numerous and long MMC trajectories
to simultaneously obtain a broad view of the energy surface
and converge to a region near the native structure.
Achieving both comes with great computational cost.
Massively parallel architectures are sometimes employed
to manage the cost [32]. Improving efficiency suggests
sacrificing redundancy, which, if implemented improperly,
may affect both the broad view of the energy surface and
convergence to the native structure. In turn, it may render
selection techniques that essentially exploit redundancy less
effective. Sacrificing redundancy, however, brings the focus
back onto the exploration method and its ability to enhance
the sampling of near-native conformations.

In this paper, we propose to separate the objective of the
low-resolution exploration into two subgoals. We first
propose to obtain a broad, nonredundant view of the energy
surface. We do so through a robotics-inspired exploration
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framework that is efficient and allows, moreover, investigat-
ing the role of energy bias in the sampling of nonredundant
decoys beyond the metropolis criterion. Unlike the pre-
dominant template, where numerous independent MMC
trajectories implement energy bias locally through the
metropolis criterion, our framework incorporates energy
bias at a global level. Sampling is centralized into a tree
search structure, whose branches are short MMC trajectories
that employ molecular fragment replacement. Previous
work by us on a particular realization of this framework
has shown that biasing the growth of the tree allows
effectively biasing sampling [36], [25]. Here, we show that
the framework allows obtaining a broad view of the energy
surface in terms of diverse low-energy decoy conformations.

Different techniques are investigated to tune the strength
of the energy bias in the framework and steer sampling
toward a particular distribution of decoys. A soft energy
bias lowering the average energy of a growing ensemble of
decoys is shown most effective in obtaining a distribution
that facilitates the subsequent selection of good-quality
decoys. This setting guards against the framework explor-
ing deep energy minima representative of nonnative
topologies that are artifacts of a given energy function.
Energetic analysis of the decoy ensemble shows that soft
rather than strong energy bias during the exploration
allows retaining many near-native conformations even if a
nonparametric energetic criterion is used for selection.
Clustering of retained conformations shows that the
ensemble obtained through a soft energy bias is structurally
more diverse than when employing a strong energy bias.

We conduct our investigation in the context of two
different well-known energy functions, the associative
memory Hamiltonian with water (AMW) and the Rosetta
energy function. We have used AMW in our previous work
to guide different search procedures [35], [36], [24]. The
Rosetta energy function is available to us from the Rosetta
package [20]. While the ab initio protocol in Rosetta
employs a suite of energy functions in a hierarchical
scheme, all these functions are scaled versions of the full
Rosetta energy function of 10 terms. We employ the full
function for the purpose of our analysis. A couple of
observations can be drawn from analysis of our results.
First, no energy function is the clear winner according to
various metrics on a list of proteins of different lengths and
topologies. However, while the AMW energy surface seems
easier to explore and saturate, the Rosetta energy function
seems more complex and benefits more from enhanced
sampling. Higher quality decoys closer to the known native
structure can be obtained with the Rosetta energy function
on proteins with � sheets, whereas AMW seems capable of
providing similar quality on � proteins.

Finally, we investigate possible convergence to a region
near the native structure in the low-resolution stage. Since
MMC trajectories are well suited for convergence, we use
them to optimize the nonredundant ensemble of low-
energy decoys obtained with the robotics-inspired explora-
tion framework. While the framework employs fragments
of length 9 to efficiently obtain a broad view of a simplified
energy surface, the MMC trajectories employ fragments of
length 3 to further populate a more complex surface.

Analysis shows that while convergence is easily reached for
some proteins, the energy function can steer the search
away to other low-energy regions in some cases. In all
proteins, the top 10 populous clusters identified through
density-based clustering contain near-native conformations
that can be reliably used in a blind prediction setting for
ab initio structure prediction. However, many nonnative
topologies can be found populated sufficiently well among
the top clusters. In a comparison of AMW to the Rosetta
energy function, conformations closer to the native struc-
ture can be found among the top 10 clusters when using the
Rosetta energy function.

The results presented in this paper make a first step into
exploring the relationship between sampling and energy
guidance in conformational search for ab initio structure
prediction. Taken together, the results suggest that search
frameworks with enhanced sampling capability are im-
portant to better understand current deficiencies in ab initio
modeling to develop more accurate representations and
energy functions. Our results confirm that the robotics-
inspired search framework is promising in this direction
and deserves further study.

2 METHODS

We first describe the main ingredients of the robotics-
inspired framework employed to obtain a broad view of the
energy surface. We then relate details on the representation
employed and the energy functions investigated in this
paper. The energy biasing techniques investigated to
control the distribution of decoys during exploration are
described next. Finally, we describe how MMC trajectories
are employed to study convergence.

2.1 Obtaining a Broad View of the Energy Surface
with a Robotics-Inspired Sampling-Based
Framework

The robotics-inspired framework we investigate here for its
ability to provide a broad view of the energy surface has been
proposed by our group before [36]. Instead of launching
independent long MMC trajectories, the framework inte-
grates many short MMC trajectories into a tree search
structure. The tree maintains the growing ensemble of
decoys and so provides a discrete representation of the
sampled conformational space. The short MMC trajectories
employmolecular fragment replacement to efficiently obtain
protein-like conformations. The tree search structure allows
the framework to make decisions on the fly about which
trajectories should be extended. This is an important feature,
as it allows the framework to adapt its exploration and bias it
away from regions of the conformational space and energy
surface that are already well represented in the tree.

To bias its exploration, the framework employs two
discretization layers that facilitate analysis of the explored
conformational space and energy surface. The employment
of discretization layers is inspired by sampling-based
motion-planning work in robotics [41], [29], [47], [19], [43].
The first discretization is over energies of sampled con-
formations, and the second is over their geometries. A 1D
grid is associated with energies of conformations in the tree.
The issue of finding coordinates to efficiently group
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together structurally similar conformations is resolved by
employing coarse geometric features about a conformation
(average distance from the centroid, average distance from
the point farther from the centroid, and so on). These
features allow associating a 3D grid with conformations in
the tree. Probability distribution functions can be defined
over the discretization layers to bias the growth of the tree.

Application of the framework in previous work has
focused on expediting the process of biasing the search
toward lowest energy conformations and investigating
different projection coordinates [36], [25], [26]. The 1D
energy grid has been used to bias the selection toward
conformations in lower energy levels (2 kcal/mol wide each)
through the quadratic weight function wð‘Þ ¼ Eavgð‘Þ �
Eavgð‘Þ þ �, where � is a small value that ensures high-energy
conformations have a nonzero probability of selection. A
level ‘ is selected with probability wð‘Þ=

P
‘02LayerE wð‘

0Þ. In
this paper, wewill refer to this probability distribution as the
QUAD distribution. Once an energy level is selected, a cell
belonging to it in the 3D geometric projection grid can be
selected according to another probability distribution.
A second weight function 1:0=½ð1:0þ nselÞ � nconfs�, where
nsel records how often a cell is selected, and nconfs is the
number of conformations projected to the cell. This function
avoids cells that have been selected for expansion many
times before and are already populated by many conforma-
tions. Once a cell is selected, any conformation in it can be
selected at random for expansion; a short MMC trajectory
from that conformation constitutes a new branch of the tree.
This process is illustrated in Fig. 1.

The probability distributions over the discretization of
the energy surface and over the discretization of the
conformational space are shown to help the framework
quickly populate low-energy regions [36]. The framework
has been shown to have higher sampling capability than a
long MMC trajectory, and the combination of both dis-
cretization layers are shown to improve sampling over

using one of them in isolation or none at all (when both
layers are turned off, the tree degenerates to an MMC
trajectory) [36]. Fragments of length 3 and the AMW energy
function have been employed in previous work. On many
proteins, the exploration has been found to approach the
native structure within 5 �A [36], [25], [26].

The objective in previous work has been to demonstrate
that the framework improves coverage of the conforma-
tional space over independently running MMC trajectories.
While QUAD biases the tree toward lower energies,
employment of QUAD for the purpose of decoy generation
risks exploiting minima that are artifacts of the energy
function. However, the employment of probability dis-
tribution functions to ultimately control the distribution of
sampled conformations make the framework particularly
versatile for the purpose of decoy sampling and the study
of deficiencies in ab initio modeling. Here, we show the
first steps in this direction. We propose different prob-
ability distribution functions to implement the energy bias
and show that one of them, corresponding to a soft energy
bias, is better suited to obtain a broad nonredundant view
of the energy surface through low-energy distinct decoys.
We do so on two different state-of-the-art low-resolution
energy functions and show that, while both allow
capturing near-native conformations in the decoy ensem-
ble, both are capable of associating very low scores with
nonnative decoys. We now detail the implementation of
the energy bias.

2.1.1 Implementing Energy Bias

The QUAD probability distribution function defined over
weights wð‘Þ ¼ Eavgð‘Þ � Eavgð‘Þ þ � described above essen-
tially implements a strong energy bias that controls the
growth of the tree through the expansion of lowest energy
decoys to obtain even lower energy decoys. Note that the
geometric projection grid is employed as above in
conjunction with the energy bias. This setting can be very
greedy and lead the framework, despite the bias away from
oversampled cells in the conformational space, to deep
energy minima that are artifacts of a given energy function.
In contrast, one can ignore energy bias altogether.
Essentially, all conformations can be treated as energeti-
cally equivalent and projected to the same energy level.
Only the geometric projection grid and the probability
distribution function defined on it (defined above over
weights 1:0=½ð1:0þ nselÞ � nconfs�) can be employed. Let
us refer to this probability distribution function as COV, as it
essentially allows ignoring the energy surface and only
steers the search to coverage of unsampled regions of the
conformational space.

A new probability distribution function can be defined to
implement a soft energy bias instead. As the tree and its
conformational ensemble � grow, the mean (��) and
standard deviation (��) can be updated over the energies
of decoys. The mean tends to go lower over time, as the
MMC trajectories that constitute the tree branches guide the
tree toward lower energies through the metropolis criterion.
The energy level whose average energy is closest to a
sample drawn from the Gaussian distribution ð��; ��) can
be selected for expansions. The geometric projection grid is
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the framework for the geometric projection layer are shown here for
ease of visualization.



employed as above. We refer to this third realization of the
framework as NORM. Unlike QUAD, NORM does not greedily
bias the search tree toward the lowest energy decoys.
Instead, the tree slowly grows toward low-energy decoys
and associates low probabilities of selection to energy levels
on either tail of the energy distribution.

2.2 Employed Representation and Energy
Functions

2.2.1 Representational Detail

As we focus only on the low-resolution stage in ab initio
modeling, the representation of a conformation sacrifices
some structural detail. When employing the AMW energy
function, the representation reduces side chains to only the
C� atom (with exception of glycine). When employing
Rosetta energy function, the C� atom is swapped for a
centroid per side chain. Internally, two representations are
maintained, one angular and another consisting of Cartesian
coordinates. The angular representation maintains only
three backbone dihedral angles (�;  ; omega) per amino
acid, as sampled from the fragment configuration library.
This representation is essentially the idealized geometry
model, which fixes bond lengths and angles to idealized
(native) values (taken from CHARMM22 [6]). The conver-
sion from backbone dihedral angles to atomic coordinates,
necessary for calculation of an energy score, employs
forward kinematics [48]. Cartesian coordinates are only
calculated for the backbone N;C;C�;O atoms and either the
C� atom for amino acids with side-chain heavy atoms when
using AMW or the side-chain centroid pseudo-atom when
using the Rosetta energy function.

2.2.2 AMW Energy Function

This function, a modification of the low-resolution poten-
tial originally proposed in [28], has been used previously
by us and others in the context of ab initio structure
prediction [34], [36], [25], [26], [35], [16]. AMW sums
nonlocal terms (local interactions are kept at ideal values
in the idealized geometry model): EAMW ¼ ELennard�Jones þ
EH�Bond þ Econtact þ Eburial þEwater þ ERg. The ELennard�Jones

term is implemented after the 12-6 Lennard-Jones potential
in AMBER9 [8] allowing a soft penetration of van der
Waals spheres. The EH�Bond term allows modeling hydro-
gen bonds and is implemented as in [12]. The other terms,
Econtact, Eburial, and Ewater, allow formation of nonlocal
contacts, a hydrophobic core, and water-mediated interac-
tions and are implemented as in [30]. The ERg favors
collapse by penalizing conformations with radius of
gyration significantly different from theoretically calculated
values [35].

2.2.3 Rosetta Energy Function

The Rosetta ab initio protocol uses a suite of different scoring
functions in a hierarchical scheme. A total of six different
scoring functions are used in the low-resolution stage in
Rosetta. These correspond to different assignments to the
weights that measure the contribution of different local and
nonlocal energy terms. What we refer to as the Rosetta
energy function is a linear combination of all possible
10 energy terms, which measure repulsion, amino acid
propensities, residue environment, residue pair interactions,

three terms measuring interactions between secondary
structure elements, and three other terms measuring density
and compactness of structure (see [33] for more details).

The low-resolution stage in the Rosetta protocol consists
of four different substages, each with different scoring
functions. The first substage conducts one to two cycles of
2,000 MMC moves each starting with an extended chain
and using the score0 assignment. The only energy term
modeled is a soft steric repulsion, and its purpose is to yield
a random starting conformation. The second substage of
2,000 MMC moves uses score1 to accumulate secondary
structure. The third substage uses five cycles of 2,000 MMC
moves each with score2 followed by a cycle of 2,000 MMC
moves with score5; score2 includes terms to favor hydro-
phobic collapse and beta strand pairings, whereas score5
lacks these two terms to allow relaxation. The fourth and
final substage consists of three cycles of 4,000 MMC moves
each and uses score3, which has all the possible energy
terms except for hydrogen bonding. The ensuing selection
analysis in preparation for side-chain packing and energetic
refinement uses score4 to rank low-resolution conforma-
tions; score4 does not have any compaction or beta-strand
pairing terms.

In light of this intricate protocol of different scoring
functions, what we refer to as the Rosetta energy function in
the comparison analysis in this paper corresponds to score3,
as this is the one that has the highest number of Rosetta
energy terms in the low-resolution stage, and all other
scoring function in the low-resolution stage can be viewed
as a scaled variant of score3.

2.3 Ensemble Analysis

We now describe techniques to compare the three different
realizations of the exploration framework implementing the
different energy biases.

2.3.1 Energetic Reduction

Reducing the ensemble � produced by the tree through an
energetic criterion allows removing high-energy decoys
added to the tree during the exploration. We employ a
nonparametric threshold that discards any sampled con-
formation with energy higher than the mean. This threshold
is not protein dependent and reduces the size of the
ensemble by about 50 percent. While discarding about half
the ensemble may sacrifice a few decoys with low lRMSDs
to the native structure, the majority of low-lRMSD decoys
are generally maintained in the reduced ensemble �E .
The results in Section 3 show that more low-lRMSD
conformations are maintained when reducing the ensemble
produced through QUAD and NORM. This is expected, as
these two probability distribution functions implement an
energy bias, and near-native conformations, while not
among the lowest energy decoys, are associated with low
energies. The results in Section 3 also show that more near-
native conformations are retained when reducing the
ensemble produced through NORM than QUAD, and this is
particularly pronounced when using the AMW versus the
Rosetta energy function.

2.3.2 Geometric Reduction

The framework employs coarse projection coordinates to
efficiently group together similar conformations and bias
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the search on the fly away from oversampled regions.
Employing lRMSD-based (see Section 3 for a description of
lRMSD) comparisons and clustering would provide more
detail and accuracy, but it would not be efficient. However,
lRMSD-based clustering can be performed on the energe-
tically reduced ensemble �E both to analyze and compare
the diversity of decoys across the three realizations of the
framework and to further reduce the ensemble to a subset
of distinct regions from which exploration can resume at
greater detail.

We utilize an adaption of the bisectingK-means algorithm
[40] on the �E ensemble. Medioids instead of centroids are
chosen to represent clusters so as to avoid irregular local
structures resulting from angle averaging [51]. Initially, a
conformation is selected at random to serve as the represen-
tative of the first cluster that encompasses all conformations
in the ensemble. The essential process in bisecting K-means
clustering is that a cluster is broken into two new ones if the
minimum lRMSD from their cluster representative is above
an � threshold. Two random conformations are selected to
serve as the representatives of the two new clusters. When
conformations are reassigned, the representatives selected at
random are replaced with the cluster medioids. The
proximity of the conformations in each cluster is reevaluated.
If the minimum lRMSD is above �, the process begins anew
(hence, bisecting). In the end, themedioids of the clusters are
essentially a reduced representation of the �E ensemble and
constitute the �E;C ensemble.

The bisecting K-means algorithm is less susceptible to
initialization issues and does not require a priori determin-
ing the number of clusters. It requires, however, setting the
maximum intracluster distance �. In this work, we analyze
the effect of two different values, 3 and 5 �A on the diversity
of the resulting �E;C ensemble.

2.4 Exploration Convergence

The reduced ensemble �E;C can now be used to drive the
exploration toward possible convergence on a more com-
plex search space. A long MMC trajectory is launched
from each conformation in �E;C . The trajectory length is a
compromise between reaching convergence and controlling
the overall computational cost. The fragment length
employed here is 3 (9 is used by the framework above to
obtain �). The shorter fragment length increases the
complexity of the conformational space but also allows
adding more detail to the energy surface.

The end points of the trajectories are analyzed through
density-based clustering analysis [51]. An end point is
assigned the number of neighbors that are within an lRMSD
threshold of it (we use the same � threshold above). The end
point with the largest number of neighbors is considered to
be the representative of themost populous cluster. This point
and its neighbors are removed, and the process continues
until all conformations have been exhausted. An exploration
that started with obtaining a broad view of the energy
surfaces terminates with revealing decoys in regions of the
conformational space where many MMC trajectories con-
verge. The results in Section 3 show that near-native
conformations are retained among the top populous clusters;
that is, the corresponding decoys are near native and as such
are good candidates for high-resolution refinement.

3 MATERIALS

Systems of study. Ten protein systems are employed here,
listed in Table 1. The systems range from 61-123 amino
acids in length, cover �, �, and �=� folds, and include CASP
targets. The list includes sequences longer than 70 amino
acids and �=� native topologies known to be challenging
for ab initio modeling.

Measurements. The main measurement used in the
analysis below is lRMSD, which is the weighted euclidean
distance between corresponding atoms after optimal super-
position of two conformations under comparison. The
optimal superposition refers to the rigid-body motion or
transformation in SE(3) minimizing the weighted euclidean
distance [22]. lRMSD captures structural dissimilarity but is
not a euclidean metric, as it does not obey the triangle
inequality. Low values indicate high similarity, and high
values indicate high dissimilarity, but interpretation of
intermediate values is difficult and the subject of many
studies [21]. For instance, lRMSD has been found to depend
on system size. A 5 �A lRMSD between a computed
conformation and the native structure of a short protein
chain of no more than 30 amino acids is considered a large
deviation, but the same dissimilarity is less significant for a
protein of 70 amino acids or more. In general, if the lowest
lRMSD obtained over computed conformations to the
known native structure is more than 6 �A, the native
structure is not considered to have been captured.

High values of lRMSD do not necessarily indicate
significant structural dissimilarity. Since lRMSD weighs
each atom equally, it overly penalizes cases where differ-
ences are localized to a specific region, say a loop in different
orientations in the two conformations under comparison. In
such cases, other measurements, such as GDT_TS (global
distance test total score), can be more appropriate. GDT_TS
essentially locates a maximum subset of atoms between two
conformations under comparison that are close in space
after optimal superposition and minimizes an overall
lRMSD-based error. GDT_TS is reported in percent and
captures similarity, so higher values are better. As employed
in CASP, GDT TS ¼ ðGDT P1 þ GDT P2 þ GDT P4 þ
GDT P8Þ=4, where GDT Pd is the fraction of maximum
amino acid subsets in a conformation superimposing on the
reference (native, in our comparisons) structure with an
lRMSD � d �A. Some of our detailed analysis below employs
GDT_TS scores in addition to lRMSD.

Implementation details. Each biasing scheme using each of
the two energy functions is applied on each protein for
24 CPU hours on a 2.66-GHz Opteron processor with 8 GB
of memory. This is repeated three times to obtain three
ensembles per setting. Results and further analysis are
presented on the ensemble that yields the median value in
terms of lowest lRMSD from the native structure (lRMSD is
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TABLE 1
The PDB ID, nr. of Amino Acids, and Known Native

Topology Are Shown for the 10 Proteins Studied Here



calculated over heavy backbone atoms). Clustering is
conducted on a 2.4 Intel Xeon E5620 processor with 24 GB
of memory. The MMC trajectories that optimize each decoy
in the resulting ensemble �E;C are limited to 20,000 steps
and are run on a 2.66-GHz Opteron processor with 8 GB of
memory. This second stage lends itself to embarrassing
parallelization and takes 12-36 hours on 80 CPU cores
depending on the size of �E;C and protein length.

3.1 Analysis of Decoy Ensembles Obtained with
Different Biasing Schemes

The distribution of conformational energies in � is shown
for QUAD, COV, and NORM in Fig. 2 on three selected
proteins. Superimposition of the distributions shows that,
as expected, QUAD results in lower energies (distribution is
shifted to the left), whereas COV results in higher energies.
The distribution obtained with NORM is expectedly
Gaussian, and its mean energy is between the means of
QUAD and COV. Each of the three distributions can contain
lower energies than the native structure, whose energy is
shown for reference.

Fig. 2 shows these results when either AMW or Rosetta
score3 are employed. Due to detailed fine tuning in
calculations of the Rosetta energy functions, the setting
with Rosetta score3 runs six to seven times faster than when
employing our in-house version of AMW. To conduct a fair
comparison, the size of the conformational ensemble
obtained when using Rosetta score3 is limited to the size
obtained in 24 hrs with AMW on a particular protein and
biasing scheme. For instance, if within 24 CPU hours, the
ensemble obtained with AMW on the system with PDB ID
1fwp1 is 51K when using QUAD and 95K when using NORM,
the ensemble sampled when using Rosetta score3 and QUAD

is then limited to 51K conformations, and the ensemble
sampled when using Rosetta score3 and NORM is limited to
98K conformations.

It is worth noting that one cannot directly compare
values between the AMW and Rosetta energy functions.
However, the location of the known native structure shows
that both energy functions can associate low or high
energies with a native structure. For instance, on the
protein systems with PDB IDs 1fwp and 1ail, the native
structure has lower energy than the mean of the energy
distribution obtained under NORM whether AMW or
Rosetta score3 are employed. On the system with PDB ID
2ezk, the native structure has higher energy than the mean
under AMW but not Rosetta score3. On all three systems,
lower energies than that of the native structure can be
obtained under QUAD under each energy function due to
the strong energy bias in QUAD driving the exploration
toward deep nonnative minima.

Table 2 shows the lowest lRMSD obtained under each
biasing scheme when using AMW or Rosetta. As in Fig. 2,
the data are presented on the median ensemble (over three
runs for each biasing scheme). Lowest lRMSDs under 6 �A
are obtained by all three biasing schemes on most protein
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Fig. 2. Distributions of energies of � resulting from QUAD, COV, and NORM are superimposed over one another. The energy of the native structure is
marked by a blue circle on the x-axis. While the top row shows results obtained with AMW, the bottom row shows results obtained with the Rosetta
score3 function.

TABLE 2
The Lowest lRMSD from the Native Structure Is
Shown for Each of the Three Biasing Schemes

Results are shown for both AMW and Rosetta score3.



systems, whether AMW or Rosetta score3 are used. The
global energy bias present in QUAD and NORM but not in COV

improves proximity to the native structure (lower lowest
lRMSDs are obtained overall). Moreover, when using
AMW, lower lowest lRMSDs are obtained on 50 percent
of the systems with NORM than QUAD, comparable lowest
lRMSDs within 0.2 �A are obtained on 20 percent of the
systems, and increases are observed on the rest. When using
the Rosetta energy function, differences in lowest lRMSDs
between NORM and QUAD are less pronounced, suggesting
than the Rosetta energy surface is more complex than AMW
and can benefit from further sampling. A comparison
between AMW and Rosetta score3 reveals that the lowest
lRMSD is obtained by Rosetta score3 (in bold), whether
COV, NORM, or QUAD are used. AMW seems to have a
significant advantage on 1ail and obtains comparable

results on 1cc5, both all-� proteins. Results are uniformly
poor on 2h5nD, suggesting this longest protein may benefit
from further sampling.

Focusing on the lowest lRMSD may be misleading, as the
conformation realizing it may not be sufficiently repre-
sented in the decoy ensemble or may be missed altogether
by a selection technique. Fig. 3 analyzes � in some more
detail for the three selected protein systems. The 20 decoys
with the lowest lRMSDs from the native structure are
marked in the distribution of conformational energies
obtained with each biasing scheme.

Fig. 2 shows that many of the 20 lowest-lRMSD
conformations can be lost if the selection criterion discards
those with energies above the mean in the ensembles
obtained with AMW and QUAD. Many of these conforma-
tions would be retained if using NORM. Differences between
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Fig. 3. The 20 lowest-lRMSD conformations are shown as blue circles over the distribution of energies in � for three selected protein systems. Their
lRMSDs from the native structure are shown on the right hand axis. Results are shown for both AMW and Rosetta score3.



QUAD and NORM are less pronounced when using Rosetta,
suggesting again that the Rosetta energy surface is more
complex. We point out that the system with PDB ID 1ail, an
all � protein, seems to be an easier case for AMW than
Rosetta. Whether using QUAD or NORM with AMW, the
20 lowest-lRMSD conformations have energies not only
below the mean but also close to that of the native structure.
On the other hand, the system with PDB ID 2ezk seems to
be more challenging for AMW than Rosetta. When using
AMW, the 20 lowest lRMSD conformations have energies
that place them above the mean whether using QUAD or
NORM. In contrast, when using Rosetta score3, many of these
conformations are close in energy to the native structure,
which also falls below the mean both under NORM and
QUAD. We note that this system is a longer � protein of
93 amino acids.

A further comparison between AMW and the Rosetta
energy function can be conducted by comparing not only
the lowest lRMSDs or the highest GDT_TS scores to the
known native structure obtained on each system but also
the mean lRMSD and the mean GDT_TS score on the
90 percent percentile of low-energy conformations. The
results shown in Table 3 fix the biasing scheme to NORM

and limit the source of variation to the energy function
employed. Values in bold indicate either lower or compar-
able lRMSDs between AMW and Rosetta or higher or
comparable GDT_TS scores between AMW and Rosetta. If
focusing on lowest lRMSDs, Rosetta provides scores that
are lower or comparable than those obtained with AMW
on 7=10 of the systems. Looking at GDT_TS scores brings
the number of systems with higher or comparable GDT_TS
scores in Rosetta to 8=10. Interestingly, the majority of the
improvements are on proteins with � or �=� folds. On the
majority of the all-� proteins, AMW provides better or
similar results.

Comparing mean lRMSDs and mean GDT_TS scores
over the 90th percentile of low-energy conformations
reveals that differences between Rosetta and AMW in
terms of representation of near-native conformations are
less stark. Rosetta has lower or comparable mean lRMSDs
or higher or comparable mean GDT_TS scores on this
subensemble of conformations on 30 and 70 percent of the
systems, respectively. Taken together, these results provide
a detailed insight into AMW and Rosetta. While Rosetta

seems capable of better recognition of conformations in
close proximity to the native structure, neither energy
function has a distinct advantage for the purpose of a
selection technique driven by an energy cutoff.

3.2 Ensemble Reduction and Analysis

Since our goal for the robotics-inspired exploration is to
obtain a broad nonredundant view of the energy surface,
QUAD and NORM are further investigated in terms of the
geometric diversity of the �E ensembles they yield
(discarding any conformation with energy above the mean).
Since the bisecting K-means clustering employed for this
purpose makes use of an N �N matrix to store pairwise
lRMSDs between the N decoys in �E , the size of �E can
pose computational and memory issues. We impose a limit
of 40K conformations. When the limit is exceeded, uniform
sampling over �E is used to obtain 40K conformations.
Table 4 shows j�j and j�Ej for each protein in columns 2-3
for QUAD and 6-7 for NORM. Larger � ensembles are obtained
on all proteins with NORM, confirming that it becomes
increasingly harder to satisfy the metropolis criterion (and
so expand selected conformations) from the lowest energy
levels selected by QUAD. The difference in j�j between QUAD

and NORM becomes less pronounced on the longer proteins,
where energy evaluations become the bottleneck.

The reduction in size of �E;C resulting from the clustering
of �E is shown in columns 4-5 and 8-9 of Table 4 for QUAD
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TABLE 3
AMW and Rosetta Energy Functions Are Compared over Entire � Ensemble Obtained with NORM

In addition to the lowest lRMSD and maximum GDT_TS to the known native structure, the comparison includes mean lRMSD and mean GDT_TS
over the 90th percentile (p90) of low-energy conformations in �.

TABLE 4
j�j and j�E j Obtained When Using
AMW Are Shown in Units of 103

�C shows j�E j � j�E;C j as a percent of �E . Subscripts 3 and 5 refer to
� values 3 and 5 �A.



and NORM. Results are shown for � values of 3 and 5 �A
(a higher value would degenerate the quality of the clusters).
As expected, a higher � value results in a more significant
reduction over �E . Moreover, comparison between QUAD

and NORM for a given � shows that clustering is able to
achieve a more substantial reduction on the �E ensemble
resulting from QUAD. This suggests that NORM results in a
more diverse set of low-energy decoys, and so it is better
suited to be employed for the purpose of obtaining a broad
view of the energy surface. The improved diversity of low-
energy decoys implies increased coverage of the conforma-
tional space, which is a critical component, especially if it is
to be followed by further more detailed exploration or
studies focusing on improvements of energy functions on a
diverse set of decoys. The results shown in Table 4 are overall
reproduced when using Rosetta score3, shown in Table 5. A
more substantial reduction is obtained on the ensemble
obtained with QUAD using Rosetta score3, as well, further
suggesting that the soft energy bias in NORM is more
appropriate at yielding a diverse nonredundant decoy
ensemble not exploiting artifacts of an energy function.

3.3 Convergence Analysis

Here, we conduct further analysis and optimization of
obtained decoys. The conformations in �EC (medioids of
clusters) resulting from NORM now serve as starting points
for MMC trajectories (20,000 steps long). Unlike the
previous stage, which uses fragments of length 9, the
MMC trajectories use fragments of length 3. The end points
of the trajectories constitute the final set of conformations
subjected to density-based analysis to detect possible
regions of convergence.

The quality of the top 10 clusters resulting from the
density-based analysis with � ¼ 5 is shown for each of the
protein systems in Table 6a. The results shown in Table 6a
are obtained with AMW. Columns 2-4 show the lowest
lRMSD from the native structure over the representatives of
the top i populous clusters, where i varies from 10, 5, down
to 1, respectively. For reference, columns 5-7 show the
lowest lRMSD and the 10th lowest lRMSD over the entire
�E;C ensemble. Additionally, columns 8-9 show the lRMSD
of the conformation that can be assembled if the fragment
configuration selected from the library for each fragment is

the one that is closest to the actual fragment configuration
in the native structure (a process known as global fit [36]).

Comparison of these columns allows drawing a few
conclusions. If either the top five or top 10 populous
clusters are employed for further refinement, near-native
decoys (in terms of low lRMSDs) are preserved after the
selection, promising recovery of the native structure in
great detail and accuracy. Comparison of columns 4 and 5
shows that at most the selection loses �4 �A in terms of
proximity to the native structure and on average loses
1.5 �A. In general, there is good correlation between cases
when low lRMSDs are maintained by the selection and low
lRMSDs obtained by global fit. Lower lRMSDs obtained
over global fit suggest that sometimes suboptimal fragment
configurations are needed locally to obtain a better global
conformation. Similar observations can be drawn from the
density analysis over ensembles obtained with Rosetta
score3. The Rosetta score3 improves the quality of the
lowest lRMSD among the top 10 clusters on some systems
but it offers no distinct advantage overall (data not shown).

Further detailed analysis is showcased on three repre-
sentative systems. The density-based analysis is repeated
on the set of conformations resulting after every
2,000 MMC steps (AMW is used), and the aggregate size
of the top i populous clusters i 2 f1; 5; 10g is shown in
Figs. 4(a), 4(b), and 4(c) for each system. The results in
Figs. 4(a), 4(b), and 4(c) showcase that this aggregate size
can decrease, settle, or grow. A decrease is the result of
MMC trajectories diverging in the energy surface. In
Fig. 4(b), which shows results for the system with PDB
ID 1ail, the most populated clusters grow in size, signaling
convergence of many MMC trajectories to nearby regions
for this system; the clusters contain a large percentage of
the decoys when � ¼ 5 �A. Repeating the analysis with
� ¼ 3 �A shows that 3 �A is too small to measure convergence
(data not shown). Convergence on the system with PDB ID
1ail suggests that the widest low-energy basins captured by
the robotics-inspired framework with AWM and NORM are
also deep enough for the ensuing MMC runs to remain
trapped. This result provides further insight into why it is
that the low-resolution exploration of the AMW energy
surface for this system can capture decoys within 2 �A of the
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TABLE 5
j�j and j�E j Obtained When Using

Rosetta score3 Are Shown in Units of 103

�C shows j�E j � j�E;C j as a percent of �E . Subscripts 3 and 5 refer to
� values 3 and 5 �A.

TABLE 6
The Lowest lRMSD from the Native Structure over

Conformations in Top i Clusters (i 2 1; 5; 10)
Are Shown in Columns 2-4, Respectively

The 10th lowest and the lowest lRMSD over the entire �E;C are shown
for reference in columns 5-6, respectively. The lRMSD of the
conformation resulting from global fit with fragment lengths of 9 and 3
is shown in columns 7-8, respectively.



native structure. In contrast, the other two systems have

shallower basins in the AMW energy surface.
Figs. 4(d), 4(e), and 4(f) provide some more detail on the

system with PDB ID 1ail. The distribution of energies
versus lRMSDs from the native structure of the conforma-

tions (medioids) in �E;C in Fig. 4(d) shows that AMW is

weakly funneled over the 9-mer space. Fig. 4(e) shows that
the correlation between low energies and low lRMSDs

improves after the MMC trajectories populate the 3-mer
space. Moreover, a proof-of-concept analysis takes the top

10 clusters resulting from the density based for this system

and subjects them to short high-resolution refinement
through the Rosetta relaxation protocol. The resulting

energetic and lRMSD ranks shown in Fig. 4(f) make the

case that the top 10 clusters are good-quality candidates for
further refinement. The same analysis is repeated over

ensembles obtained with Rosetta score3 on this system,

shown in Figs. 4(g), 4(h), and 4(i). In contrast to AMW,
Rosetta yields stronger funneling on the 3-mer space

despite the lowest lRMSD to the native structure being

higher than what is obtained with AMW. Results showing
ranks after high-resolution refinements of the top 10
clusters in Fig. 4(i) are similar to those obtained with AMW.

4 DISCUSSION

We propose a new approach to obtain promising decoys for
ab initio protein structure prediction protocols. Instead of
launching numerous long MMC trajectories to obtain both a
broad view of the energy surface and convergence to
regions that are promising for further refinement, we
propose to separate this objective into two subgoals. A
broad nonredundant view of the energy surface is first
obtained through a robotics-inspired exploration frame-
work. The framework employs discretization layers over
the explored energy surface and conformational space to
bias its exploration.

Our analysis of different probability distribution func-
tions over the discretization layers shows that a Gaussian
distribution is more suitable for a diverse ensemble of low-
energy decoys. This distribution effectively implements a
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Fig. 4. (a)-(c) The aggregate size of the top i clusters i 2 f1; 5; 10g resulting from density-based analysis with � ¼ 5 �A is shown every 2K MMC steps
(red lines). (d)-(f) Energy versus lRMSD from the native structure is plotted for system with PDB ID 1ail for conformations in �E;C in (d) and for the
end points of the MMC trajectories in (e). These results are obtained with AMW and NORM. (f) also shows the energetic and lRMSD ranking of the top
10 populous cluster representatives after a short high-resolution refinement. (g)-(i) Energy versus lRMSD from the native structure is plotted for
system with PDB ID 1ail for conformations in �E;C in (g) and for the end points of the MMC trajectories in (h). These results are obtained with the
Rosetta score3 energy function and NORM. (i) also shows the energetic and lRMSD ranking of the top 10 populous cluster representatives after a
short high-resolution refinement.



soft energy bias that guards the framework from conver-
ging too fast to deep energy minima. While additionally
enforcing structural diversity through the geometric projec-
tion layer, the combination of a soft energy bias and
coverage result in a diverse ensemble of low-energy decoys.
A nonparametric energetic reduction and a K-means
bisecting clustering algorithm allow further reducing the
ensemble and show that near-native conformations are
more likely to be retained when using the soft energy bias
rather than more greedy schemes.

Comparison of ensembles obtained with AMW versus
Rosetta allow drawing a few observations. First, Rosetta
seems to allow improvements in terms of closer proximity
to the known native structure by as much as 1.5 �A over
AMW. This is more pronounced for proteins with all � or
�=� folds. AMW seems better suited for all � proteins. This
observation confirms recent analyses of versions of AMW in
[30], [16], [31] that the function seems well equipped to
capture the basin of all � fold proteins. In line with other
studies of the Rosetta energy function [4], [10], [38], our
analysis shows, however, that like AMW, Rosetta is capable
of ranking lower in energy decoys with significantly
nonnative topologies. A comparison of the different energy
biasing schemes when using the Rosetta energy function
indicates that the function results in a probably more
complex surface than AMW. While the AMW surface is
saturated more speedily by the framework, the Rosetta
energy surface may benefit from further sampling.

The convergence analysis is conducted by applying
long MMC trajectories to the reduced ensemble. Shorter
fragment lengths of 3 instead of 9 are used to access a
more detailed energy surface and further populate the
regions indicated as promising by the above exploration.
Switching from longer to shorter fragments during
exploration is employed by other methods for structure
prediction [5]. These methods perform this switch in the
context of very long independent MMC trajectories. In this
framework, longer fragments are used to gain a broader
view of conformational space. Once the areas of interest
are identified via energetic reduction and geometric
clustering, shorter fragments are employed to optimize
the energy function on the remaining ensemble. Density-
based clustering over the end points of the trajectories
shows that the top populous clusters retain near-native
conformations that can be used for further refinement in a
blind prediction setting for ab initio structure prediction.

Taken together, results presented in this paper suggest
that the proposed framework for decoy sampling is
versatile and allows exploring current open issues and
deficiencies in ab initio modeling. Higher accuracy in
energy functions is one direction to pursue. The density
clustering analysis showcases that the enhanced sampling
by the robotics-inspired framework results in many regions,
including nonnative topologies, being sufficiently popu-
lated to be reported among the top 10 populated clusters.
This result effectively indicates that the framework leads to
a diverse set of highly populated energy basins of
conformations. These basins can be used for further
development of scoring functions to improve recognition
of nonnative topologies.

Other directions that merit further investigation concern

the balancing of different energetic objectives during

exploration or the employment of different-length frag-

ments to suit these objectives. Currently, in the Rosetta

ab initio protocol, different versions of the Rosetta energy

function are used to scale interactions during the progres-

sion of an MMC trajectory. It is interesting to pursue this

direction further in a more unified way. Moreover, while

the effective temperature employed in this work for the

metropolis criterion is a medium-range temperature, in-

corporating a simulated annealing or an adaptive tempera-

ture schedule in the exploration will be considered. The

adaptive schedule can allow the framework to expand to

difficult regions and so further enhance sampling.
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