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Abstract

Background: Due to rapid sequencing of genomes, there are now millions of deposited protein sequences with
no known function. Fast sequence-based comparisons allow detecting close homologs for a protein of interest to
transfer functional information from the homologs to the given protein. Sequence-based comparison cannot
detect remote homologs, in which evolution has adjusted the sequence while largely preserving structure.
Structure-based comparisons can detect remote homologs but most methods for doing so are too expensive to
apply at a large scale over structural databases of proteins. Recently, fragment-based structural representations
have been proposed that allow fast detection of remote homologs with reasonable accuracy. These
representations have also been used to obtain linearly-reducible maps of protein structure space. It has been
shown, as additionally supported from analysis in this paper that such maps preserve functional co-localization of
the protein structure space.

Methods: Inspired by a recent application of the Latent Dirichlet Allocation (LDA) model for conducting structural
comparisons of proteins, we propose higher-order LDA-obtained topic-based representations of protein structures
to provide an alternative route for remote homology detection and organization of the protein structure space in
few dimensions. Various techniques based on natural language processing are proposed and employed to aid the
analysis of topics in the protein structure domain.

Results: We show that a topic-based representation is just as effective as a fragment-based one at automated
detection of remote homologs and organization of protein structure space. We conduct a detailed analysis of the
information content in the topic-based representation, showing that topics have semantic meaning. The fragment-
based and topic-based representations are also shown to allow prediction of superfamily membership.

Conclusions: This work opens exciting venues in designing novel representations to extract information about
protein structures, as well as organizing and mining protein structure space with mature text mining tools.

Background
Genome sequencing efforts utilizing high-throughput
technologies are elucidating millions of protein-encoding
sequences that currently lack any functional characteri-
zation [1,2]. The function of a protein of interest can be

inferred from other proteins with a common ancestor,
or homologs, with available functional characterization.
Either sequence or structure information can be used for
this purpose. The majority of methods used for genome-
wide functional annotation are based on sequence
comparisons and use sequence alignment to identify
homologous proteins. Well-known sequence alignment
tools include BLAST [3], PROSITE [4,5], and PFAM [6,7].
While typically fast, these tools are restricted to identifying
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mainly close homologs; that is, pairs of proteins with
significant sequence similarity. Function can then be trans-
ferred onto an uncharacterized query protein when the
sequence alignment tool identifies a homolog with known
function and no less than 30% sequence identity with the
query.
It is often the case that two proteins with similar func-

tion cannot be inferred based on sequence information
alone. Sequence-based function inference may miss
detecting similar proteins where either early branching
points (in such case the proteins are referred to as remote
homologs) or convergent evolution has resulted in high
sequence divergence while largely preserving structure and
function. Many sequence-based methods have been
offered to extend the applicability of sequence alignment
tools for the detection of remote homologs [8-10]. The
most successful ones, relying on statistical models learned
over multiple aligned sequences, have been shown to
improve upon methods based on pairwise sequence com-
parison but still fail to recognize remote homologs with
sequence identity less than 25% [11]. It is worth noting
that about 25% of all sequenced proteins are estimated to
fall in this category.
The presence of remote homologs was identified as early

as 1960, when Perutz and colleagues showed through
structural alignment that myoglobin and hemoglobin have
similar structures but different sequences [12]. Because
structure is under more evolutionary pressure to be
preserved than sequence, methods that compare struc-
tures allow effectively casting a wider net at detecting
related proteins for functional annotation. Structure-based
function inference promises to detect remote homologs
and expand options for assigning function to novel protein
sequences. Many structure similarity methods have been
proposed over the years, and two comprehensive
comparisons pitching these methods against one another
in the context of a gold standard are presented in [13,14].
Well-known methods measuring the similarity of two
protein structures include those based on Dynamic
Programming (DP) [15-17], including SSAP [18] and
STRUCTAL/LSQMAN [19-21], methods based on
distance matrices, such as DALI [22], those based on
extension of an alignment pinned at aligned fragment
pairs or groups of residues, such as CE [23], LGA [24],
TMAlign [25], methods based on comparison of
secondary structure units, such as VAST [26,27] and
SSM [28], and those based on comparison of backbone
fragments [29].
Work on effective structure comparison methods has

been spurred due to the Structural Genomics Initiative
[30] aiming to determine representative structures of all
protein families. Such research remains challenging,
mainly because the problem of finding the optimal
structure similarity score is ill-posed and has no unique

answer [31]. While ultimately the purpose is to transfer
functional similarity to structurally-similar proteins, it
remains open how biologically significant a particular
structural alignment is [32,33].
The majority of structure-comparison methods obtain a

structure similarity score after aligning the two protein
structures provided for comparison. While this is desir-
able, particularly in cases when the structures need to be
analyzed in detail for the locations of high similarity
regions, most structure alignment methods tend to be
computationally expensive. As such, they are not suitable
to be applied at a large scale over structural databases of
proteins for the purpose of detecting structural neighbors
of a protein of interest. To address this issue, filter
approaches have been proposed, where the objective is to
rapidly rule out some structures and employ more expen-
sive structure alignment tools on the remaining set of
structures.
Most filter approaches for structure comparison rely on

finding suitable representations of protein structure so
that fast distance measurements can be employed over
the representations to rapidly score the similarity of two
protein structures without the computationally-intensive
step of aligning two structures under comparison
[34,29,35-41]. The representations are typically string or
vector-based, and characters or elements are drawn over
a pre-compiled alphabet or library of structural features.
Representative filter methods include SGM [42], PRIDE
[43], and that in [29].
In particular, fragment-based representations of protein

structures have been recently proposed to allow fast detec-
tion of remote homologs with reasonable accuracy [29].
The representations are based on the bag-of-words
(BOW) model of text documents, representing a protein
structure as a bag of backbone fragments. Essentially, a
representative set of backbone fragments of a given length
are compiled over known protein structures [44]. A
protein structure of interest is then represented as a vector
whose entries record the number of times each of the
fragments in the compiled library of fragments approxi-
mates a segment in the given protein backbone. The
resulting fragbag representation has been shown efficient
and effective at identifying structural neighbors of a given
protein, including close and remote homologs [29]. It is
worth noting that fragment-based representations have
also been used for structural alignments [45,46].
Due to their efficiency, filter methods are appealing

beyond large-scale detection of structural neighbors of a
protein query. They can, through the additional applica-
tion of dimensionality reduction techniques, organize
known protein structure space and reveal interesting
insight on the relationship between sequence, structure,
and function in proteins [34,47,48]. Current applications
operate on protein structure space as organized in protein
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structure databases, such as the “Structural Classification
of Proteins” (SCOP) [49] and the “Class, Architecture,
Topology, and Homology” (CATH) databases [50,51]. It is
worth noting that both databases contain protein domains
rather than complete protein structures; that is, these data-
bases break up and organize the known protein structures
as deposited in the Protein Data Bank [52] in various
ways. Biologists usually break up large proteins that con-
tain multiple unrelated domains spliced together into one
polypeptide based on a process that involves analysis of
sequence, structure, and domain-specific expertise into
what constitutes a domain. Both SCOP and CATH are
hierarchical, as opposed to the “Families of Structurally
Similar Proteins” (FSSP) database [53]. In SCOP and
CATH, domains are first grouped/classified together
based on common secondary structure components (this
is known as Class), then common arrangement (Architec-
ture in CATH), topology of secondary structure elements
(fold in SCOP and Topology in CATH), and then homolo-
gous superfamilies (Superfamily in SCOP and Homolo-
gous family in CATH) and sequence families (family in
both SCOP AND CATH). Unlike SCOP, where the classi-
fication is largely manual, CATH is more automated and
explicitly uses sequence and structure-based criteria for
assigning homology.
The fragbag representation has been recently employed

to embed the protein structure space through simple
linear dimensionality reduction techniques. The obtained
low-dimensional maps are shown to provide interesting
insight on the relationship between structure and function
in the currently known protein universe [47] organized in
SCOP [49] and CATH [51]. Other representations and
ensuing maps have been obtained by other researchers
over the years, showing, for instance, a closer relationship
between structure and function than sequence and func-
tion [34]. We confirm some of these findings in this paper,
showing that an embedding of the fragbag-based space
through Principal Component Analysis (PCA) is low-
dimensional and groups structurally-similar domains
together.
>In this paper, we present work on a novel low-

dimensional categorization of the protein structure
space. We seek representations that separate classes and
capture the unique structural information in a class
without relying on posterior dimensionality reduction
techniques. We investigate a topic-based representation
obtained through application of the Latent Dirichlet
Allocation (LDA) model. A topic-based representation
of protein structure has been proposed recently in [54]
as an alternative to fragbag, but the study has been
limited to employment of topics to identify structural
neighbors of a given protein. We conduct a detailed
analysis of the quality and information captured by
topics, building on our previous work on topic-based

representations of text documents in text mining [55].
We additionally demonstrate that a topic-based repre-
sentation is just as descriptive and accurate as the frag-
ment-based one not only at identifying remote
homologs but also at organizing protein structure space.
In particular, we demonstrate through the use of the
ChiSquare significance test that many SCOP superfami-
lies are statistically significant in the definition of the
topics, essentially giving semantic meaning to topics in
the same way that a group of text documents gives
meaning to and defines a certain topic. Moreover, we
show that the fragbag and topic-based representations
allow binary classifiers to accurately predict SCOP super-
family membership of protein structures. We believe the
work presented in this paper opens exciting venues in
designing novel representations to extract information
about protein structures, as well as organizing and
mining protein structure space with mature text mining
tools.

Methods
We first summarize the fragbag representation of a protein
structure, followed by a brief description of PCA. The
LDA model is summarized next, with further description
of the topic-based representations it offers on proteins and
the measurements used to conduct the analysis over
topics.

Fragbag BOW representation of protein structure
The fragbag representation is based on the Kolodny
fragment libraries [44] and is based on the concept of a
Ca-based molecular fragment. A library of fragments of
lf amino acids in [44] is constructed as follows.
Fragments of Ca traces of 200 accurately-determined
protein structures are clustered, depositing the represen-
tative of each cluster in the fragment library. While ana-
lysis on the fragbag representation considers fragment
libraries with fragments of length lf ∈ {6, ..., 12}, we
focus on fragments of length 11 in this paper, shown to
result in the highest accuracy in identifying structural
neighbors in [29,54] and our own analysis (data not
shown).
The concept of molecular fragments allows obtaining

a vector-based representation of a protein structure as
follows. Given a fragment library of F fragments of a fixed
length lf, a protein structure P can be represented as a
vector V of F entries. Different information retrieval (IR)
techniques can be used to fill an entry Vi associated with
fragment fi in the library(1 ≤ i ≤ F). For instance, entry Vi

can record the presence or absence of fragment fi (stored
at position 1 ≤ i ≤ F in the library) in P, effectively result-
ing in a boolean vector. Alternatively, the number of times
fragment fi is found in P can be used. This is also known
as term frequency (TR) and is the method employed by
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the fragbag representation in [29]. Generally, other
naive vector space models can be used, including term
frequency-inverse document frequency (TF-IDF) [56].
The presence of a fragment fi in P is detected as follows.

The Ca trace of P (that is, only Ca coordinates are
extracted from the protein structure) is inspected at every
location j in blocks of f consecutive amino acids, or
segments [j, j + f - 1]. The Ca coordinates of the particular
segment under consideration are compared to each
fragment f in the library (1 ≤ i ≤ F), and the fragment with
the lowest least-root-mean-squared-deviation (lRMSD) is
reported as the fragment matching the particular segment
(least in lRMSD stands for optimal RMSD after removing
deviations due to rigid-body motions, and RMSD is the
Euclidean distance weighted over the number of points)
[57]. The entire process is illustrated in Figure 1.
Given this representation, any distance or similarity

measurements can be used over the fragbag vectors of two
protein structures to measure their structural distance or
similarity. In [29], various distance measurements are
tested, including the basic Euclidean distance as well as
cosine distance (which measures the angle between two
vectors). The cosine distance is reported to be most
accurate and competitive with top structure-alignment
methods in detecting structural neighbors.

Low-dimensional embedding of protein structure space
Given fragbag representations of protein structures, the
newly defined (fragbag) vector space, which has dimen-
sionality 400, can be reduced to a few dimensions
through various dimensionality reduction techniques. In

[47], PCA has been used to project SCOP domains on
the two top principal components (PCs). PCA is a well-
known linear dimensionality reduction technique, which
finds an orthogonal transformation of points given in
some original high-dimensional space such that the
transformation highlights new axes, also known as the
PCs, that maximize variance in the projected or trans-
formed data. Typically, the transformation is said to
yield a reduced or low-dimensional embedding when a
few, 3-5, PCs retain more than 70% of the variance in
the original distribution of the data [58]. We apply PCA
here, as well, to visualize co-localization of function in
the protein structure space and qualitatively compare
these results with the organization readily obtained
through the topic-based representation we investigate in
this paper.

LDA-based topic representation of protein structure
We propose an alternative representation of protein
structure in this paper based on topics obtained through
a popular technique in text mining, LDA. LDA was
introduced in [59] as a generative probabilistic model to
find latent groups (topics) that capture the structure of
observations represented by BOW models, which in this
setting are generated using the fragbag method. The key
idea, first introduced in [54] but limited to detection of
structural neighbors, is to represent proteins as
probability distributions over latent topics, which are
themselves probability distributions over fragments in
the fragment library. This idea builds on the original
one introduced to categorize text documents of a given
corpora by the topics covered in each of them. In text
mining, however, visual inspection of the words of
highest probability in each topic allows giving semantic
meaning to topics. Associating semantic meaning to
protein fragments (analogous to words in this setting)
is not easy, and we provide in this paper a series of
analysis techniques to do so.
We briefly describe the concepts of LDA and how they

map to our investigation of proteins. The graphic model
for LDA is shown in Figure 2. The generative process in
this model functions as follows. First, a multinomial
distribution, jt, is assigned to each topic 1 <= t <= T.
Each of these distributions represents the probability of
each fragment in F participating in topic t. For each
protein Pi that is constructed, we obtain a mixture of
topics by assigning another multinomial distribution, θi.
Each fragment in protein Pi is generated by first selecting
a topic t according to θi, and then using that topic’s dis-
tribution jt to select the actual fragment. Each fragment
within each protein represents a latent variable, zi, that is
assigned to a specific topic. The assignment of multino-
mial distributions is obtained from a Dirichlet distribu-
tion, which is the conjugate prior for the multinomial

Figure 1 Molecular fragment replacement process. A protein
structure is shown on the left, rendered with VMD [67] using the
NewCartoon graphical representation. The protein structure is
scanned one fragment at a time from the N- to the C-terminus. The
first fragment is highlighted in red. The position of the fragment in
the fragment library is identified, and the entry in the BOW vector
at that particular position is incremented. After the entire structure
is scanned, the resulting BOW vector is the one supplied to LDA.
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distribution. As such, each sample from a Dirichlet yields
a multinomial distribution. Separate Dirichlet distribu-
tions are used for sampling the distribution of topics
within a protein (θi) and for the distribution of fragments
within a topic (jt) and are parameterized by a and b
respectively.
The goal in LDA is to maximize the likelihood of the

posterior through the refinement of the topic assignments
zi. This is accomplished using the LDA algorithm from
[60]. This method initially assigns each zi to a random
topic and then utilizes many iterations of Gibbs sampling
to approximate the j and θ distributions. We direct the
reader to [60] for a more detailed discussion of LDA and
this specific approximation algorithm.
In this context, topics make for general representations

of proteins, under which a protein is treated as a mixture
of many topics, albeit with different probabilities. As we
relate in Results, one can employ these topic-based repre-
sentations to identify structural neighbors of a protein.
We additionally show how topics categorize the protein
structure space, revealing interesting insight into what it
is that each topic captures about protein structure and
function.
Evaluating information content in topics
One of the parameters in LDA is the number of topics T.
Tuning T can be accomplished by measuring the infor-
mation gain provided in each topic compared to a base-
line [55]. The distribution of fragments over the entire
protein structure space, as available in SCOP, for
instance, can be used to represent a baseline distribution
over fragments. Each topic obtained by LDA is also a

probability distribution over fragments. We use the sym-
metric Kullback-Leibler (KL) divergence [61] to measure
the information gain of each topic over the baseline dis-
tribution. Briefly, given two probability distributions

p0 and p1, KL(p0, p1) =
∑

p0(x) · ln
p0(x)
p1(x)

We use a

symmetric version of KL defined as 0.5
(KL(p0, p1) + KL(p1, p0)). Larger distances imply higher
information gain in each topic as opposed to the baseline
distribution of fragments over the entire corpora. Small
distances imply that the topic is essentially junk, provid-
ing no additional semantic content as compared to the
baseline. This evaluation is carried out for each topic in
the Results section to additionally measure the informa-
tion gain as one increases the number of topics requested
from LDA.
In addition, log likelihood evaluates how well the data

(the fragments defining protein domains) fits the model,
which in this case is the topic space model produced
by LDA. When performing parameter estimation, a
common strategy is to maximize the log likelihood as
proposed in [62]. We employ this technique to measure
the effectiveness of each LDA model, varying the
number of topics T. Let M represent all the parameters,
including T, for the LDA model. Equation 1 shows the
likelihood of M generating the set of proteins P. Taking
the log of both sides yields Equation 2. Equation 3
shows the calculation for computing each protein Pi,
and taking the log of both sides yields Equation 4. F is
the total number of fragments used to describe the
ensemble and n(v)

i
is the number of times fragment v

appears in protein Pi. P(fv|tk) is the probability of the
fragment fv being in topic tk, which is provided by the
multinomial distribution jk. P(tk|Pi) is the probability of
topic tk being in protein Pi, which is provided by θi.
These measurements are shown in the Results section
to demonstrate that the log likelihood decreases as the
number of topics increases.

p(P|M) =
N∏

i=1

p(Pi|M) (1)

log p(P|M) =
N∑

i=1

log p(Pi|M) (2)

p(Pi|M) =
F∏

v=1

(
T∑

k=1
φk,v · θi,k

)n(v)
i

(3)

log p(Pi|M) =
F∑

v=1
n(v)

i ∗ log
(

T∑
k=1

(p(fv|tk)p(tk|Pi)
)

(4)

Figure 2 LDA plate. T is number of topics, N is the number of
protein structures. Each fragment within a protein is represented by
f and ni is the number of fragments in Pi. Blue and black
backgrounds indicate latent and observed variables respectively.
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Topic signatures of structural classes and co-localization
in protein structure space
Each topic may capture “signatures” associated with
different classifications (SCOP, CATH). To test for
these signatures, we propose using heatmaps
constructed over the LDA-computed topic space. LDA
presents the topic space as a N x T matrix, where N is
the number of proteins and T is the number of topics.
The row vector for protein Pi records the number of
times a fragment is classified to be within a given topic
Tj. Additionally, each protein is assigned a label accord-
ing to some classification standard; a label corresponds
to a class. For instance, a label may be the fold of the
protein, as obtained from the top level of the SCOP
hierarchy. Alternatively, the label can track the super-
family membership of a protein in SCOP.
Many protein domains are assigned the same label Li.

We sum fragment counts for topic Tj on each protein
assigned the same label Li. This provides us with a frag-
ment count for topic Tj in label Li. Normalizing over all
labels provides us with probability P(Li|Tj). This produces
an L x T matrix, where each column in the matrix sums to
one. Results in this paper visualize this matrix as a heat-
map, with colors following the low-to-high probabilities in
a blue-to-red colors scheme.
When protein classes have strikingly different sizes, the

above analysis will be skewed. A high probability P(Li|Tj)
may be assigned to a class with label Li simply because of
the high number of domains in the class with label Li.
This situation arises when analyzing topic signatures over
the superfamily classification in SCOP. In this case, we
take a different approach to obtaining a heatmap that
elucidates topic signatures for protein classes. We employ
the ChiSquare significance test [63] at a confidence level
of 99%. This analysis is performed for each topic Tj. For
each protein with label Li, we compute the number of

fragments found within topic Tj (let’s refer to this as CLi
Tj
),

and the number of fragments that are not assigned to

proteins with this label (C¬Li
Tj

). We compute these counts

for the entire population minus the topic we are cur-

rently analyzing (CLi
¬Tj

andC¬Li
¬Tj

). These value are used to

construct a contingency table and perform the ChiSquare
significance test. When the test shows a significant differ-
ence, and the population in the topic is greater than the
remainder of the population, we characterize this topic as
having a signature for the label under consideration.

Predicting superfamily membership of protein structure
We demonstrate that the fragbag and topic-based repre-
sentations can be employed by machine learning classifica-
tion algorithms to predict superfamily membership for a
given protein structure. Since this is a multiclass classifica-
tion problem, we employ the one-vs-all strategy, using

7 binary classifiers, one for each of the 7 most-populated
superfamilies in SCOP. We employ the popular Support
Vector Machines (SVM) for the binary classifier [64].
The set of 9,852 protein domains in these superfamilies

is extracted, and LDA is applied to this set. When using
the topic-based representation, each protein’s multinomial
distribution across the topic space returned by LDA serves
as its coordinates in the 10-dimensional space (our analy-
sis in the Results section makes the case that no more
than 10 topics are needed). The resulting 10-dimensional
vectors are treated as a training dataset, and 7 classifiers
are built (SVM is a binary classifier) in order to predict
superfamily membership with binary classifiers. When
using the fragbag representation, the training vectors are
400-dimensional as opposed to topic vectors which are
10-dimensional.
When building an SVM classifier for superfamily i (1 ≤ i

≤ 7), the set of training vectors corresponding to domains
in that superfamily are treated as the positive training
dataset. The rest of the vectors, corresponding to domains
in other superfamilies are treated as the negative training
dataset. We note that for some of the superfamilies, there
are many more negative instances than positive ones, as
expected. In such cases, re-balancing of data is performed
by undersampling the negative class in order to achieve an
equal count of positive and negative instances.
Each SVM classifier is trained independently (on each

superfamily), using a polynomial kernel and a soft margin
parameter C = 1.0. Ten-fold cross-validation is used to
measure the classification performance, as related in the
Results section. For each protein domain, the prediction
among the 7 classifiers that has the highest confidence is
chosen as the final prediction for that domain. In this
way, superfamily membership is predicted for each family,
and standard TPR, FPR, and accuracy measurements can
be used to evaluate performance.

Results and discussion
Implementation details, datasets, and experimental setup
We use a MATLAB implementation for LDA [60]. All
our experiments and analysis are executed on a 2.4Ghz
Core i7 processor. Parameter values for LDA are a = 50/
(number of topics) and b = 200/(fragment library size).
Extracting the fragbag representation for each protein
domain in a dataset of 31,155 domains (datasets are
detailed below) takes 10 hours. LDA runtimes depend on
the number of topics requested and vary from 2 hours
for 10 topics to 24 hours for 200 topics. The following
analysis conducted here is organized in four sets of
experiments. The WEKA data mining package [65] is
employed for training SVMs on superfamily-labeled
protein structures as described in the Methods section.
We first tune LDA varying the number of topics to

show that most information can be obtained with a
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relatively small number of topics. The topics that allow
obtaining comparable results in this context are then
analyzed in detail in terms of what fragments they
capture. This allows associating “semantic” meaning to
topics in terms of the over-represented fragments they
contain.
Second, we demonstrate that the representation of a

protein domain through LDA-obtained topics, as
described in Methods, is just as useful as the fragbag
representation to capture structural similarity and report
structural neighbors with comparable accuracy. We do so
over a database of 2,930 sequence-nonredundant struc-
tures, extracted from CATH, as in [29,54]. Each structure
in this dataset is treated as a query, and structural neigh-
bors are identified for it over the rest of the dataset. This
process is repeated for each structure in the dataset to
obtain the average area under the curve of receiver operat-
ing characteristic (ROC) curves [66]. We place these
results in context, comparing to representative structure
alignment and filter methods.
Our third set of experiments concerns how topics can

be used to organize protein structure space as compared
to the fragbag representation. This analysis is placed in
context by first demonstrating the usefulness of the frag-
bag representation in obtaining a low-dimensional map of
the protein structure space through PCA. We restrict our
analysis and visualization to two levels in the SCOP hierar-
chy, class and superfamily. The dataset we employ to
demonstrate the co-localization of structurally- and func-
tionally-similar proteins (according to classes in a SCOP
hierarchy) consists of 31,155 protein domains extracted
from SCOP 1.71 [49]. This dataset is kindly provided to us
by R. Kolodny, and our choice of this dataset is so that
direct comparisons can be drawn with work by Kolodny
and colleagues in [47]. We focus the analysis to top-
populated families in the two chosen levels, class and
superfamily, in the SCOP hierarchy for clarity. We show
that classes have unique topic signatures, which further
supports our conclusions that LDA-obtained topics are
general and informative representations of protein
domains. They can be employed to detect remote homo-
logs and obtain further insight about the organization of
the protein structure space.
Our fourth and final set of experiments demonstrates

that the topic-based representation captures important
information about a protein structure that allows predict-
ing superfamily membership. Binary classifiers are used for
this purpose to predict one of the 7 most-populated super-
families for given protein structures. Our results show that
both representations allow standard classifiers to achieve
high prediction accuracy, which we believe opens the way
towards using simple representations for automated and
reliable hierarchic classification of proteins in databases
such as SCOP and CATH.

Less is more: topic space is low-dimensional
We show that increasing the number of topics results in
topics of low information gain, demonstrating that the
chosen number of 10 topics is appropriate. We compute
the symmetric KL distance, as described in Methods, to
measure the information gain of each topic over the base-
line distribution of fragments over all SCOP domains. We
do so for 11 different settings of T, starting with T = 10
through T = 200. Figure 3 highlights the value of the KL
distances for three settings of T (10,100,200). To formulate
a quantitative comparison, we compute the mean and var-
iance of each set of KL distances for each of the 11 settings
of T, which is shown in the bottom right panel of Figure 3.
This analysis illustrates that the mean KL distance
decreases as the number of topics increases, and the var-
iance increases as the number of topics increase. This sug-
gests that increasing the number of topics does not result
in more information and that many topics are essentially
“junk” topics for the larger values of T [55].
Additionally, we show the log likelihood, measured as

detailed in the Methods section, for various settings of T
in Figure 4. As the number of topics increases, the log
likelihood decreases. Combining this analysis with that on
information gain clearly demonstrates that more topics is
not necessarily better. Moreover, these results support the
choice of 10 topics as sufficient for the rest of our analysis.
It is worth emphasizing that, from now on, a protein
structure is represented as a 10-dimensional vector (where
each entry in the vector records the probability with which
that topic is “found” in the structure). This lies in contrast
to the higher-dimensional vector space resulting from the
fragbag representation where 400 fragments are employed
as opposed to 10 topics. One of the advantages of this
lower dimensionality is that dimensionality reduction
techniques do not have to be used in order to provide
low-dimensional user-friendly embeddings or maps of
protein structure space. A component of our analysis
below illustrates how topics are signatures of SCOP classes
and can even be employed to accurately predict superfam-
ily membership.
Before relating results into how the topic-based repre-

sentation compares to fragbag and other methods in
detecting remote homologs and organizing protein struc-
ture space, we provide further insight into what the topics
capture. In text mining, peeking into the top populated
word(s) readily provides semantic meaning into what a
topic captures. It is not possible to directly do so in the
protein structure space. However, inspecting the top frag-
ment(s) (for lack of space, we limit the visualization to
only the top fragment) and correlating this information
with analysis on classes most likely to be associated with
certain topics provides information into the meaning of a
topic in the protein structure space. The top-populated
fragments in each topic are shown in Figure 5.
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Detection of close and remote homologs: topics capture
structural similarity
We first compare the ability of the topic-based represen-
tation vs. fragbag to identify structural neighbors of a
protein. We recall that the dataset employed for this
analysis is the sequence-nonredundant dataset of 2,930
protein structures extracted from CATH. Each protein
in this dataset is treated as a query. The gold standard
on which proteins in the dataset are determined to be
structural neighbors of a query protein is obtained by a
best-of-six structural alignment protocol, courtesy of R.
Kolodny. Three different structural alignment scores
(SAS) of 5, 3.5, and 2.0Å are employed. A SAS threshold
of 2.0Å allows identifying close homologs of a protein,
whereas a threshold of 5Å identifies remote homologs.
Given a particular SAS threshold and the gold standard

of structural neighbors obtained with that threshold, the
following experiment is conducted.
Employing the fragbag or topic-based representation

and the cosine distance over the particular representa-
tion under investigation and continuously varying the
decision threshold (that is, the cosine distance between
two protein structures under the particular representa-
tion), a receiver operating curve (ROC) can be con-
structed, and the average area under the curve (AUC)
score can be reported. The ROC curve plots the true
positive rate (TPR = TP/(TP+FN)) vs. the false positive
rate (FPR = FP/(FP+TN)) over the decision threshold.
Summarizing the ROC with AUC allows associating a
score with each query protein. Averaging over all pro-
teins in the dataset, essentially treating each of them in
turn as a query protein, allows obtaining an average

Figure 3 LDA topic information analysis. Symmetric KL distance between each topic and the baseline fragment distribution over the entire
corpora is shown. Three settings of LDA are compared, where the number of topics varies from 10, to 100, to 200. A quantitative comparison is
shown where the number of topics is evaluated at 11 different values.
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AUC and thus measuring the effectiveness of a particu-
lar representation at capturing structural neighbors. Per-
forming this analysis at the three different SAS
thresholds further allows judging the effectiveness at
capturing close to remote homologs.
Figure 6 compares the average AUCs obtained using

fragbag and our topic-based representations and addition-
ally places them in a larger context by comparing them
to two methods, SSM [28], representative of alignment-
based methods, and SGM, representative of filter meth-
ods [42]. The average AUCs reported for these methods
are obtained as published in [14]. Additionally, average
AUCs obtained over topics as reported in [54] with 10
topics are shown. Figure 6 shows that SSM is the best
performer, followed closely by fragbag and the rest. LDA
and SGM are comparable.
In particular, the average AUCs on each SAS threshold

obtained with the fragbag and topic-based representations

are listed in Table 1 for a direct comparison. Two obser-
vations can be drawn. First, both representations, fragbag
and topic-based, are equally effective at capturing struc-
tural neighbors at each of the three SAS thresholds. Sec-
ond, under each representation, the effectiveness is
higher at lower SAS thresholds (above 0.8 at a SAS
threshold of 2.0Å), allowing us to conclude that the
representations have an easier time capturing close
homologs than remote homologs. However, performance
on remote homologs remains good (higher than 0.7 at a
SAS threshold of 5Å ). Taken together, this experiment
allows concluding that the topic-based representation
allows capturing structural similarity and can be
employed to rapidly extract structural neighbors (close
and remote homologs) of a given protein with known
structure.

Automated mapping and organization of protein
structure space
We now proceed to demonstrate how the fragbag and
topic-based representations can be used to provide low-
dimensional maps or categorizations of the known protein
structure space.
Analysis of fragment-based embeddings of protein structure
space
We conduct a PCA analysis on the SCOP dataset
described above. The accumulation of variance on the
ordered eigenvalues, plotted in Figure 7 (top panel),
shows that the first two PCs capture more than 99% of
the variance, demonstrating that projection on these two
PCs provides an informative low-dimensional space of
the protein structure space. We visualize such a map in
Figure 7 (middle and bottom panels). We employ differ-
ent color-coding schemes to track proteins that belong to
the same fold or the same superfamily in SCOP.
Figure 7 (middle panel) shows the highest-populated

classes in the first level of the hierarchy; these are,
namely, a, b, a + b, and a/b proteins. The PCA map in

Figure 5 Top-populated fragment. The top-populated fragment of each topic is shown.

Figure 4 Topic analysis using log likelihood. The log likelihood
of fitting the data is shown for 11 LDA models, where the number
of topics varies from 10 to 200.
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Figure 7 (middle panel) clearly shows that the first PC
captures most of the all-a proteins, whereas the second
PC captures most of the all-b proteins. There is more
variation in the proteins assigned to the all-b class, but a
closer inspection reveals some of these proteins contain
one or a few a-helices (data not shown). As expected,
the other two folds, which combine a-helices and
b-sheets, span the space. The layout of protein folds in
this low-dimensional map is in agreement with other
studies [47,34].
Figure 7 (bottom panel) selects six top-populated SCOP

superfamilies. Proteins in a superfamily have similar func-
tion. In agreement with the study in [34], which pursues a
Multi Dimensional Scaling (MDS) mapping of the protein
structure space (employing a different parameterization),
the two-dimensional map revealed from the PCA analysis
shows good functional co-localization of these superfami-
lies. That is, proteins in the same superfamily are also
neighbors in the projected space. This result further illus-
trates the usefulness of low-dimensional maps that allow
visualization of the protein structure space.
It is interesting to note that the fragbag representation

essentially unravels the non-linearity in the protein
structure space. In other studies, most notably by Kim
and colleagues [34], MDS has been central to obtaining

an accurate low-dimensional projection of the structure
space. The parameterization of a protein structure in
that study was not based on a BOW representation.

Figure 6 Average AUCS over SCOP. The average AUCs over the
SCOP dataset, calculated as described in the Results section, are
compared among different methods. Data from the SGM and SSM
methods are obtained as published in [14]. These two methods are
compared against the fragbag and two topic-based representations
(as published here and in [54]).

Table 1 Fragbag/Topic AUCs

5Å 3Å 2.5Å

Fragbag [29] 0.75 0.77 0.89

Topic-based (Here) 0.72 0.74 0.85

Figure 7 PCA analysis of SCOP domains. Top panel shows
accumulation of variance from PCA. The top two PCs capture more
than 99% of variance. Middle and bottom panels show the projection
of SCOP domains on the top two PCs. Different colors are used to
separate classes (middle panel) and superfamily (bottom panel).
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Topics have semantic meaning in the protein structure
space
Taken together, the above analysis suggests that topic
space is an informative low-dimensional embedding of the
protein structure space that allows capturing structural
similarity. To complete the analysis, we elucidate topic sig-
natures per SCOP class at different levels of the SCOP
hierarchy. The heatmap shown in Figure 8 color-codes
topics per class at the fold level of the SCOP hierarchy in
a blue-to-red color scheme tracking low-to-high probabil-
ities measured as detailed in Methods. The results shown
in Figure 8 suggest that topics 1-4 are over-represented in
the a class but under-represented in the b class. This is
reversed for topics 5-10. In contrast, the other classes
either have a high mixture or a low mixture of each topic.
Correlating these results with those shown in Figure 5
provides an explanation for why this is the case. Topics 1-
4 are related to a-helical topologies, as evidenced by the
top fragment shown. Topics 5-10 are related instead to b-
sheet topologies. Put together, these results demonstrate
that classes at the fold level of the SCOP hierarchy have
unique topic signatures. It is worth emphasizing that this
result is made even stronger when considering that, often,
domains assigned to the b class may contain a few a-
helices (data not shown). The analysis suggests that topics
capture structural categorization.
The heatmap in Figure 9 is prepared through the techni-

que detailed in Methods to correct for the high variance in
population sizes of top superfamilies in SCOP. Blue indi-
cates low presence of a topic, and red indicates high pre-
sence. The results shown in Figure 9 suggest that
superfamilies have unique topic signatures. For instance,
the immunoglobulin domain has many of topics 5-10
over-represented. This is encouraging, as inspection of

these topics in Figure 5 reveals that they are high in
b-sheets, and immunoglobulin domains are all-b proteins.
On the other hand, the P-loop Binding domain is rich
in a-helices. Encouragingly, the topics that are over-
represented in this superfamily are topics 1-4, which cap-
ture a-helical fragments, as shown in Figure 9. The winged
helix DNA-binding domain is significantly represented in
topics 1 and 3, both having high concentration of a-helical
fragments. This agrees with the SCOP classification of this
domain as all a. Similarly, EF-hand is only significantly
represented in topic 1, which is dominated by a-helical
fragments. This is in agreement with the all a SCOP clas-
sification. The topic signatures capture the other superfa-
milies, as well, suggesting that topics additionally capture
functional categorization.

Predicting superfamily membership
Finally, a set of 7 classifiers is built as described in the
Methods section. This experiment is repeated twice,
once using the fragbag and the other using the topic-
based representation. The distribution of the protein
domains employed as training data in each case across
the 7 superfamilies is shown in Figure 10. The perfor-
mance of each of the 7 SVM classifiers in 10-fold valida-
tion is shown in Table 2. Very high accuracy (> 80%),
TPR (> 0.8), AUC (> 0.83), and low FPR (< 0.3) are
obtained on each superfamily whether using fragbag or
the topic-based representation. The fragbag representa-
tion allows for slightly better classification performance.
These results confirm that the topic-based representa-
tion, while only 10-dimensional as compared to the
400-dimensional fragbag representation, can be used to
build effective classifiers of proteins, even at the super-
family level of detail.

Figure 8 Heatmap topic analysis on SCOP folds . Heatmap
highlights “signature” topics per class in the fold level of the SCOP
hierarchy. Blue-to-red color scheme tracks low-to-high probabilities
measured as detailed in Methods.

Figure 9 Heatmap topic analysis on SCOP classes. Heatmap
highlight “signature” topics per class in the superfamily level of the
SCOP hierarchy. Blue-to-red color scheme tracks low-to-high
probabilities measured as detailed in Methods.
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Conclusions
In this work we have investigated a novel low-dimen-
sional categorization of protein structure space combin-
ing mature and popular tools in text mining with work
in structural bioinformatics. The LDA-obtained topic
representation of protein structure is analyzed in detail
for its ability to summarize a protein structure with
multinomial distributions. Our investigation reveals that
indeed meaningful topics can be discovered in protein
structures, and that these topics can in turn be used to
reveal similar protein structures and organize protein
structure space.
In particular, results presented in this work suggest that

topic-based categorization of protein structures preserves
structural and functional co-localization. Specifically,

topics obtained through LDA are shown to capture struc-
tural similarity with sufficient accuracy on both close
and remote homologs and additionally yield a low-
dimensional organization of the protein structure space
that preserves groupings by structure and function.
Topics are also shown to provide sufficient discriminative
power to standard supervised learning classifiers like
SVMs for predicting superfamily membership. Taken
together, the results suggest that the LDA-obtained topic
representation of protein structure can be used to aid
classification in structural databases.
The work presented in this paper opens exciting new

venues in extracting and organizing information about
protein structures and protein structure space through
mature tools in text mining. We additionally hope that
this work can inspire further investigation of higher-
order representations of protein structures both for
structure comparison and for investigating the relation-
ship between protein sequence, structure, and function.
Specifically, future work may choose to further mine
and refine the topic-based representation in a way that
provides visually-friendly categorizations of protein
structure to potentially assist hierarchic organizations in
current structural databases, such as SCOP and CATH.
Additional future work can explore employment of LDA
over structure components others than backbone
fragments.
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Figure 10 SCOP superfamily distribution. The distribution per
superfamily is shown for the protein domains in the 7 most-
populated superfamilies in SCOP. These domains are treated as
training data for SVMs to classify proteins by superfamily.

Table 2 SCOP SVM Classification Results.

Fragbag
Representation

Topic-Based
Representation

SCOP Superfamily Acc.
(%)

TPR FPR AUC Acc.
(%)

TPR FPR AUC

P-Loop Binding 96.4 0.98 0.05 0.95 84.3 0.97 0.29 0.84

Immunoglobin 100.0 1.00 0.00 1.000 99.9 0.99 0.0 1.0

NAD(P)-binding
Rossman

98.7 0.99 0.02 0.99 90.9 0.94 0.13 0.91

Thioredoxin-like 98.8 0.98 0.01 0.99 80.2 0.92 0.32 0.80

alpha/beta
Hydrolases

99.1 1.00 0.02 0.99 92.7 0.95 0.10 0.93

EF-hand 100.0 1.00 0.00 1.000 98.8 0.99 0.01 0.99

Winged helix DNA-
binding

98.7 0.98 0.01 0.99 84.4 0.79 0.11 0.84

Performance is reported for the 7 SVM classifiers identifying a protein domain
as being a member of one of the seven SCOP superfamilies. Accuracy (Acc.) is
the sum of true positives and true negatives divided by the number of
samples. Reported values are rounded up after the second decimal sign.
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