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SUMMARY

Evidence is emerging that the role of protein structure in disease needs to be rethought. Sequence

mutations in proteins are often found to affect the rate at which a protein switches between struc-

tures. Modeling structural transitions in wildtype and variant proteins is central to understanding

the molecular basis of disease. This paper investigates an efficient algorithmic realization of the5

stochastic roadmap simulation framework to model structural transitions in wildtype and variants

of proteins implicated in human disorders. Our results indicate that the algorithm is able to extract

useful information on the impact of mutations on protein structure and function.

1 Introduction

The increasingly accepted view of proteins as inherently dynamic systems1 is raising questions on10

the role of protein structure in diseases that are proteinopathies. The simplified view of proteins as-

suming a unique structure to carry out their biological activity2 allows understanding some protein

conformational diseases.3 In these, the protein is unable to assume its designated function-carrying

structure due to internal perturbations (sequence mutations) or external ones in the environment

(cellular stress). However, increasing evidence is emerging on enzymes and other proteins making15

use of a menu of thermodynamically stable or semi-stable structures to modulate their function

and participate in numerous complex chemical processes in the cell.4 Both experiment and com-
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putation have shown that many proteins switch between such structures, undergoing productive

structural displacements of less than an angstrom (Å) or on the order of a few angstroms.5

In light of this dynamic view of proteins, it is unclear how mutations that cause or participate in20

disease affect structure, which is the intermediate link in the relationship between protein sequence

and function. There is evidence that some of the most complex human diseases, including cancer,

do not arise from the inability of a protein variant to occupy a specific structure but rather from

changes to the rate at which the variant transitions between thermodynamically-stable or semi-

stable structures.6 Due to such evidence and the inability of wet-laboratory techniques to elucidate25

structural transitions in great structural detail, it is central to explore computational techniques to

model such transitions and extract information related to kinetics, such as transition rates. While

typically kinetic data can be extracted with methods based on Molecular Dynamics (MD), such

methods tend to be prohibitively computationally expensive.7 Many MD simulations need to be

launched to sample an ensemble of trajectories over which to calculate any statistics of interest.30

In this paper, we propose a computationally-efficient method that is not based on MD but instead

builds upon the stochastic roadmap simulation (SRS) framework as detailed by Latombe and col-

leagues.8 The proposed method does not obtain structures of a given protein sequence in an MD

setting but instead makes use of an efficient stochastic optimization algorithm published in Ref.9

to sample structures that are local minima of an employed energy function. The method relies35

on the SRS formalization8 to build a stochastic roadmap, but rather than doing so over all sam-

pled structures, the method organizes structures into structural states before imposing connectivity

information over them. Effectively, the constructed roadmap over states is lazy, as probabilis-

tic edges are added between two nearby structural states to indicate the estimated feasibility of a

protein making the structural transition between the states.40

By building a stochastic roadmap over structural states, the method is then able to conduct a rich

analysis over the roadmap that is not limited to querying the roadmap for the lowest-cost path.

Instead, the analogy between the stochastic roadmap and a Markov state model (MSM), facilitated

by the employment of structural states, allows extracting interesting statistics, such as the expected
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number of edges in computed transition paths between any two states of interest. Such statistics,45

while not direct measurements of transition rates due to the lack of timescale information from

non-MD methods, allow conducting comparisons between wildtype (WT) and variant (mutated)

sequences of a protein. Here we employ such statistics to obtain a structural explanation for the role

of specific mutations on function in two proteins implicated in human disorders. We investigate the

human Superoxide dismutase 1 (SOD1) enzyme, whose sequence mutations have been linked to50

familial ALS,10 and the H-RAS protein, whose sequence mutations have been implicated in many

human cancers.11

In addition to conducting queries and extracting statistics over the lazy roadmap, we pursue here a

path smoothing algorithm in order to provide a more detailed structural transition associated with

a low-cost path obtained from the roadmap. We adapt for these purposes the conjugate peak re-55

finement (CPR) algorithm originally proposed in.12 In addition, we investigate the generality of

our conclusions on the impact of sequence mutations on structure and energetics when employ-

ing two different energy functions, one a representative of hybrid energy functions and another a

representative of physics-based functions.

The rest of this paper is organized as follows. In Section 2 we provide a treatment of related work.60

Details on the proposed method are provided in Section 3. Our experimental analysis is laid out in

Section ??. The paper concludes with a brief discussion in Section 4.

2 Related Work

2.1 Roadmap-based Methods for Modeling Protein Dynamics

Seminal work by Latombe and colleagues proposed the employment of the Probabilistic RoadMap65

(PRM) framework to plan robot motions over a nearest-neighbor graph of feasible robot configu-

rations.13 The PRM framework was then adapted to model the binding of a flexible small ligand

onto a rigid protein receptor.14 Many adaptations then followed, notably by Amato and colleagues.

In Ref.,15 the PRM framework was applied for the first time to study folding of a short polypeptide
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chain of 10 alanine residues from an extended to an α-helical structure. Notably, the notion of70

probabilistic edges was introduced in this early work, with the probability of an edge estimated

as a function of the Boltzman-related factor e−∆E/KBT , with ∆E denoting the energetic difference

between two structures, KB the Boltzmann constant, and T the chosen simulation temperature.

Other adaptations of PRM focused on modeling folding and unfolding events of small proteins as a

means of studying and ordering important folding events, such as secondary structure formation.16
75

Later adaptations extended applicability to longer protein chains of around 60 amino acids17 and

then 110 amino acids18 as well as improved computational time demands by focusing sampling

over a subset of degrees of freedom selected via rigidity analysis.19 Other work extended appli-

cability to RNA and additionally extracted kinetics-related measurements, such as relative folding

rates.20–22 A detailed review of PRM-based methods for protein folding is presented in Ref.23
80

Adaptations of PRM for studying molecular motions beyond folding of small proteins have proven

challenging, particularly due to the difficulty of providing efficient sampling of the relevant struc-

ture space.24 Tree-based variations to model molecular motions beyond protein folding have also

been proposed over the years. Such methods are less amenable to calculation of statistics and do

not easily allow for large-scale analysis compared to PRM-based adaptations. While a summary85

of tree-based methods is beyond the scope of this work, a detailed review can be found in Ref.25

2.1.1 The Stochastic Roadmap Framework

While seminal ideas on the probabilistic roadmap for protein dynamics had been previously intro-

duced, most notably in the Amato lab,15, 16 it was work in Ref.8 that formalized the notion of the

stochastic roadmap through the SRS framework. In a roadmap, quantitative information is asso-90

ciated with edges in the form of weights. Typically, such weights or costs capture the extent to

which the motion of a robot between the edge-connected vertices satisfies underlying constraints.

In a roadmap where vertices correspond to structures of a protein under investigation, these costs

can measure energetic differences and can be used to determine, for instance, the minimum-cost

path connecting two structures of interest. Seminal work by Amato and others15, 16 had already95

introduced the notion of probabilistic edges, realizing that edges connecting two vertices represent
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transitions between two neighboring structures in the structure/conformation space of a protein. In

Ref.,8 this idea was further developed, realizing that if structures were obtained via an MD simula-

tion at some temperature T , then the probability of an edge representing a transition from a vertex

u to a vertex v could be measured via the Boltzmann-related Metropolis criterion e−(E(v)−E(u))/(KB·T ).100

This realization allowed Apaydin, Latombe, and colleagues to see the clear connection between

the stochastic (probabilistic) roadmap of structures and an MSM, with vertices seen as states of the

MSM and edges between vertices in the roadmap as transitions between states in the MSM.

This analogy between the stochastic roadmap and an MSM also allowed seeing beyond the cal-

culation of minimum-cost paths. the analogy allowed treating the stochastic roadmap as a gener-105

ative model; hence, the naming of the SRS as a framework to simulate trajectories. Monte Carlo

(MC) trajectories could be obtained by simply generating sequences of states from the stochastic

roadmap. The correct estimation of transition probabilities was key not only to making the analogy

between the stochastic roadmap and an MSM but also to calculating kinetic measurements without

launching a single MD simulation.26
110

While it would not be an exaggeration to claim that the work in Ref.8 was a paradigm shift, the

impact of this work was largely confined to the community of robotics researchers working on

modeling protein dynamics with robotics-inspired methods. One possible reason was that further

formalization of statistics that could be extracted from an MSM was not provided. There was also

no detailed discussion of how one could reliably organize structures of the roadmap into structural115

states in the MSM. Other key questions remained unanswered, including how to associate credible

state-state transition probabilities when structures of the roadmap are not obtained via MD simu-

lation but via sampling-based methods that operate without a notion of a physical temperature.

The issue on extracting further information from MSMs that organize MD simulation data would

be explicitly addressed in the computational biology community by Pande, Amaro, Noe, Fischer,120

and others.27–32 The issue on how to extend the SRS-MSM analogy to settings where structures are

not obtained via MD simulations largely remains answered. One of the contributions of the work

we present here is to show how one can do so for specific protein systems where dense structural
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ensembles are obtained via effective non-MD, sampling-based methods.

Below we provide a review of methods originating in the computational biology community for125

modeling protein dynamics for the purpose of computing transition paths between structural states

relevant for function. This allows placing the proposed SRS-based method here and its contribu-

tions in a broader context.

2.2 MD and MSM-MD Methods for Modeling Protein Dynamics

Traditionally, protein dynamics is simulated via MD. MD trajectories are initiated from a structure130

of interest and conducted until either a time limit, a specified convergence criterion, or the goal

structure of interest has been reached; the second setting is expedited when the MD simulation

is biased to reach the goal structure within a more reasonable time budget. The biasing can be

achieved via different ways. One way is to modify the energy potential to include a penalty term

along a coordinate measuring the progress of the trajectory from the start to the goal structure. The135

issue with biased or steered MD simulations is that they modify the energy surface and can yield a

transition trajectory that does not correspond to the true one. For instance, the application of biased

MD to capture transitions of Ras between its active and inactive states yielded unrealistic, high-

energy structures.33 Work in34 introduces a different strategy to bias an MD simulation; specifically,

many MD trajectories are launched from a given start structure, but only relevant, productive MD140

trajectories are further grown; productive movements towards the goal structure are identified by

measuring the progress of a specific MD trajectory via RMSD to the given goal structure. Other

strategies to expedite an MD simulation elevate a deep basin corresponding to a stable structural

state so as to allow the simulation to cross an otherwise very high energy barrier. This strategy

is known as the accelerated MD method35 and has been applied to simulate transitions of Ras145

between its active and inactive states.7 While more realistic than biased MD, accelerated MD has

also been observed to occasionally get stuck in specific states, failing to report a transition.

An interesting complementary direction is not to rely on long MD trajectories but rather on short,

off-equilibrium MD trajectories, which can be simulated in parallel on large-scale, high-performance
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computing platforms. The structures from the various, short MD simulations are collected, clus-150

tered to identify structural states, and then embedded in an MSM. Transitions are trivially de-

termined. If a structure u obtained at time step t in a particular MD trajectory is followed by a

structure v at time step t +dt in the same trajectory, then a directed transition is noted from the state

to which u maps to the state to which v maps. The transition counts are tallied up and normalized

to associate probabilities with state-state transitions. By now, there are two widely-used software155

by MD researchers to embed structures in MSMs and analyze transitions. One is EMMA,36 and

the other is MSMBuilder.29

The availability of MSM software has allowed the proposal of MD-MSM methods for extracting

reliable kinetic information off MD trajectories simulating protein dynamics. MD-MSM methods

are widely employed to approximate the underlying folding dynamics of proteins,27–31 as well160

as model the kinetics of protein-ligand binding.32 Detailed reviews of MD-MSM methods for

modeling protein dynamics can be found in Refs.37, 38

MD-MSM methods can have a heavy computational footprint. In general, many MD trajectories

are needed to sample enough of the structure space so the MSM is ergodic and captures the rel-

evant dynamics of the system under investigation.31 In contrast, non-MD methods promise more165

reasonable computational budgets at the expense of some detail. We review these methods below.

2.3 Morphing and Chain-of-States Methods for Modeling Protein Dynamics

Non-detailed, mechanistic approaches focus on extracting functional modes.39–42 For instance, ge-

ometric morphing methods use the linear interpolation of each atom to construct a path between

two structures for which a transition is sought.43, 44 Trajectories based on linear interpolation do not170

necessarily represent actual transition paths.45 In response, several, non-linear morphing methods

have been developed that provide non-linear interpolations between the start and goal structures.

Work based on elastic, plastic network models (ENM, PNM), and their variants falls in this cat-

egory.46–55 Non-linear morphing methods rely on the assumption that macromolecules can be

treated as deformable elastic bodies, and the interatomic potential function can be represented by175
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harmonic-type models (ENMs, PNMs, and variants). These methods employ normal mode analy-

sis (NMA) of such models to obtain principal motions of a macromolecule about a local minimum.

Since, typically ENMs involve only a single energy minimum and are not immediately applicable

to model transitions, mixed ENMs (MENMs)50, 51 and other, related, ENM-based models have been

developed.49, 52–55
180

Some non-linear morphing methods based on ENMs, MENMs, and PNMs compute transitions

that are minimum-energy paths (MEP) in the energy landscape.49 This is achieved by employing

the CPR algorithm,12 which represents one of the earliest chain-of-states methods for modeling

transition paths.

Chain-of-states methods, such as the nudged elastic band (NEB) and string methods, rely on the185

assumption that a transition trajectory can be encoded as a series/chain of structures (also referred

to as a string of images).56–66 In these methods a string of images is created between the given start

and goal structures, and the images are relaxed to the transition trajectory.

While NEB-based methods assume the energy landscape is smooth, string methods do not. How-

ever, there are two drawbacks in string methods.190

First, their computational cost is high due to the multiple gradient calculations that need to be

performed on images located far away from the transition state. Methods are proposed to address

this issue, most notably by the Head-Gordon lab.67–70 In these methods, two strings are grown

independently, one from the start and another from the goal structure, until the strings meet.

A second drawback of string methods is their assumption that the flux associated with transition195

paths is very likely to be concentrated inside one or a few thin (reaction) tubes. This may not

be reasonable, particularly for complex macromolecules. To overcome such a limitation, string

methods and other chain-of-states methods are combined with enhanced sampling algorithms.71

The work presented here can be considered to rely on a similar combination. An algorithm with

enhanced sampling capability is used to obtain a broad view of the structure space relevant for200

the transition. Embedding structures in a connectivity structure (the roadmap) exposes several

paths. The CPR, a chain-of-state method, is then used to locally deform these paths to transition
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trajectories.

2.4 Contributions of this Work

By comparison to MD-MSM methods, realizations of SRS promise to be more efficient, as in205

principle they allow the structures embedded in the roadmap to be obtained from non-MD methods.

Drawing on the analogy between a stochastic roadmap and an MSM then promises to efficiently

extract kinetics-related measurements that can be valuable for the purpose of comparative analysis.

For instance, while no time scale information and thus no transition rates can be extracted when

structures are obtained via non-MD methods, other related, average statistics can be estimated.210

We employ one such statistic in this paper, the expected number of state-state transitions (edges)

connecting a start to a goal structural state. Comparison of this statistic between the WT and a

variant of a protein can provide valuable information on how a sequence mutation impacts the

transition of a protein between a reactant and a product state.

It is not exactly clear how to obtain an MSM, which is a kinetic model, from structures obtained215

via non-kinetic methods following an optimization process to sample local minima of a protein’s

energy landscape. In this paper, we provide the first steps in this direction. A non-MD algorithm

recently developed by us is particularly effective at obtaining dense, sample-based representations

of energy landscapes of small-to-medium proteins. Making use of such an algorithm, the work

proposed in this paper essentially addresses three key questions: (i) how to map sampled structures220

to structural states that become states of the MSM; (ii) how to determine which states transition to

which states; and (iii) how to associate credible probabilities with designated transitions.

We address the first question via clustering. Essentially, similar structures are grouped together in

a cluster. Clusters become states of the MSM. Clustering is also the way structures obtained via

MD simulations are grouped to identify states of an MSM in MD-MSM related work.225

We address the second question by exploiting the roadmap formalization. States of the MSM can

also be viewed as vertices of a roadmap. A state is connected to its k nearest neighbors in the

roadmap. Directed edges in the roadmap are then state-state transitions in the MSM.
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We address the third question by borrowing from the formalization of transition probabilities in

the SRS framework.8 However, as there is no notion of a physical temperature, we propose a rea-230

sonable protocol to define an effective temperature to associate Metropolis-based transition prob-

abilities with state-state transitions. This also requires associating an energy with a state based on

energies of the structures mapped to that state.

The roadmap formalization allows obtaining a minimum-cost path as a credible representative of

a transition trajectory. The MSM formalization allows obtaining interesting average statistics over235

all paths connecting two states of interest (protein dynamics is inherently stochastic). One such

statistic, the expected number of edges (direct state-state transitions), is particularly interesting.

In lieu of actual information on time scales and thus transition rates, comparison of the expected

number of edges in a transition between the WT and a variant sequence of a protein provides

similar information. We exploit such information here to propose mechanisms by which known240

mutations impact function in two proteins of central importance to human biology and health.

The work presented here essentially shows how to embed structures obtained via non-MD methods

in an MSM. This work is useful and can be seen as representing a meta approach to modeling

transitions in proteins. On one end, there are detailed, MD simulations. On the other end are

the harmonic-based and chain-of-states approaches focusing on extracting functional modes. The245

presented work sits in the middle. While different decisions can be made on each of the algorithmic

components that allow building an MSM over structures obtained from non-MD methods, the

proposed work shows one way to do so and can be regarded as a proof of concept.

3 Methods

The proposed method follows the SRS framework. Briefly, it proceeds in three stages. The first250

stage samples structures in the search space of interest and is described in Section 3.1. The second

organizes these structures into structural states as described in Section 3.2. The third embeds a

roadmap over the states and is described in Section 3.3. Once the roadmap is constructed, analysis

is conducted on it, as described in Section 3.4. Our analysis consists of path query and calculation
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of interesting statistics based upon the casting of the roadmap as an MSM. Given that no local255

planners are used in the construction of the roadmap, a path smoothing technique is designed and

described in Section 3.5 to provide more structural and energetic detail behind queried paths. We

now proceed to relate details.

3.1 Stage I: Sampling

One of the key challenges with adaptations of roadmap-based methods for molecular structure260

and motion computation lies in the sampling stage. Sampling needs to be dense and focus on the

relevant regions of the structure space. In this paper, we employ an evolutionary algorithm (EA) to

obtain a dense ensemble of structures representing local energy minima in the structure space of

interest. We provide an indication of the density of the ensemble in Section ??. Though a detailed

description of this EA is beyond the scope of this paper, we provide here a brief summary, focusing265

on its salient algorithmic ingredients.

EAs are investigated in detail in our lab in diverse protein modeling scenarios, including de novo

structure prediction72, 73 and protein-protein docking.74, 75 The EA we employ here has been re-

cently proposed9 to further populate the structure space of a protein for which many experimental

structures already exist in the Protein Data Bank (PDB).76
270

Briefly, the EA leverages the abundance of experimentally-available structures to define the struc-

ture space of interest in a lower-dimensional embedding. The algorithm relies on the principle of

conformational selection, also known as population shift, which allows understanding that struc-

tures caught as stable in the wet laboratory for different sequences of a protein are all populated,

albeit with different probabilities, by a given sequence. Hence, all experimentally-available struc-275

tures of a protein, whether for the WT or variant sequences, are present and possibly represent

stable and meta-stable states of a given sequence. This is precious, albeit incomplete, information

on the structure space of a protein sequence under investigation. The objective of the EA is to

exploit this information to further populate the structure space of a protein sequence.

The EA obtains a lower-dimensional embedding of the structure space of a given protein via Prin-280
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cipal Component Analysis of CA-traces (using only CA atoms to represent structures†) of all avail-

able structures for a protein. Note that when stripped down to CA atoms, structures are not specific

anymore to any given sequence of the protein under investigation. While PCA is generally not

guaranteed to be effective, the EA only proceeds if at least 50% of the variance can be captured

with the top two principal components (PCs). This is the case with the protein system we have285

chosen to investigate in this paper. The EA directly searches in the low-dimensional PC map of

m dimensions, ensuring that m PCs are sufficient to capture 90% of the variance in the original

structure data.

Starting with an initial population of p structures built on the experimentally-available ones, repro-

ductive operators are used to generate child structures (in a CA trace representation) from parents290

in the PC map, using sampled perturbations along the available PCs. A multiscaling reconstruction

procedure maps a child structure to an all-atom structure representative of a local energy minimum.

It is this procedure that makes structures generated by the EA specific to a protein sequence under

investigation. In summary, the procedure first reconstructs a backbone from the CA trace of a

child, adds side chains, and then minimizes the entire resulting all-atom structure using the Rosetta295

relax protocol (keeping backbone heavy atoms fixed). This procedure ensures that structures ob-

tained by the EA are minima of the all-atom Rosetta score12 energy function77 of a given protein

sequence under investigation. The resulting minima structures compete with neighboring parents

based on their energies, and p winners become parents of the next generation. This proceeds for a

certain number g of generations.300

It is worth noting that searching in a PC-based embedding and making use of multiscaling have

been previously analyzed in detail in the context of a robotics-inspired (tree-based) search al-

gorithm,78 and these components are integrated in the recently proposed EA9 we employ in the

sampling stage here. The ensemble Ω of structures fed to stage II of the SRS-based method in this

paper consists of all the populations of local minima obtained by the EA across all its g generations305

for a protein sequence at hand.

†a CA atom is the principal, backbone carbon atom in an amino acid

12



3.2 Stage II: Organizing Structures into Structural States

The ensemble Ω potentially contains many structures that are geometrically similar to one another.

Therefore, in this stage, the structures in Ω are grouped into structural states both to remove redun-

dancy and to allow constructing a roadmap over these states that can then be treated and analyzed as310

a Markov state model. We employ a simple unsupervised clustering algorithm, leader clustering,79

to efficiently group structures into states. That is, a structural state is a cluster.

The leader clustering algorithm has the benefit of not having to specify the number of clusters/states

a priori. Its results are dependent on the order in which the data is processed. In this paper, we use

a sorted order, ordering first all the structures in the Ω ensemble by their Rosetta energies. This315

ordering allows the first structure mapped to a new cluster to be the lowest-energy structure over

all others that will be mapped to that same cluster. The algorithm proceeds in the sorted order,

mapping a structure to one of the existing clusters if its distance to the cluster representative is

below a specified cluster radius. Otherwise, a new cluster is created with the unmapped structure

as its representative. The algorithm proceeds until all structures have been processed, resulting in320

a list of C1, . . . ,Cl clusters/states. The decision on what distance function to use is important. Here

we employ least Root Mean Squared Deviation (lRMSD), which is a popular dissimilarity measure

to compare protein structures.80 We do so over only CA atoms of a structure; that is, we use CA

lRMSD. We experiment with different values of cluster radii, as presented in Section ??.

3.3 Stage III: Roadmap Construction325

Roadmap construction proceeds over the identified clusters. The roadmap is encoded as a weighted

directed graph G = (V, E). A vertex v ∈ V is created for each of the clusters identified in stage II;

that is, vertices encode states over the sampled structure space. Edges are added to the roadmap

as follows. Each vertex is connected to up to knn of its nearest neighbors that are within an εnn

CA lRMSD of v. Since vertices correspond to structural states/clusters, the lRMSD comparison is330

conducted between the cluster representatives. When a vertex u is deemed to be a neighbor of v
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that passes the knn and εnn criteria, two edges are added to the roadmap, (u, v) and (v, u). To improve

the connectivity of the roadmap, a final pass across all connected components is performed, adding

an edge when the two components can be merged (subject to the same εnn CA lRMSD constraint).

Edges are weighted based on the energetic difference between the states the vertices they connect335

encode. For a directed edge (u, v), its weight Puv measures the probability of a direct transition

from u to v. We assign edge weights following closely the original formulation of the SRS in

Ref.,8 per the following equations:

Puv =


(1/|Nu|) · e−∆Euv/α if ∆Euv > 0

1/|Nu| otherwise

Puu = 1 −
∑
u,v

Puv

For each vertex v, |Nv| represents the number of outgoing edges from v excluding the edge back340

to itself. The e−∆Euv/α factor is a Boltzmann-related factor that mimics the Metropolis criterion for

accepting the energetic transition from state u to state v. Note that ∆Euv = E(v)− E(u), where E(u)

and E(v) are the energies of the structures corresponding to vertices u and v, respectively. There are

two important decisions that need to be made. First, since vertices here encode structural states,

how is the energy of a state measured? Second, how is a reasonable value for the α parameter345

estimated? Our specific choices for these two design decisions are important adaptations of the

original SRS formulation on weighting directed transitions.

3.3.1 Energy of a State

Theoretically, if the states correspond to energetic states, one should measure E(u) as the free en-

ergy F of the state u. This can be estimated, in theory, as F(u) = 〈E〉u − α · ln(|Cu|), where 〈E〉u350

captures the average energy over all structures in the state u, and |Cu| measures the number of

structures in u. However, in practice, an accurate estimate requires a theoretically-sound definition

of a state. By employing clustering to define states as clusters, as we do in this work, one cannot

guarantee energetic homogeneity in addition to structural homogeneity of a deemed cluster/state.
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The distinction is important, as a rigorous calculation of pseudo-free energy requires that the aver-355

age energy 〈E〉u of a state u be descriptive of the distribution of energies of the structures mapped

to u. Clustering based on structural similarity cannot make such guarantees. Potential alternative

groupings of structures may include finer clustering by considering energetic similarity in addi-

tion to structural similarity. However, this introduces even more parameters that need to be set to

determine such similarity and our own work indicates that the results are not more accurate than360

associating with each cluster the lowest-energy over structures mapped onto it. In this paper, we

associate with a cluster/state the energy of the cluster representative, which is the lowest-energy

structure in a cluster due to the energy-sorted order in which structures are processed in the clus-

tering algorithm described above.

3.3.2 Weighting of Edges in the Roadmap:365

Effective Temperature as a Scaling Parameter

The parameter α replaces the KB · T term that scales the energetic difference between two states

in Ref.8 This is necessary, as the EA employed to obtain structures here is not an MD-based algo-

rithm and thus does not make use of any physical temperature. Typically, in MD simulations, the

simulation is conducted at a chosen temperature. When studying transitions, equilibrium (room)370

temperature is specified. In the non-MD setting in this paper, there is no physical meaning for

temperature. In addition, employment of a physical temperature assumes an energy function with

units of kcal/mol. Instead, one of the functions employed in this paper combines physics-based

terms with knowledge-based ones. In particular, the Rosetta score12 energy function used by the

EA is a hybrid function in Rosetta Energy Units. As a result, the KB ·T term needs to be adapted if375

a Metropolis-like criterion is to be employed to determine the probability of a transition between

two edge-connected states/vertices.

So, we rewrite here the Boltzmann-related probability as e(−δE/α), where α is an energy-scaling

parameter in energy units. Determining the value for α is an important decision. A high value

results in high transition probabilities even for large δE values; the transition crosses large energetic380
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barriers. A low value makes it unlikely that the transition will cross large energetic barriers. Since

α directly determines the magnitude of the energetic barrier crossed by a transition, this parameter

can be seen as a knob to scale an energy barrier between two states; hence, the designation as a

scaling parameter.

A decision on a meaningful value for α is critical to the accuracy of any analysis on lowest-cost385

paths or average statistics. In other works, an initial value for α is set arbitrarily and then updated

in a reactive scheme to allow MC simulations and other robotics-inspired exploration to balance

between crossing energy barriers and drilling down energy basins.81, 82 In this paper, we propose

a novel protocol to assign a reasonable value to α. The protocol is based on analysis on what

energetic barriers a system can easily jump as an indirect way of associating an effective (note, not390

physical) temperature parameter.

The analysis is based on statistical mechanics. We measure the energetic variance over structures

that the Rosetta score12 energy function reports to be in the same energy basin. The assumption

is made that a system should readily exchange/diffuse between structures in a basin within thermal

vibrations. We restrict the analysis over the distribution of structures obtained by the Rosetta relax395

protocol when minimizing the same crystal structure many times to map the depth of a basin.

The relax protocol is based on simulated annealing, so different structures can be obtained, thus

providing a view of the basin where the Rosetta energy function maps a given crystal structure.

We conduct this analysis various times, over different crystal structures and observe the energetic

variance in δEbasin; the basin depth δEbasin is recorded as the difference between the maximum400

and minimum energies obtained with the relax protocol. We note that such analysis is protein-

dependent and needs to be conducted separately on each protein systems studied in order to find a

reasonable value for α for each system.

Based on a statistical mechanics treatment, structures in the same basin should exchange into one

another with high probability. Let us refer to this probability as a target probability tprob. Rather405

than directly setting values for α, we derive α based on a user-defined value for tprob. Given tprob,

α is derived by solving the equation e−δEbasin/α = tprob; so, α = −δEbasin/ln(tprob). This formulation
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supports α → ∞ as tprob → 1, which means that a probability of acceptance of 1, which allows

exchange between any two structures regardless of their energetic difference, corresponds to a very

high temperature; in contrast, for a given δEbasin, lower exchange probabilities give smaller negative410

values for the denominator, which result in smaller values for α (analogous to lower temperatures).

We note that the actual value for α is also dependent on the energy function employed and requires

that a target probability be specified a priori, but the process outlined here is general.

3.3.3 Construction of Lazy Stochastic Roadmap

Each edge in the stochastic roadmap G now encodes a potential transition between two structural415

states. In this work, we employ a “lazy” strategy that avoids the computation of these transitions

and instead focuses on the global connectivity. This has some similarities to the Lazy PRM.83

We note, however, that foregoing a local planner is made possible here because of the stringent

criterion of structural proximity εnn when considering connecting two vertices via an edge. This in

itself exploits the dense structural sampling afforded by the EA employed in stage I.420

We note that, by construction, G consists of a set of strongly connected components (SCCs);

when εnn = ∞, G consists of a single SCC. As demonstrated in Ref.,8 a random walk in G can

be interpreted as a discretized version of a Monte Carlo trajectory. More importantly, various

analyses can be conducted over the roadmap to obtain path-ensemble averages without launching

Monte Carlo simulations, as the roadmap encodes multiple such trajectories.425

3.4 Roadmap Analysis

Treating the constructed stochastic roadmap as a graph allows using path search algorithms to

obtain paths connecting structural states of interest. Treating the roadmap as a Markov state model

allows using transition state theory to obtain measurements approximating kinetic quantities of

interest.430
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3.4.1 Querying the Roadmap

As demonstrated in the original proposal of the PRM method in Ref.,13 the roadmap can be queried

given two states of interest. Dijkstra’s algorithm can be used to obtain a shortest path. Here, edges

are weighted by the probabilities of transition. The negative logarithms of these probabilities can

be employed to obtain a minimum-cost path. In addition to such a path, more information can435

be obtained by analyzing not just one path but several. Yen’s K-shortest paths algorithm84 can be

employed for this purpose.

3.4.2 Treating the Roadmap as a Markov State Model

The roadmap G can be treated as a Markov state model encoding the stochastic behavior of the

system being studied. In this paper, we use the roadmap to model the structural transitions between440

functionally-relevant states of a protein and understand how these transitions are affected by se-

quence mutations. For this purpose, the roadmap G is analyzed to determine the expected number

of edges across all transition paths allowing a protein to switch from one structural state to another.

Recall that structural states are vertices in the vertex set V in our roadmap G. For each vertex

vi ∈ V , one can utilize first-step analysis theory to measure the expected number of edges ti from445

vertex vi to some specific vertex of interest. As demonstrated in Ref.,8 random walks need not

be performed to obtain such a measure, as a closed-form solution can be computed via a linear

solver. The formulation of ti is recursive. Let us generalize and state that the goal is to measure the

expected number of edges from some vertex vi to a set of vertices v j ∈ A, where A is a subset of V

that does not include vi (A is in an SCC). Then, provided that vi and A are in the same SCC:450

ti = 1 +
∑

v j∈A Pi j · 0 +
∑

v j<A Pi j · t j ∀ vi < A

This results in a system of equations that is the same order as the number of vertices in the SCC

containing the functionally-relevant states of interest in the roadmap. Since clustering of structures

into structural states reduces the number of vertices in the roadmap, an exact solver (as opposed
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to a slow-converging iterative solver) can be afforded, and that is what we employ in this paper to

solve the linear system above algebraically and obtain ti for all the vertices simultaneously.455

In this paper, we are specifically interested in measuring the expected number of edges across

all present transition paths from a given structural state to another given structural state. Such

states may be critical to the ability of a protein to function normally. By repeating the sampling,

clustering, roadmap construction, and analysis on different sequence variants, we are then able

to compare the expected number of edges in transitions between two states of interest in the WT460

versus disease-participating variants of a protein of interest.

3.5 Path Smoothing and Analysis

The path smoothing procedure we employ is an adaptation of the conjugate peak refinement (CPR)

algorithm originally introduced in Ref.12 Briefly, CPR produces a series of intermediate confor-

mations to approximate a potential reaction path between two given (start and goal) conformations465

p and r. The initial guess of the path is a straight line interpolation between p and r. We en-

sure in our adaptation that the distance between two consecutive conformations in the straight line

interpolation does not exceed a parameter l. The original CPR algorithm is illustrated in Fig. 1.

In the original CPR algorithm, the highest-energy conformation is identified among the ones result-

ing from the interpolation. Instead, in our adaption, we identify the conformation xq that represents470

the largest jump in energy between two adjacent conformations in the current straight line path.

This conformation is then minimized to obtain x∗q. This results in two path segments, [p x∗q] and

[x∗q r]. The process now repeats to identify (and then minimize) the conformation representing

the largest energetic jump over the existing path segments continues until the series of resulting

conformations from this procedure are energetically feasible.475

Energetic feasibility is evaluated as follows. A short Markov chain is constructed, where states

correspond to the conformations (existing structures and new ones produced by CPR). Adjacent

states in the chain are connected and probabilities are assigned utilizing the Metropolis criterion

described earlier. In this way, the CPR chain of structures can be regarded as a Markov chain, and a
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Fig. 1: A cartoon example of the CPR algorithm. The energy surface is projected on two hypothetical
collective variables. The left panel shows the initial interpolated path in blue, with the highest energy
conformation shown in red. This conformation undergoes an energy minimization, resulting in the blue
point. A new path is now constructed via the blue point. The right panel illustrates the next iteration of
the algorithm.
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random walk can be performed over the chain (in this work, of length 1000). If the end of the path480

is reached at any point during this walk, the path is deemed energetically acceptable. Otherwise,

application of CPR continues in order to identify more intermediate conformations as described

above.

In its original form, CPR requires an energy function that is continuous and for which the first

derivative can thus be defined. As an alternative, we employ Rosetta’s relax protocol, which per-485

forms a simulated-annealing minimization after adding side chains to backbone-resolution confor-

mations. In our employment of the Rosetta relax protocol, we constrain the movement of backbone

atoms so the minimized conformation x∗q lies nearby the one prior to minimization xq. The pseudo-

code of the algorithm is shown in Algorithm 1.

We make use of CPR as follows. A path returned from a query on the stochastic roadmap is490

realized by having the endpoints of each of its edges supplied as input to CPR. Since CPR is an

interpolation-based algorithm, we set its termination criterion to be a resolution of `Å , where ` is

the minimum distance between two consecutive structures produced by CPR.

We note that CPR is related to an interpolation-based path planner. However, the interpolation is
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Algorithm 1 The Conjugate Peak Refinement algorithm12

Input:
Function states Cs,Ct

ε, interpolation interval
Output: Path Cs,C1,C2, ....,Cn,Ct

1: P← InterpolateInitialPath(ε)
2: while Time AND EnergyOK = FALSE do
3: H ← SelectHighDeltaEnergy(P)
4: HMin ←Miniimize(H)
5: P← SegmentPath(P,H,HMin,ε)
6: end while

not over the straight line connecting two structures, as described above. We only employ CPR495

not to realize each edge in the roadmap but instead to provide more energetic and structural detail

with a low-cost path extracted from the lazy stochastic roadmap. Moreover, we elect to deem it

a path smoothing algorithm in order to retain analogies with path smoothing algorithms in algo-

rithmic robot motion planning, where such algorithms are often used to improve the satisfaction

of present constraints in a computed path. CPR maps a high-energy intermediate structure into a500

local minimum. As a result, intermediate motions better satisfy the present energetic constraints.

3.6 Implementation Details

The method is implemented in C++. The EA in the sampling stage runs for g=100 generations,

with p=500 structures in a population. Thus, the ensemble of structures Ω fed to the clustering

stage contains 50, 500 structures. It takes 48 days of CPU time on a single 2.66 GHz Opteron505

processor with 24 GB of memory to obtain this ensemble. Various cluster radii are investigated in

the clustering stage. For the results shown in this paper, a cluster radius of 0.35Å is used to provide

a compromise between a reduction in the number of clusters and structural homogeneity within a

cluster. The clustering stage takes approximately 7 hours of CPU time. Parallelizing reduces the

run time to just under 45 minutes on a 64 core AMD Opteron processor with 542 GB of memory.510

This same hardware is used to perform the roadmap construction and analysis, which each execute

in approximately 60 minutes. While various values for knn and enn are investigated for how they

affect connectivity, the results related here are obtained with knn=30 for SOD1 and knn=20 for Ras.
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The value for εnn is 0.65Å for both systems of study. We note that the selection of this value for

εnn is slightly less than twice the cluster radius. In determining a reasonable value for the effective515

temperature α per the process described above, we err here on the conservative side and set tprob

to 0.25. In the CPR-based path smoothing algorithm, we set l to be 0.3Å.

4 Conclusion

This paper has proposed an efficient realization of the SRS framework to model structural tran-

sitions in dynamic proteins involved in proteinopathies. Central to the ability of the method to520

capture the connectivity of the thermodynamically-available structure space of a protein in this

paper is the employment of a powerful evolutionary algorithm in the sampling stage. Organiza-

tion of sampled structures into structural states and lazy evaluation of edges in the roadmap are not

only critical to computational efficiency but also important to treat the resulting stochastic roadmap

as an MSM. The latter allows employing calculations based on transition state theory to estimate525

transition rates between structural states of interest.

Given that the method does not employ MD, no timescale information can be extracted from the

roadmap. However, important statistics, such as expected number of transitions between two states

provide indirect estimates of kinetics-related measurements, such as transition rates. A higher

expected number of transitions relates to a lower transition rate, whereas a low expected number530

of transitions relates to a higher transition rate. Under such relationship, while statistics obtained

from analysis of the roadmap are not meaningful as absolute measurements, they are precious

in a comparative setting, where the goal is to compare transition rates between WT and variant

sequences of a protein to elucidate the impact of mutations on protein function.

In particular, application of the proposed method in a comparative setting to model and com-535

pare transitions in the WT and selected variants of two important proteins, SOD1 and Ras, shows

promising results. The method is able to provide a structural basis for how mutations affect protein

function. Analysis of results obtained when employing different energy functions indicates that

reliable conclusions can be reached that are not dependent on a specific energy functions.
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The work presented here constitutes a first step into obtaining a better understanding of the role540

of structure in the complex relationship between protein sequence and function in the healthy and

diseased cell. Unraveling the mechanisms of oncogenic mutations is stated as a critical element

in genetics-based decision-making in cancer treatments.85 Mechanistic insight into the conforma-

tional behavior of molecules in isolation and complex may provide a foundation for the structural

basis of cancer decisions. Such insight may be valuable, for instance, for exposing novel allosteric545

sites for lead generation.86 Elucidating transient structures may facilitate the design of small lig-

ands to stabilize these structures and so decrease the pool of activated proteins through a population

shift mechanism.5

Future work will continue to investigate the algorithmic richness of the SRS framework in order to

improve both accuracy and efficiency in protein structure modeling for the purpose of unraveling550

the role of protein structure and energetics in proteinopathies. Particular directions to investigate

include extending applicability to longer protein systems with potentially larger structural transi-

tions. The measurement of pseudo-free energies is also worth investigating, but this will require

investigation of the definition of a state to ensure its usefulness for extracting reliable statistics.

Finally, the balance between spending computational resources to obtain a global albeit coarse555

view of state connectivity vs. a local but detailed view afforded by often expensive local planners

is a worthy issue for investigation. Directions in algorithmic robotics that shift the focus from

obtaining an ensemble paths a priori to path sampling on demand, as in fuzzy PRM, may prove

useful in this direction. A preliminary investigation of such approaches is available in Ref.,87 but

further work is needed to exploit the analogies with MSMs that have proven so useful in this paper560

in extracting summary statistics for structural transitions in proteins.

Acknowledgement

Many of these experiments were run on ARGO, a research computing cluster provided by the

Office of Research Computing at George Mason University, VA (URL: http://orc.gmu.edu). Fund-

ing for this work is provided in part by the National Science Foundation (Grant Nos. 1421001,565

23



1440581, and CAREER Award No. 1144106) and the Thomas F. and Kate Miller Jeffress Memo-

rial Trust Award.

References

1. K. Jenzler-Wildman and D. Kern. Dynamic personalities of proteins. Nature, 450:964–972,

2007.

2. C. B. Anfinsen. Principles that govern the folding of protein chains. Science, 181(4096):223–

230, 1973.

3. C. Soto. Protein misfolding and neurodegeneration. JAMA Neurology, 65(2):184–189, 2008.

4. D. D. Boehr, D. McElheny, J. Dyson, and P. E. Wright. The dynamic energy landscape of

dihydrofolate reductase catalysis. Science, 313(5793):1638–1642, 2006.

5. D. D. Boehr, R. Nussinov, and P. E. Wright. The role of dynamic conformational ensembles

in biomolecular recognition. Nature Chem Biol, 5(11):789–96, 2009.

6. A. Fernández-Medarde and E. Santos. Ras in cancer and developmental diseases. Genes

Cancer, 2(3):344–358, 2011.

7. B. J. Grant, A. A. Gorfe, and J. A. McCammon. Ras conformational switching: Simulating

nucleotide-dependent conformational transitions with accelerated molecular dynamics. PLoS

Comp Biol, 5(3):e1000325, 2009.

8. M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J.-C. Latombe. Stochastic roadmap

simulation: an efficient representation and algorithm for analyzing molecular motion. J. Comp.

Biol., 10(3-4):257–281, 2003.

9. R. Clausen and A. Shehu. A multiscale hybrid evolutionary algorithm to obtain sample-based

representations of multi-basin protein energy landscapes. In ACM Conf on Bioinf and Comp

Biol (BCB), pages 269–278, Newport Beach, CA, September 2014.

24



10. R. A. Conwit. Preventing familial ALS: a clinical trial may be feasible but is an efficacy trial

warranted? J Neurol Sci, 251(1-2):1–2, 2006.

11. Antoine E. Karnoub and Robert A. Weinberg. Ras oncogenes: split personalities. Nature

Reviews Molecular Cell Biology, 9:517–531, 2008.

12. S. Fischer and M. Karplus. Conjugate peak refinement: an algorithm for finding reaction paths

and accurate transition states in systems with many degrees of freedom. Chemical Physics

Letters, 194(3):252–261, June 1992.

13. L. E. Kavraki, P. Svetska, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for path

planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom., 12(4):566–

580, 1996.

14. A. P. Singh, J.-C. Latombe, and D. L. Brutlag. A motion planning approach to flexible ligand

binding. In R. Schneider, P. Bork, D. L. Brutlag, J. I. Glasgow, H.-W. Mewes, and R. Zimmer,

editors, Proc Int Conf Intell Sys Mol Biol (ISMB), volume 7, pages 252–261, Heidelberg,

Germany, 1999. AAAI.

15. G. Song and N. M. Amato. A motion-planning approach to folding: From paper craft to

protein folding. Technical Report TR00-001, Department of Computer Science, Texas A & M

University, January 2000.

16. N. M. Amato, K. A. Dill, and G. Song. Using motion planning to map protein folding land-

scapes and analyze folding kinetics of known native structures. J. Comp. Biol., 10(3-4):239–

255, 2002.

17. G. Song and N. M. Amato. A motion planning approach to folding: From paper craft to protein

folding. IEEE Trans. Robot. Autom., 20(1):60–71, 2004.

18. S. Thomas, G. Song, and N. M. Amato. Protein folding by motion planning. J. Phys. Biol.,

2(4):148, 2005.

25



19. S. Thomas, X. Tang, L. Tapia, and N. M. Amato. Simulating protein motions with rigidity

analysis. J. Comput. Biol., 14(6):839–855, 2007.

20. L. Tapia, X. Tang, S. Thomas, and N. Amato. Kinetics analysis methods for approximate

folding landscapes. Bioinformatics, 23:i539i548, 2007.

21. X. Tang, S. Thomas, L. Tapia, D. P. Giedroc, and N. Amato. Simulating rna folding kinetics

on approximated energy landscapes. J. Mol. Biol., 381(4):1055–1067, 2008.

22. L. Tapia, S. Thomas, and N. Amato. A motion planning approach to studying molecular

motions. Communications in Information Systems, 10(1):53–68, 2010.

23. M. Moll, D. Schwartz, and L. E. Kavraki. Roadmap methods for protein folding. Methods

Mol. Biol., 413:219–239, 2008.

24. K. Molloy and A. Shehu. A probabilistic roadmap-based method to model conformational

switching of a protein among many functionally-relevant structures. In Intl Conf on Bioinf

and Comp Biol (BICoB), Las Vegas, NV, 2014.

25. A. Shehu. Probabilistic search and optimization for protein energy landscapes. In S. Aluru

and A. Singh, editors, Handbook of Computational Molecular Biology. Chapman & Hall/CRC

Computer & Information Science Series, 2013.

26. T. H. Chiang, D. Hsu, and Latombe. J. C. Markov dynamic models for long-timescale protein

motion. Bioinformatics, 26(12):269–277, 2010.

27. N. Singhal, C. D. Snow, and V. S. Pande. Using path sampling to build better markovian state

models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. J.

Chem. Phys., 121(1):415–425, 2004.

28. K. A. Beauchamp, D. L. Ensign, R. Das, and V. S. Pande. Quantitative comparison of villin

headpiece subdomain simulations and triplettriplet energy transfer experiments. Proc. Natl.

Acad. Sci. USA, 108(31):12734–12739, 2011.

26



29. K. A. Beauchamp, G. R. Bowman, T. J. Lane, L. Maibaum, I. S. Haque, and V. S. Pande.

MSMBuilder2: Modeling conformational dynamics at the picosecond to millisecond scale. J

Chem Theory Comput, 7(10):3412–3419, 2011.
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