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ABSTRACT

Proteins often undergo slow structural rearrangements that involve several angstroms and

surpass the nanosecond timescale. These spatio-temporal scales challenge physics-based

simulations and open the way to sample-based models of structural dynamics. This paper

improves understanding of current capabilities and limitations of sample-based models of

dynamics. Borrowing from widely-used concepts in evolutionary computation, the paper

introduces two conflicting aspects of sampling capability and quantifies them via statistical

(and graphical) analysis tools. This allows not only conducting a principled comparison of

different sample-based algorithms but also understanding which algorithmic ingredients to

use as knobs via which to control sampling and in turn the accuracy and detail of modeled

structural rearrangements. We demonstrate the latter by proposing two powerful variants of

a recently-published sample-based algorithm. We believe this work will advance adoption of

sample-based models as reliable tools for modeling slow protein structural rearrangements.

Key words: Protein modeling; structural rearrangements; energy landscape; sample-based model;

sampling capability.

1. INTRODUCTION

Decades of research in molecular biology have demonstrated that proteins undergo both fast vibra-

tions and slow structural rearrangements that allow them to access different three-dimensional (3d)

structures with which they then interact with molecular partners in the cell and so modulate their

biological functions (Boehr et al., 2009). The slow structural rearrangements can bridge structures
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many angstroms (Å) apart and surpass the nanosecond timescale. These scales challenge both

wet- and dry-laboratory techniques (Russel et al., 2009). In particular, physics-based simulations,

where one follows atomic motions via iterative application of Newton’s second law of motion on

a finely-discretized time scale (Amaro and Bansai, 2014), add a factor of 106 to the computational

time over the physical time needed to observe a slow structural rearrangement (Maximova et al.,

2016b). Currently, even computational strategies to enhance sampling in physics-based simula-

tions, including utilization of distributed, high-performance computing platforms, cannot reveal

the slow dynamics on medium-size proteins 100−300 amino-acids long (Maximova et al., 2016b).

Sample-based models of dynamics utilize the concept of the energy landscape, which organizes

structures of a molecule by their potential energies, thus exposing basins (long-lived, thermody-

namically stable and semi-stable structural states) and energy barriers separating basins (Okazaki

et al., 2006). Such models seek a series of samples (structures) that allow a protein to diffuse

between the basins housing the endpoints (structures) of a structural rearrangement under investi-

gation. The energy landscape is multi-dimensional and contains many different routes that realize

a structural rearrangement of interest (Becker and Karplus, 1997). The fastest route is the one

crossing over the fewest and lowest barriers, a concept captured in the “work done” as a protein

“goes over hills” in the landscape. Weights can be used to encode the energetic cost of diffusions

between nearby structures, and summing up the weights provides a total cost for a structural rear-

rangement. Sample-based algorithms seek the series of structures (path) that mediate a structural

rearrangement and do so with the lowest total cost.

This paper focuses on algorithms inspired from robot motion planning, but the investigation and

tools proposed here apply generally to any algorithm that constructs sample-based models of struc-
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tural dynamics. The challenge in all sample-based algorithms lies in how to focus sampling of a

multi-dimensional energy landscape on the regions of relevance for a sought structural rearrange-

ment, as such regions are not known a priori. The biased and invariably non-uniform sampling

can be non-trivial to expose. In sample-based algorithms that embed samples (computed struc-

tures) in a nearest-neighbor graph, a sample will be connected via edges to its k closest neighbors.

The choice of k can mask away scarcely-sampled regions. Path queries will be answered, but the

obtained paths are unlikely to be physically realistic. An edge in a path may effectively “draw a

tunnel” through a barrier if the algorithm has failed to sample the barrier. Similarly, an edge can

“draw a bridge” between two barriers if the algorithm has failed to sample the separating basin.

Limited sampling is a characteristic of all sample-based algorithms seeking optima of an objective

function Shehu (2010, 2013). In this paper, we draw from stochastic optimization research under

the umbrella of evolutionary computation to understand, evaluate, and control sampling capabil-

ity in terms of the exploration-exploitation trade-off. We do so on a state-of-the-art sample-based

(robotics-inspired) algorithm and show how its ingredients contribute to exploration or exploita-

tion. We then demonstrate how specific ingredients can serve as knobs to enhance both explo-

ration and exploitation, resulting in two new, more powerful variants of the baseline algorithm. We

present statistical (and graphical) analysis tools to quantify and compare the exploration and ex-

ploitation capability of the algorithms. Since our focus is specifically on sample-based algorithms

that model structural rearrangements, we also demonstrate how to evaluate path quality and so

discern the performance of an algorithm in this regard. The analysis is presented on two medium-

size, functionally-diverse proteins of importance to human biology and health. We conclude this

paper by highlighting novel biological insights that can be drawn from the proposed algorithms on

the structure-function relationship in these two proteins. We believe that the presented work is of
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use to computational researchers interested in advancing the state and adoption of sample-based

models of protein structural dynamics as reliable tools for in-silico biological discoveries.

2. Related Work

In sample-based robot motion planning, a path is sought connecting a start to a goal configura-

tion in the feasible robot configuration space (Choset et al., 2005). Borrowing from mechanistic

analogies, robotics-inspired sample-based algorithms seek a lowest-cost path connecting a start

(protein) structure to a goal structure. These algorithms essentially organize Monte Carlo walks

in trees or graphs/roadmaps that constitute structured representations of the energy landscape of a

protein of interest. Such representations readily yield one or more paths connecting given start and

goal structures. Tree-based algorithms build a partial representation of the energy landscape that

corresponds to a local view of the landscape which may miss the lowest-cost path. For this reason,

the attention in this paper is on roadmap-based sample-based algorithms and specifically, on the

recent SoPriM algorithm that represents a state-of-the-art roadmap-based algorithm (Maximova

et al., 2015, 2016c) (though the techniques presented here apply generally to any sample-based

algorithm). Roadmap-based algorithms have a higher likelihood of capturing low-cost paths, but

the non-local view of the landscape (encoded in the roadmap/graph connecting nearby samples via

edges) comes at a higher computational cost. The bulk of the time is spent on generating many

structures to provide the non-local view, i.e., on sampling.

Research on robotics-inspired sample-based algorithms is growing (Singh et al., 1999; Amato

et al., 2002; Thomas et al., 2005, 2007; Jaillet et al., 2008; Tang et al., 2008; Tapia et al., 2007;

Chiang et al., 2007; Tapia et al., 2010; Haspel et al., 2010; Jaillet et al., 2011; Shehu and Olson,
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2010; Molloy et al., 2013; Al-Bluwi et al., 2013; Molloy and Shehu, 2013; Devaurs et al., 2015;

Molloy and Shehu, 2016; Molloy et al., 2016), in part due to the outstanding challenge of limited

sampling. While a review is beyond the scope of this paper (we refer the interested reader to (Shehu

and Plaku, 2016) for a review), it is important to expose the main ingredients in these algorithms.

2.1. Initialization

Sample-based algorithms make use of known structures of a protein of interest. Some use only

the start and goal structures of a structural rearrangement of interest (Jaillet et al., 2011; Haspel

et al., 2010; Molloy and Shehu, 2013; Al-Bluwi et al., 2013; Devaurs et al., 2015), whereas others

exploit additional structures (Maximova et al., 2015; Molloy and Shehu, 2015, 2016; Maximova

et al., 2016c). The amount and relevance of the initial structural information is key to the sampling

capability. We demonstrate in Section 3 that it can be the most important ingredient to control

sampling and in turn the quality of modeled structural rearrangements.

Initialization in SoPriM: In the SoPriM algorithm that we employ as a baseline to evaluate, and

improve sampling capability, many structures of a protein are collected from the Protein Data

Bank (PDB) (Berman et al., 2003). The collection includes structures reported not just for the

protein sequence of interest but also for variants no more than 3 mutations away from the target

sequence. The collected structures threaded onto the target sequence and are subjected to SCWRL

4.0 (Krivov et al., 2009) to pack in the side chains at the mutated sites. A standard Amber14

minimization protocol (consisting of steepest descent and conjugate gradient descent steps) is then

used to to map the structures into minima of the Amber ff14SB energy function (with implicit

solvation) Case et al. (2015). The interested reader is directed to work in Maximova et al. (2016c)

on the SoPriM algorithm for details of the minimization protocol. According to the conforma-
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tional selection/population shift principle (Boehr et al., 2009) that has been reported to regulate

the structure-function relationship in proteins (Nussinov and Wolynes, 2014), mutations change

the probability (which is related to their energetics) with which structures are populated at equi-

librium; that is, structures collected for a variant may be semi-stable or, at worst, high-energy for

the sequence of interest, but they are precious seeds to initialize a non-local view of the energy

landscape for any sample-based algorithm.

2.2. Beyond Initialization

All sample-based algorithms grow the ensemble of structures that they maintain beyond those pro-

vided by the initialization. A key decision concerns the representation of a molecular structure,

which determines both the dimensionality of the space in which the algorithm searches for paths,

as well as the ease of design and effectiveness of mechanisms to generate new structures. As

the review in Shehu and Plaku (2016) details, one uses representations based on cartesian coor-

dinates or dihedral angles. Fewer dihedral angles are needed to represent a molecular structure

than cartesian coordinates; yet, hundreds of dihedral angles can be defined on medium-size pro-

teins of 100 − 200 amino acids. Other work has explored the employment of variables that encode

collective atomic motions via normal mode analysis of a single structure (Al-Bluwi et al., 2013)

or principal component analysis (PCA) of a set of structures (Clausen and Shehu, 2015; Clausen

et al., 2015; Maximova et al., 2015). In SoPriM, the PDB-collected structures are stripped down

to their alpha-carbon atoms and subjected to PCA; the top m eigenvectors/principal components

(PCs) that cumulatively capture more than 90% of the variance are employed as variables/axes of

the search space. When PCA is effective, m provides an over ten-fold reduction over the num-

ber of dihedral angles. Samples in SoPriM are m-dimensional points in the space of the m PCs.
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Like other algorithms that employ reduced representations of molecular structures, SoPriM uses a

transformation to convert each sample into an all-atom structure (Maximova et al., 2015, 2016c).

Once variables have been selected, a mechanism is needed to to obtain more samples than those

provided by the initialization. Early on, new samples were obtained uniformly at random in the

variable space, which yielded with very high probability self-colliding structures (as motions of

molecular chains are highly constrained). More successful strategies now rely on biased sam-

pling (Shehu and Plaku, 2016); while details vary, the main idea is that the growing ensemble is

iteratively subjected to a variation operator. The operator is applied to a selected sample, which

can be a vertex in the growing tree in tree-based methods or a sample in the growing ensemble in

roadmap-based methods. The selection can be uniformly at random over all samples in the grow-

ing ensemble (vertex set, if referring to a tree-based algorithm), or biased and employ weighting

functions to prioritize samples.

Variation Operator in SoPriM: The variation operator modifies a selected sample S along each

of its m coordinates to obtain a new sample S
′
= S + v, where v is a motion vector that contains

displacements along each of the m axes/PCs. The signs of the displacements are selected at ran-

dom in {−1,+1}. The magnitude s1 of the displacement along PC1 (the maximum-variance PC)

is also selected at random in a user-defined range, whose impact on sampling in SoPriM has been

analyzed in detail in (Maximova et al., 2016c). The magnitudes of the displacements along the

other (variance-ordered) PCs are si = s1λi/λ1, where λi is the eigenvalue of PCi. S
′

is then trans-

formed into an all-atom structure (first recovering alpha-carbon atoms, then the backbone and side

chains) and subjected to minimization via the Amber14 sander protocol. For a rationale behind this

operator, the reader is directed to work describing the SoPriM algorithm (Maximova et al., 2016c).
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Selection Operator in SoPriM:

A grid-based discretization of the variable space (along PC1 and PC2) is used so that regions/cells

can be defined and statistics can be calculated over them; First, a cell γ is selected per the weight-

ing function w(γ) = [exp(−minE(γ) · α)]/[nrConfs(γ) · nrSel(γ) · nrFailures(γ)]2, where minE(γ),

nrConfs(γ), nrSel(γ), and nrFailures(γ) denote the minimum energy over samples that map to a grid

cell γ, the number of samples that map to γ, the number of times γ has been selected, and the num-

ber of times the variation operator has failed to obtain a successor sample when selecting a sample

mapped to γ, respectively. Any sample in the selected cell is then selected uniformly at random

to be subjected to the variation operator. The weighting function penalizes cells of high energy

and cells that have been selected before. While the functional formulas that determine the role of

energy over other statistics recorded for cells can be different, the general idea is to steer sampling

away from high-energy and over-populated regions. The grid-based selection mechanism is famil-

iar in robot motion planning and in robotics-inspired algorithms for modeling protein structures

and motions, though it has been primarily used in tree-based algorithms (Shehu and Olson, 2010;

Molloy et al., 2013; Molloy and Shehu, 2013). SoPriM is the first roadmap-based algorithm to

incorporate a grid-based selection mechanism.

2.3. Organizing Samples to Support Path Queries

Typically, after the sampling stage is terminated (exhausting a fixed computational budget or reach-

ing some other termination criterion based on connected components), the samples are embedded

in a nearest-neighbor graph; each sample is connected to its k nearest neighbors. If the start and

goal structures are in a connected component, paths can be found. A cost c(u, v) can be associated

with a directed edge (u, v) to obtain a lowest-cost path via shortest path algorithms. In SoPriM,
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c(u, v) = max{E(v) − E(u), 0}, implements the concept of work (recording only uphill moves).

3. METHODS

The leveraging of experimentally-known structures is key to SoPriM’s sampling capability. In ad-

dition to defining the variable space, the structures directly provide SoPriMwith initial samples that

readily expose local minima in the energy landscape. Like all sample-based algorithms, SoPriM

has to balance the two conflicting objectives in sampling: further exploiting low-energy regions

while exploring unpopulated, possibly high-energy regions that need to be crossed during a struc-

tural rearrangement. The specific design choices made in the algorithmic ingredients determine

the exploration versus exploitation trade-off. Below we analyze how the variation, selection, and

initialization mechanisms and their interplay in a sample-based algorithm affect this trade-off. We

then demonstrate how to leverage initialization to control the exploration-exploitation trade-off,

proposing two variants of SoPriM. The section concludes with a description of statistical analysis

tools that allow quantifying the exploration and exploitation capability of SoPriM and the two pro-

posed variants. An earlier presentation of how ingredients in a sample-based algorithm affects its

sampling capability has appeared in (Maximova et al., 2016a). Here, we provide further statisti-

cal analysis and expand our evaluation of the algorithmic ingredients tuned to enhance sampling

capability on more proteins of interest to human biology.

3.1. Interplay between Selection and Variation

Selection operators are indirect; they attempt to control where new samples are generated by the

variation operator by instead controlling which existing samples are selected for variation. This
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indirect strategy is more likely to succeed if indeed the variation operator yields samples that are

adjacent/similar to selected samples. Otherwise, this indirect control strategy is ineffective and

degenerates to (unbiased) at-random sampling; the latter has been demonstrated in an iterative

improvement algorithm (Olson et al., 2012). On the other hand, the demand for sample adja-

cency ensures that samples will expand rather gradually from already-visited regions, thus slowing

down the exploration of new regions. Exploration is further slowed down by structure-correcting

or improvement/minimization protocols, which consume a significant portion of the computational

budget (typically due to the complexity of energy functions) to effectively dig deeper (thus, exploit)

in already-populated regions. Structure corrections cannot be avoided, as the ensemble would be

dominated by unreasonable structures with significant deformations and self collisions. The selec-

tion operator is the main contributor to exploration, whereas the variation and structure correction

operators contribute to exploitation.

3.2. Interplay between Selection, Variation, and Initialization

The leveraging of experimentally-known structures in the initialization operator is key to provid-

ing SoPriM with a non-local view of the energy landscape. However, the structures are likely to

reside in basins and so tilt the computational budget towards exploitation more than exploration.

It takes a sample-based algorithm many iterations to climb out of the basins housing the initial

structures. The selection operator aims to remedy this issue by penalizing visiting well-populated

regions, but the initialization operator favors exploitation over exploration. In particular, it be-

comes increasingly hard to sample regions of high energy that may represent an energy barrier, as

all sample-based algorithms make use of an energy bias (incorporated via the structure correction

operator) to avoid computing physically-unrealistic structures. Even if the barriers are sampled,
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samples will be scarce and disproportionately reside in basins (the structure correction operator is

effectively an attractor that moves structures down the barriers to the nearest local minimum).

3.3. Interplay between Sampling Capability and Path Quality

This tug-of-war between exploration and exploitation impacts the quality of the path(s) that can be

offered to model a structural rearrangement. Finding paths is not a measure of success. Indeed,

any setting of k (even if a range r is considered to remove edges connecting structures beyond

r units in the structure space) can be employed to obtain a connected graph so that path queries

can be answered. A deeper inspection of these paths will betray limited sampling on the barriers.

Longer edges will disproportionately be found connecting the scarce samples on the high-energy

regions crossed by a structural rearrangement. Moreover, reported path costs may be optimistic, as

undersampling effectively hides barriers (long edges tunnel through them). More samples would

reveal the actual ruggedness of the landscape and possibly increase path cost.

3.4. Leveraging Initialization to Enhance Exploration

Sampling-based algorithms like SoPriM delegate path quality to the sampling stage. Uniformly-

dense sampling is generally very challenging to guarantee on multi-dimensional variable spaces.

Moreover, the quality of sampling depends on the exploration-exploitation trade-off, which, as

described above, is affected by the interplay between selection, variation, and initialization. Below

we show how one can leverage the initialization to improve the quality of sampling and, in turn,

the quality of paths modeling structural rearrangements. We describe two strategies to do so by

proposing two novel variants of SoPriM, which we refer to as SoPriMp and SoPriMo.
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3.4.1. SoPriMp: Structures Along Direct Paths. The experimentally-known structures are likely

to reside in basins; generating structures on direct paths connecting basins would seed sampling

with samples likely to reside on or near ridges in the landscape. This is implemented as follows.

The known structures are grouped; clustering can be used, but here we rely on visualization over

PC1-PC2 projections. Only a few structures are used per group. These can be canonical structures

(other criteria can be used, such as drawing at random a number of structures from each group).

For every structure u in group U and every structure v in group V , the normalized vector ûv is

defined in the m-dimensional space. A new sample u
′
= u + δmax · ûv is first generated. The

sample is mapped to an all-atom structure via the structure correction operator, projected back to

the variable space to obtain u
′∗, and the process is repeated, using the normalized vector ˆu′∗v from

u
′∗. This continues until either the structure correction fails (too many deformations have been

accumulated), or the current structure is less than δmax away from v. When no more advances can

be made toward v, the reverse direction vu is attempted. Figure 1 shows the experimentally-known

structures in (a) and the additional ones (obtained as described) in (b).

3.4.2. SoPriMo: Structures Along Orthogonal Paths. Additional initial structures are now

generated exploiting ideas from the Conjugate Peak Refinement algorithm (Fischer and Karplus,

1992), where it is assumed that the saddle point along a direct (straight-line) path has the highest

energy relative to those along all other paths connecting two minima of interest; the orthogonal di-

rections from the saddle point may be the shortest way to find other low-energy regions. SoPriMo

first invokes SoPriMp to obtain all intermediate structures between structure pairs u and v. For a

given pair, the highest-energy intermediate structure uvh is recorded. The initial structures added

by SoPriMo to the ensemble Ω (in addition to the experimentally-known structures) are obtained
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by modifying uvh along vectors orthogonal to ûv at uvh; these are limited to the PC1-PC2 and

PC1-PC3 planes, as these three dimensions contain most of the structural variation in investigated

systems (more planes can be generally used). The magnitudes of the orthogonal vectors are set to

that of the uv vector. New structures along an orthogonal vector are generated (at increments of

δmax) until structure deformations cannot be corrected or the length limit has been reached. The

resulting structures are shown in Figure 1(c).

1.

ILLUSTRATION OF THE INITIALIZATION MECHANISMS

(a) (b) (c)

Fig. 1: (a) shows 2d color-coded projections of structures that initialize SoPriM on the H-Ras
enzyme. (b) and (c) show projections of additional initial structures generated by SoPriMp and
SoPriMo, respectively (black dots indicate experimentally-known structures). Arrows in (b) point
to structures of highest energy along direct paths at which orthogonal vectors are computed in (c).

3.5. Implementation Details and Setup

SoPriM, SoPriMp, and SoPriMo are only different in how they initialize the Ω ensemble before the

sampling stage begins. In SoPriMp and SoPriMo, more initial structures are added to the set of
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experimentally-known ones, computed as described above. The sampling stage in each proceeds

until Ω contains 3, 000 structures. Under each algorithm, sampling is repeated a total of 15 times,

5 times for each value of δmax in {1.0, 2.0, 3.0}. The structures obtained from all 15 runs of an

algorithm are pooled and used to compare the three algorithms. The structures collected for an

algorithm are embedded in a nearest-neighbor graph, where a structure is connected to at most

k = 50 nearest neighbors; the neighbors are additionally restricted to be no more than rÅ away in

the structure space. Different values are considered for r (from 0.250 to 0.1Å in least root-mean-

squared-deviation – lRMSD – over alpha-carbon atoms), and the lowest-cost path obtained at each

value of r is extracted and compared among the three algorithms. The algorithms are implemented

in C/C++ and tested on Intel Xeon E5-2670 2.6GHz CPU nodes with 3.5TB of RAM. Typical

running times for proteins around 150 amino acids long vary from 5 − 7 days on one CPU (a

significant percentage of this time is spent by the Amber14 sander minimization protocol).

3.6. Statistical and Graphical Data Analysis

3.6.1. Quantifying Exploration Capability. Simple analysis can be conducted over sampled struc-

tures by visualizing their projections onto the top two PCs and color-coding the projections with

Amber ff14SB energy values. A 2d (PC1-PC2) grid can additionally be constructed, and counts of

structures projecting onto specific grid cells can be used to visualize and compare densities of state

across the three algorithms. In addition to such visual comparison, direct quantitative comparisons

can be made among the three algorithms in terms of the number of new regions explored versus

the number of regions already populated by experimentally-known structures.
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3.6.2. Quantifying Exploitation Capability. This proves less straightforward, but we propose the

following pairwise analysis. We directly compare two algorithms, to which we refer generally as A

and B. We rely here on the more detailed, hexagonal discretization of the PC1-PC2 embedding of

the structure space; work in (Carr, 1991, 1995) has shown such binning is more robust in graphical

statistics). The lowest energy over structures projecting to a hexagonal cell is recorded for algo-

rithms A and B, and differences between such values for corresponding cells are calculated. So,

each cell records the lowest energy reached by A in that cell − the lowest energy reached by B in

that cell. Cells of the grid can then be color-coded based on whether the A− B differences are neg-

ative, close to 0, or positive. Visualization of such a color-coded PC1-PC2 embedding then allows

determining which algorithm has a higher exploitation capability. The number of cells mapping to

each of the three categories can also be calculated so as to provide a quantitative comparison.

3.6.3. Visualizing the Multi-dimensional Landscape. The 2d projections may hide energetic

features that appear along the other dimensions. So we employ a statistical analysis technique

known as conditioning, which allows extending any analysis of a sampled energy landscape from

two dimensions (PC1-PC2) to four dimensions (PC1-PC2-PC3-PC4); on proteins where PCA is

effective (such as the ones used here as test cases), over 80% of the variance is captured by the

top 4 PCs (Clausen and Shehu, 2015; Clausen et al., 2015; Maximova et al., 2015, 2016c). Con-

ditioning produces two-way conditioned plots that expose data patterns hidden in a 4d domain.

Two-way conditioned plots, also referred to as multi-window displays, casement displays, or co-

plots, are an established tool in graphical statistical analysis (Carr et al., 1986; Cleveland, 1993;

Dawkins, 1995; Carr, 1995). The idea is to select two (primary) dimensions for plotting the data

and two (conditioned-upon) dimensions on which to condition the data. In our employment, we
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select PC1 and PC2 as the primary variables and PC3 and PC4 as the conditioned-upon variables.

The m-dimensional samples are split into a total of 16 quartile intervals for PC3 and PC4. For

example, the quartile PC3:Qi and PC4:Q j contains samples whose PC3 coordinate falls into the Qi

quartile and PC4 coordinate falls into the Q j quartile. The sample are further binned in hexago-

nal bins/cells. Only the lowest-energy (best) sample is visualized per bin, plotting it as 2d point

using its coordinates along PC1 and PC2, and color-coding it based on the Amber ff14SB en-

ergy of its corresponding all-atom structure. This analysis sacrifices some of the resolution of the

conditioned-upon variables while retaining it for the primary variables. The comparison of the

different quartiles, however, allows gaging the impact of the conditioned-upon variables and visu-

alizing a 5d domain (with the fifth dimension being energy). As we relate in Section 4, a layout of

16 color-coded, hexagon-binned, two-way conditioned plots provide a visualization of a 4d energy

landscape that exposes how basins elongate along the conditioned-upon dimensions, and where

along these dimensions one finds novel regions yet to be probed in the wet laboratory.

The analysis we employ relies on discretization of the sampled space. For SoPriM and the proposed

variants, the discretization is intuitive, as it makes use of the orthonormal axes that correspond to

the PCs. Moreover, since the PCs are ordered by their variance, low-dimensional discretizations

can be employed to gather statistics for visualization and quantitative comparisons of exploration

and exploitation capabilities of different algorithms. In other sample-based algorithms, an addi-

tional step may be employed to prepare the data for analysis tools similar to what we propose and

employ here. Either linear or non-linear dimensionality reduction techniques can be employed to

extract such orthonormal axes over which low-dimensional grids can be defined.
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4. RESULTS

The analysis presented here compares SoPriM and its two variants in terms of exploration, exploita-

tion, and path quality. The algorithms are applied to two functionally-diverse medium-size proteins

of importance to human biology and health, H-Ras (166 amino-acids long) and calmodulin (CaM,

144 amino-acids long). After comparison of the algorithms, the samples obtained by them are

pooled and the conditioning technique is used to visualize and extract biological knowledge from

the multi-dimensional landscape of each protein.

4.1. Comparison of Sampling Capability

The statistical analyses of sampling capability make use of the PC1-PC2 coordinates of samples

computed by each algorithm; prior work analyzing the PCA of experimentally-known structures of

H-Ras and CaM has shown that the top two PCs capture more than 50% of the structural variance,

and the top three capture more than 75% of the variance (Clausen and Shehu, 2015).

4.1.1. Comparison of Exploration Capability. As related in Section 3.6.1, the population (cell

counts) of each cell of the 2d grid (over PC1 and PC2) is recorded to obtain the density of state

map for each algorithm. Cell width is set so that it corresponds to 1/50 of the maximum pairwise

lRMSD among the experimentally-known structures; 0.08Å for H-Ras and 0.42Åfor CaM. Fig-

ure 2 color-codes cells by their population counts, using the same red-to-blue color-coding scheme

for all three algorithms to indicate high-to-low cell counts. The left panel shows the results of the

analysis for H-Ras, and the right panel does so for CaM. The exploration in SoPriM is concen-

trated on regions populated by the experimentally-known structures that initialize its exploration.
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The exploitation bias in the initial population of known structure apportions away computational

resources from exploration. This is particularly striking on CaM (right panel), where there are

unpopulated regions separating those populated by known structures. In both proteins, SoPriMp

yields more cells of high density; in particular, the regions missed by SoPriM on CaM are now

populated. SoPriMo samples away from the known structures (as it explores directions orthogonal

to those connecting the known structures). A direct quantitative comparison between SoPriMo and

SoPriMp is facilitated by Table 1, where the number of populated cells not in regions containing

experimentally-known structures is juxtaposed to the number of cells populated by experimentally-

known structures. Table 1 shows that ordering by low to high exploration capability yields SoPriM,

SoPriMp, and SoPriMo in the sorted order.

Table 1: Number of populated cells not containing experimentally-known structures (new cells)
versus number of cells containing experimentally-known structures (known cells).

Algorithm nr. new cells nr. known cells
SoPriM 28 240

H-Ras SoPriMp 36 87
SoPriMo 36 44
SoPriM 34 98

CaM SoPriMp 40 81
SoPriMo 43 56

4.1.2. Comparison of Exploitation Capability. We now compare the algorithms on their ex-

ploitation capability as described in Section 3.6. Figure 3 color-codes cells based on such differ-

ences, to show SoPriMp − SoPriM in the top row (the lowest energy reached by SoPriM in a cell is

subtracted from the lowest energy reached by SoPriMp in the same cell), SoPriMo − SoPriM in the

second row, and SoPriMo − SoPriMp in the third row. The left panel shows the comparisons for

H-Ras, and the right panel does so for CaM. Cells with differences ≤ 10kcal/mol are in light blue,
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2.
COMPARATIVE EXPLORATION ANALYSIS

(a1) H-Ras SoPriM (a2) CaM SoPriM

(b1) H-Ras SoPriMp (b2) CaM SoPriMp

(c1) H-Ras SoPriMo (c2) CaM SoPriMo

Fig. 2: Grid cells are color-coded based on the number of samples per cell (color legend is shown
at the top). Experimentally-known structures are drawn as black dots.
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those with differences in (−10, 10)kcal/mol are in gray, and those with differences ≥ 10kcal/mol

are in light pink. In an A − B comparison, dark blue cells indicate those unpopulated by algorithm

B, and dark red cells indicate those unpopulated by algorithm A. Projections of experimentally-

known structures are drawn as yellow dots.

The exploitation maps for H-Ras in Figure 3(a1)-(b1) suggest that both SoPriMp and SoPriMo

populate the structure space with much lower-energy structures over SoPriM (more blue than pink

cells). The only regions where SoPriM has more pink cells are those near the experimentally-known

structures that initialize it, as expected. These observations are supported by direct quantitative

comparisons of counts of cells corresponding to the three categories of interest (lower, similar, or

higher). Table 2 shows that on H-Ras SoPriMp and SoPriMo populate 638/905 and 510/835 of

the cells with lower-energy structures. These results make the case that on H-Ras, both SoPriMp

and SoPriMo have higher exploitation capability than SoPriM. On CaM, the advantage of these

two algorithms over SoPriM is smaller. Figure 3(a2)-(b2) suggest that both SoPriMp and SoPriMo

have higher exploitation capability over SoPriM, though not as pronounced as for H-Ras. The cell

counts in Table 2 support these observations. On CaM, SoPriMp and SoPriMo populate a little over

a third of the cells with lower-energy structures over SoPriM and a little over two thirds of the cells

with lower- or similar-energy structures over SoPriM. These results suggest that on vast configu-

ration spaces (the CaM experimentally-known structures span more than 10Åin spatial scales), the

differences may not be as stark; nonetheless, even in this challenging case, SoPriMp and SoPriMo

achieve higher exploitation capability than SoPriM. The analysis also allows comparing SoPriMo

to SoPriMp directly. Figure 3(c1)-(c2) suggest that SoPriMo has higher exploitation capability than

SoPriMp (more blue than pink cells). Table 2 shows that on H-Ras SoPriMo populates 599/974 of

the cells with lower energies than SoPriMp. On CaM, the advantage is less prononced. SoPriMo
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3.
COMPARATIVE EXPLOITATION ANALYSIS

(a1) H-Ras SoPriMp − SoPriM (a2) CaM SoPriMp − SoPriM

(b1) H-Ras SoPriMo − SoPriM (b2) CaM SoPriMo − SoPriM

(c1) H-Ras SoPriMo − SoPriMp (c2) CaM SoPriMo − SoPriMp

Fig. 3: Cells are colored based on the difference between the lowest-energy obtained in a cell by
algorithm A and the lowest-energy obtained by algorithm B in that same cell. Cells with differences
≤ 10kcal/mol are in light blue, (−10, 10)kcal/mol are in gray, and ≥ 10kcal/mol are in light pink.
Projections of experimentally-known structures are drawn as yellow dots.
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populates 380/875 of the cells with lower energies than SoPriMp; the number of cells where both

algorithms perform comparably is 282/875.

Table 2: Counts of 2d hexagonal cells with different categories of lowest-energy differences.

Comparison < ∼ > populated by both
SoPriMp - SoPriM 638 140 127 905

H-Ras SoPriMo - SoPriM 510 148 253 835
SoPriMo - SoPriMp 599 119 256 974
SoPriMp - SoPriM 325 312 214 851

CaM SoPriMo - SoPriM 298 283 279 860
SoPriMo - SoPriMp 380 282 213 875

The above results confirm that ordering by low to high exploitation capability yields SoPriM,

SoPriMp, and SoPriMo in the sorted order. This conclusion also holds when extending the anal-

ysis to 3d (building a grid with hexagonal cells over PC1-PC2-PC3; these three PCs capture more

than 75% of the variance on both H-Ras and CaM). The plots that relate the differences between

the algorithms are shown in Figure 4. The cell counts are related in Table 3.

Table 3: Counts of 3d hexagonal cells with different categories of lowest-energy differences.

Comparison < ∼ > populated by both
SoPriMp - SoPriM 2157 460 906 3523

H-Ras SoPriMo - SoPriM 1768 417 1330 3515
SoPriMo - SoPriMp 1132 473 2008 3613
SoPriMp - SoPriM 801 441 782 2024

CaM SoPriMo - SoPriM 620 398 819 1837
SoPriMo - SoPriMp 524 418 1007 1949

4.2. Comparison of Lowest-Cost Paths

The algorithms are now compared on the quality of the lowest-cost path they find at different values

r. On H-Ras, the structural rearrangement of interest here is the one that connects a representative

structure of the active state (PDB identifier 1QRA) to representative of the inactive state (4Q21);
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4.
COMPARATIVE 3D EXPLOITATION ANALYSIS

(a1) H-Ras SoPriMp − SoPriM (a2) CaM SoPriMp − SoPriM

(b1) H-Ras SoPriMo − SoPriM (b2) CaM SoPriMo − SoPriM

(c1) H-Ras SoPriMo − SoPriMp (c2) CaM SoPriMo − SoPriMp

Fig. 4: Grid cells are color-coded as in Figure 3. The grid is constructed over the top 3 PCs.
Projections of experimentally-known structures are drawn as yellow dots.
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note that r corresponds to the maximum allowed edge length. Table 4 shows that H-Ras sampling in

SoPriM is not dense enough to be able to obtain a connected graph at values lower than 0.250Å(no

paths reported), whereas SoPriMo only fails at the lowest value of 0.1Å. Even when all algorithms

report a path at a given value of r, the average and median edge lengths (⟨el⟩, ẽl) in SoPriM are

higher than those in SoPriMp and SoPriMo, indicating sparser sampling in SoPriM. The average

and median edge costs (⟨ec⟩, ẽc) along the lowest-cost path are also higher in SoPriM over SoPriMp

and SoPriMp at a given value of r, indicating that the better exploration and better exploitation in

the latter two algorithms provide alternative routes with both shorter and lower-cost edges. Path

costs initially go down at lower values of r, indicating a phase where lower-cost routes are found.

Then, at the smallest values possible to find paths, as in 0.124 and 0.100Å, the path cost goes

up. Insisting that edges be short forces a path to go over small hills in the landscape, and thus

follow the ruggedness much more closely, resulting in higher cost. Similar observations hold for

CaM, supporting the conclusions that higher exploration and exploitation in sampling improve path

quality, but that one should insist on higher sampling capability so that paths follow the landscape

more closely.

4.3. Graphical Statistical Analysis of Multi-dimensional Energy Landscapes

Prior work on SoPriM has validated some major energetic features (such as correspondence of

visually-identified basins with known long-lived structural states) for both H-Ras and CaM (Max-

imova et al., 2015, 2016c), but the analysis has been limited to visualizing color-coded PC1-PC2

projections of computed structures. Here we make use of the conditioning technique described in

Section 3.6.3 to extend the analysis from 2d to 4d landscapes.
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Table 4: Comparison of lowest-cost paths at varying r on average and median edge lengths (⟨el⟩,
ẽl), average and median edge costs (⟨ec⟩, ẽc), number of vertices, and path cost.

r (Å) Algorithm edge statistics #vertices cost
⟨el⟩, ẽl ⟨ec⟩, ẽc

SoPriM 0.14, 0.15 2.90, 6.37 31 129.92
0.250 SoPriMp 0.17, 0.17 2.45, 3.17 28 83.61

SoPriMo 0.19, 0.19 4.36, 4.60 20 84.44
H-Ras SoPriMp 0.13, 0.14 1.51, 2.32 40 86.10

0.201 SoPriMo 0.18, 0.17 1.89, 4.46 22 86.40
SoPriMp 0.14, 0.14 1.63, 2.15 46 89.16

0.167 SoPriMo 0.15, 0.14 2.41, 5.45 29 117.47
SoPriMp 0.11, 0.11 2.52, 4.21 41 126.95

0.124 SoPriMo 0.11, 0.11 5.26, 9.56 49 274.49
SoPriM 2.16, 1.69 261.37, 89.81 27 1354.55

4.00 SoPriMp 0.80, 0.78 57.61, 12.27 30 837.00
SoPriMo 1.04, 0.98 64.67, 10.76 25 777.61
SoPriMp 0.83, 0.80 61.88, 13.69 28 837.00

3.50 SoPriMo 1.01, 1.02 55.43, 10.79 29 777.61
CaM SoPriMp 0.74, 0.77 66.23, 15.74 32 1028.16

1.00 SoPriMo 0.78, 0.84 88.16, 11.99 26 1103.56
SoPriMp 0.61, 0.64 72.06, 10.77 35 1226.54

0.75 SoPriMo 0.62, 0.65 86.72, 18.02 31 1302.35
SoPriMp 0.40, 0.41 162.26, 15.25 54 4301.51

0.50 SoPriMo 0.41, 0.43 80.52, 19.60 53 2135.23
0.42 SoPriMp 0.35, 0.37 134.68, 11.99 66 4378.53
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4.3.1. Extracting Biological Insights from H-Ras Multi-dimensional Landscape. H-Ras is an

enzyme central to human biology and is known to switch between different structures to regu-

late recognition of molecular partners. Structure switching spans 2.5Å in all-atom lRMSD. Fig-

ure 5 relates the conditioned view of the 4d H-Ras energy landscape. The left top panel of Fig-

ure 5 (zoomed in to show the axes labels) shows a hexagonal bin plot along PC1 and PC2 condi-

tioned on the first quartile of PC3 and the first quartile of PC4. The color scheme uses thresholds

based on binned quantiles of cell minimum-energy distributions without subsetting. Quantiles of

{0, 20, 40, 60, 80, 100}% correspond to Amber ff14SB energy values of {−6703.342, −6482.059,

−6430.048, −6370.087, −6291.812, −4183.799}kcal/mol. The color-scheme runs from dark to

light blue, gray, and pink, using pink for the top three quantiles; yellow dots show projections of

experimentally-known structures.

By smoothing the ruggedness of the landscape, the hexagonal binning in the conditioned views

allows seeing the distinct basins that correspond to the GTP- (active) and GDP-bound (inactive)

states. The views that contain projections of experimentally-known structures have been annotated

with PDB ids of the known structures. The on and off basins corresponding to the active and

inactive states, respectively, are most visible on the PC1-PC2 scatter plots along the first quartile

of PC3 and the second (or third) quartile of PC4 (the [PC3:Q1; PC4:Q2-3] views). The [PC3:Q1;

PC4:Q2-3] views show the barrier between the two basins. The R- and T-states are clearly part of

the on basin (see the [PC3:Q2-3; PC4:3] views), supporting wet-laboratory evidence of allosteric

switching in H-Ras (Buhrman et al., 2010; Johnson and Mattos, 2013). Both the on and off basins

gradually disappear along the higher quartiles of PC3 and PC4, but the off basin persists along all

quartiles of PC4, unlike the on basin (see [PC3:Q1, PC4:Q4]). In addition, the experimentally-
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5.

H-RAS CONDITIONING ANALYSIS

Fig. 5: H-Ras: The 4d space in each subplot is discretized via hexagons, plotting for each only
the projection of the lowest-energy structure. The blue-to-red color-coding scheme follows the
low-to-high energy range. Yellow dots show projections of experimentally-known structures.
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known structures (based on their projections) appear on few (not all) quartiles of PC3 and PC4.

There are specific regions of both the on and off basins that do not contain any experimentally-

known structures (see the [PC3:Q1, PC4:Q1,4], [PC3:Q2, PC4:Q1,4], [PC3:Q3,Q4, PC4:Q2], and

[PC3:Q3,PC4:Q3] views). These constitute novel regons of the H-Ras landscape that have yet to

be probed but are worth pursuing in wet laboratories, as they represent stable sub-states of possible

interest for targeted therapeutic studies (Nussinov et al., 2014).

4.3.2. Extracting Biological Insights from CaM Multi-dimensional Landscape. CaM is also a

functionally-diverse enzyme of great importance to human biology. Structure switching in CaM

spans over 20Å in all-atom lRMSD. Figure 6 relates the conditioned view of the 4d CaM energy

landscape. The color-scheme is based on the quantiles {0, 20, 40, 60, 80, 100}%, which correspond

to Amber ff14SB energy values of {−5673.000, −5066.380, −4747.600, −4493.720, −4201.940,

−70.891}kcal/mol.

As for H-Ras, several conditioned views show absence of experimentally-known structures in spe-

cific low-energy regions (see [PC3:Q2,PC4:Q4]), pointing to novel substates. The conditioned

views contains precious information about possible structural rearrangements. In prior work,

where we have analyzed the ability of SoPriM to compute lowest-cost paths connecting the calcium-

bound state of CaM to the peptide/protein-bound state, we have shown that the lowest-cost path

does not go through the calcium-free state (PDB ids 1CFC, 1CFD) (Maximova et al., 2016c).

Indeed, tour calculations, where we calculate lowest-cost paths forced to go through specific struc-

tures, have shown that paths forced to go through the calcium-free state had higher costs. The

conditioned views in Figure 6 provide complementary insight into these structural rearrangements.

The different views show that there are energy barriers that separate many of the small and large
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Fig. 6: CaM: The 4d space in each subplot is discretized via hexagons, plotting for each only
the projection of the lowest-energy structure. The blue-to-red color-coding scheme follows the
low-to-high energy range. Yellow dots show projections of experimentally-known structures.
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basins in the CaM landscape. As the PDB id annotations indicate in Figure 6, the conditioned

views show that the calcium-bound and calcium-free open states group in specific regions of the en-

ergy landscape; the [PC3:Q1; PC4:Q1] view contains the calcium-bound open structures, whereas

[PC3:Q4; PC4:Q4] view contains the calcium-free open structures. Moreover, the calcium-free,

open state of CaM is separated by energy barriers from the calcium-bound, closed state (see view

[PC3:Q2; PC4:Q3]). These insights are in agreement with prior work (Maximova et al., 2016c).

In summary, they indicate that CaM is able to switch between the calcium-bound closed and open

states without releasing calcium ions, thus adding to the biological insight on structure-function

mechanisms in CaM.

5. DISCUSSION

This paper demonstrates that a careful analysis of how each ingredient in a sample-based algo-

rithm for modeling slow structural rearrangement affects exploration versus exploitation can result

in novel design choices to improve both. The analysis demonstrates that novel initialization strate-

gies, interleaved with exploration-driven selection mechanisms and exploitation-driven variation

operator(s), improve both exploration and exploitation. Improvements in sampling translate to

paths of higher granularity that follow the landscape more faithfully.

The questions posed and addressed in this paper regarding sampling capability and its effect on the

accuracy of modeled structural rearrangements are being raised among computational biophysi-

cists embedding molecular structures obtained from many physics-based simulations in Markov

state models (Gipson et al., 2012). The analysis and strategies proposed here to expose and ad-

dress current limitations are a first step towards making sample-based models reliable tools for
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modeling slow structural rearrangements.

Detailed statistical analysis of multi-dimensional landscapes elucidates that sample-based models

can yield novel insights regarding the structure-function relationship in two proteins of importance

to human biology. The algorithms find stable regions not probed in the wet laboratory that may

hold valuable information regarding druggability.

Acknowledgments

This work is supported in part by NSF SI2 No. 1440581 and NSF IIS CAREER Award No.

1144106. Computations were run on the ARGO research computing cluster at George Mason

University.

Authors’ Contributions

T.M., E. P., and A.S conceived the algorithm proposed here. T.M. implemented the algorithm and

performed production runs. T.M. and A.S. conceived the experimental design. T.M., A.S., and

D.C. conceived the data analysis strategy. T.M., Z.Z., and D.C. carried out the data analysis. T.M.

and A.S. wrote the article.

Author Disclosure Statement

The authors declare that no competing financial interests exist.

32

Page 32 of 38

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly/Not for Distribution
References
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