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Structure-guided Protein Transition Modeling
with a Probabilistic Roadmap Algorithm
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Abstract—Proteins are macromolecules in perpetual motion, switching between structural states to modulate their function. A detailed
characterization of the precise yet complex relationship between protein structure, dynamics, and function requires elucidating
transitions between functionally-relevant states. Doing so challenges both wet and dry laboratories, as protein dynamics involves
disparate temporal scales. In this paper we present a novel, sampling-based algorithm to compute transition paths. The algorithm
exploits two main ideas. First, it leverages known structures to initialize its search and define a reduced conformation space for rapid
sampling. This is key to address the insufficient sampling issue suffered by sampling-based algorithms. Second, the algorithm embeds
samples in a nearest-neighbor graph where transition paths can be efficiently computed via queries. The algorithm adapts the
probabilistic roadmap framework that is popular in robot motion planning. In addition to efficiently computing lowest-cost paths between
any given structures, the algorithm allows investigating hypotheses regarding the order of experimentally-known structures in a
transition event. This novel contribution is likely to open up new venues of research. Detailed analysis is presented on multiple-basin
proteins of relevance to human disease. Multiscaling and the AMBER ff14SB force field are used to obtain energetically-credible paths
at atomistic detail.

Index Terms—Protein structure, transitions, energy landscape, basins, robotics-inspired search, motion computation.
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1 INTRODUCTION

While it is now known that protein dynamics is com-
plex [1], it is exquisitely exploited for participation in var-
ious molecular recognition events in the cell [2]. In many
proteins, the energy landscape is rich in broad and deep
minima, also known as basins, in which a perpetually-
fluctuating protein dwells long enough to participate in
molecular recognition events [3]. Such basins correspond to
thermodynamically-stable and meta-stable structural states,
and proteins switch/transition between these states to mod-
ulate their biological function [4]. Elucidating such transi-
tions is key not only to a detailed characterization of protein
function, but also to drug and sensor design, and other
protein engineering applications [5], [6].

Elucidating transitions of a protein between stable and
meta-stable states is challenging in the wet laboratory. Pro-
tein dynamics involves disparate temporal scales; while
typical atomic oscillations due to thermal energy occur in
the femto-pico second scale, transitions between stable and
meta-stable states may occur in the micro-milli second scale,
as a protein needs to gain enough kinetic energy to cross the
energy barrier typically separating basins corresponding to
stable and meta-stable states in the landscape. While single-
molecule wet-laboratory techniques have made great strides
in revealing transitions [7], in principle, wet-laboratory tech-
niques cannot obtain a complete picture, as dwell times at
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successive structural states in a transition may be too short
to be detected in the wet laboratory.

Neither wet- nor dry-laboratory techniques can on their
own span all spatial and temporal scales in protein dynam-
ics [8]. The presence of disparate temporal scales challenges
Molecular Dynamics (MD) methods that simulate dynamics
by iteratively solving Newton’s equation of motion on a
finely discretized time scale [9]. Other methods that instead
navigate the energy landscape via biased random walks
have to address the multiple minima issue; protein energy
landscapes are rich in both shallow and deep minima (man-
ifesting in the disparate temporal scales). These sampling-
based methods, also known as Monte Carlo (MC) methods,
while in principle promising of a higher exploration capa-
bility, have to rapidly escape local minima so paths reach
desired states within limited computational budgets [10].
The presence of local minima often confines sampling-based
algorithms to specific regions of the search space, resulting
in insufficient sampling.

Here we propose a novel, sampling-based algorithm that
addresses the issue of insufficient sampling by leveraging
experimentally-determined structures of a protein to restrict
sampling in a space of a reasonable number of dimensions
and on regions of relevance for transition events. These
structures are used both to define a reduced (conformation)
search space and to initialize an iterative sampling process.
While the algorithm samples in a reduced space, it oper-
ates at different scales, as it lifts conformations/samples
in a higher-dimensional, structure space and then improv-
ing them with the AMBER ff14SB force field to obtain
energetically-credible paths at an atomistic level of detail.

The proposed algorithm is not confined to computing
one path between only a pair of given structures from one
run (which is what the majority of related methods do) but
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is able to compute various paths between any pair of known
stable and meta-stable structural states of a protein from one
run within a practical computational budget (a few hours to
a few days on one CPU for medium-size proteins up to 166
amino acids). The ability to compute various paths is due
to the fact that the algorithm adapts the well-known proba-
bilistic road map (PRM) framework that is a cornerstone of
algorithmic robot motion planning [11]. From now on, we
will refer to the algorithm as SoPriM for Structure-guided
Roadmap-based Protein Transition Modeling.

An additional contribution of SoPriM is the computation
of tours that explore hypotheses regarding the position
of experimentally-known structures in a transition event.
This new feature allows comparing lowest-cost paths to
paths that go through a user-specified set of experimental
structures, and thus categorizing experimental structures as
on- or off-pathway intermediates. The cost associated with
a path measures the amount of work, in the thermodynamic
sense, needed for the transition. In this way, the lowest-cost
path is that of minimum work and can credibly represent a
transition path. The additional computation of tours allows
obtaining different paths of possibly higher costs but with
differences that can be surpassed via thermal fluctuations at
room temperature. Obtaining an ensemble of paths allows
addressing the stochastic nature of protein transitions.

A proof-of-concept demonstration of the promise of
exploiting structural information in a roadmap-based al-
gorithm and extending the path analysis to include tours
has been recently presented in [12]. Here we investigate
different algorithmic decisions in SoPriM and analyze their
impact on the exploration capability, as well as present a
more comprehensive analysis of computed landscapes and
transitions in comparison with wet-laboratory findings.

This paper proceeds as follows. The proposed SoPriM al-
gorithm is placed in the context of related work in Section 2,
before it is described in detail in Section 3. Detailed analysis
of the algorithm and its application on several proteins of
relevance for human biology and disease are presented in
Section 4. The paper concludes in Section 5.

2 RELATED WORK

There is now a rich literature of sampling-based algorithms
that leverage robot motion planning to model structural
transitions in biomolecules [10], [13]. These algorithms ex-
ploit analogies between molecular and robot motions to
model molecular dynamics. For instance, direct analogies
between molecular bonds and robot links and molecular
atoms and robot joints allow employing and adapting tech-
niques that perform fast forward and inverse kinematics for
kinematic linkages to molecular kinematics [14], [15], [16],
[17], [18], [19]. The problems of robot motion planning and
protein transition modeling (or, more generally, molecular
motion modeling), are similar. In robot motion planning,
the objective is to compute paths from a start to a goal state
while satisfying constraints due to the obstacles and the un-
derlying robot dynamics [20], [21]. In transition modeling,
the objective is to compute paths from a start to a given
structure while satisfying constraints due to the physics-
based, energetic interactions among atoms in the molecule.

Sampling-based algorithm that exploit the robot-protein
motion planning analogy exploit the observation that tran-
sitions of a dynamical system, whether mechanical or bi-
ological, between two given states can be modeled via
discrete, kinetic models. These models embed computed
states of the system in graph-like structures amenable to
rapid, shortest, or lowest-cost path queries. Algorithms that
embed computed states in a tree are referred to as tree-
based, and those that embed samples in a nearest-neighbor
graph are referred to as roadmap-based.

An outstanding challenge for both tree- and roadmap-
based algorithms involves how to focus limited compu-
tational resources to computing transition-relevant states
with no a priori information on such states. This challenge
concerns both the selection of an effective set of variables
that define the search space of interest and the employment
of such variables in representation-aware variation or per-
turbation operators to efficiently sample regions relevant for
the sought transition. These two issues are often grouped
into one and known as the sampling issue, as they ulti-
mately relate to the ability of a sampling-based algorithm to
rapidly obtain a discrete, sample-based representation of the
variable space that then allows finding transition-relevant
paths connecting the start and goal states.

Variable selection directly determines the dimensionality
and complexity of the search space. A popular choice is for
the selected variables to be all or a subset of the backbone
φ, ψ dihedral angles that can be defined over covalently-
linked atoms in a protein molecule [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34]. Dihedral angles
are more appealing over Cartesian coordinates, as there are
about 3N/7 dihedral angles in a protein of N atoms [35],
and about 2n dihedral angles in a protein of n amino
acids. Moreover, consecutive backbone dihedral angles can
be bundled together into k-long fragments or bundles that
capture variable dependencies. This technique, known as
molecular fragment replacement, has been incorporated in
robotics-inspired algorithms for modeling equilibrium pro-
tein structure and dynamics [32], [33], [34], [36].

Other variable reduction or variable prioritization strate-
gies employ system-specific insight, structure analysis, or
statistical analysis. For instance, rigidity-based analysis,
which detects least-constrained regions in a given struc-
ture, and suggests a prioritization scheme for modification
of dihedral angles, has been successfully incorporated in
robotics-inspired algorithms for modeling the dynamics of
proteins as long as 100 amino acids [26]. Application of
robotics-inspired algorithms on proteins of more than 200
amino acids often relies on a direct comparison of the start
and goal structures to identify the differently-valued dihe-
dral angles as variables [37], [38]. Fragment replacement
has allowed tree-based algorithms to address an important
range of proteins between 100−200 amino acids [34], [36].
Other variable reduction strategies rely on statistical anal-
ysis to identify collective variables that capture collective
motions of atoms in Cartesian space [12], [39], [40], [41], [42],
[43]. For instance, Normal Mode Analysis (NMA) [44], a
popular technique in computational structural biology [39],
[45], [46], [47], is often incorporated in robotics-inspired
algorithms [40], [41], [42], [43]. NMA extracts collective
motions from one structure at a time. The SoPriM algorithm
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proposed here uses a multivariable statistical technique that
extracts collective variables from a set of known structures.

The choice of variables is key to the design of effective
perturbation or variation operators for generating samples
or conformations that satisfy a set of desired geometric
and/or energetic constraints; from now on, we refer to an
instantiation over the selected variables as a conformation.
Conformations obtained uniformly at random have very
low probability of being relevant for a sought transition
due to collisions among atoms. Biased sampling techniques
can be used to remedy this issue, as pioneered by Am-
ato and colleagues [23], [24]. Since it is generally hard
to know a priori which operators will be effective, recent
work employs diverse operators on diverse sets of variables
during sampling [36], [37], [48]. Work in [36] implements
a probabilistic scheme that selects among a rich menu of
operators making use of angular or Cartesian variables.

Operators that generate new conformations by incre-
mental modifications of existing conformations are more
likely to yield conformations relevant for a transition. Re-
cent algorithms generate conformations in neighborhoods
of existing “parent” conformations [32], [34], [49] (hence,
the term perturbation or variation operator). Perturbation
operators that perturb a selected conformation to obtain a
new one tend to preserve some good structural features in
the new conformation while introducing enough change to
explore new regions of the variable space [50]. The SoPriM
algorithm proposed here does not sample conformations
over the variable space uniformly at random but via per-
turbation operators that modify selected conformations in
the space of collective variables.

In the context of perturbation operators, (parent) selec-
tion schemes are critical to control sampling. Traditionally,
such selection schemes have been confined to tree-based
algorithms, which grow a tree in conformation space in
iterations, at every iteration selecting a parent for pertur-
bation, and then perturbing it via some operator to obtain
a new child conformation to add to the tree [32], [34].
In this paper, we inject selection schemes in a roadmap-
based algorithm. The proposed SoPriM algorithm selects
at every iteration a parent conformation for perturbation,
and then perturbs it in the space of collective variables. The
resulting conformation, if it is passes an energetic threshold,
is added to the growing set of sampled conformations and
the roadmap that embeds all sampled conformations.

Most robotics-inspired algorithms for modeling
biomolecular transitions do not exploit existing structural
information about a protein beyond the start and goal
structures. In this paper, SoPriM is initialized with an
ensemble of experimentally-known structures, which are
exploited both to define the reduced space of collective
variables and initialize the roadmap vertex set. While
years ago the reliance on experimental structures would
be a limitation, nowadays over hundreds of thousands
structures exist in the Protein Data Bank (PDB) [51].
Moreover, for proteins of importance to human disease
and biology, significant resources in wet laboratories have
resulted in diverse stable and meta-stable structures of
wildtype (WT) and variant sequences.

Considering many experimentally-available structures
allows SoPriM to focus sampling to the conformation space

of interest for the sought transition. These structures (col-
lected from different variants of a protein) represent, per
the conformational selection principle, possible semi-stable
states in the space of a given protein sequence. By populat-
ing the conformation space first around these structures and
then gradually further away, SoPriM is likely to sample re-
gions that are relevant for a transition. It is worth noting that
the idea of utilizing more than the start and goal structures
has been recently proposed in [36], but only SoPriM grad-
ually expands in conformation space from a diverse set of
experimentally-known structures (in [36], several geometric
and energetic constraints are employed to restrict sampled
conformations near experimental structures).

In robotics-inspired algorithms, once conformations are
generated, the tree or roadmap is queried for a least-cost
path. Unlike trees, where the sampling is specifically bi-
ased to connect the start and goal and only one path can
be obtained, roadmap-based algorithms support multiple
queries; in principle, the roadmap/graph allows extracting
paths for different start and goal structures. Typically, in the
context of modeling the transition between a given start and
goal structure, most algorithms focus on the least-cost path.
However, protein transitions are stochastic processes, and
a set of energetically-similar paths may provide a broader
view of the transition tube of likely paths. Recent work
recognizes this issue by providing the K lowest-cost paths,
or by treating the roadmap as a Markov state model over
which average statistics over paths can be computed [52]. In
this paper, SoPriM is executed several times in order to get
different lowest-cost paths. In addition, more paths are ob-
tained via the notion of tours, lowest-cost paths that contain
subsets of given experimental structures. Collecting these
paths and focusing on those within an energetic threshold
of the lowest cost one provides a picture of the possible
different, energetically-similar transition routes.

Finally, a challenge unique to adapting roadmap-based
algorithms for protein transitions relates to edge realization.
When edges connect conformations far away, a local planner
is needed to reveal intermediate conformations. This is in
effect another transition modeling instance and can tax
computational resources. The proposed SoPriM algorithm
addresses this challenge in the way it samples conforma-
tions. Moreover, nearest neighbors in the roadmap pass
a distance constraint so that an edge represents a motion
expected to occur within thermal fluctuations.

3 METHODS

As a roadmap-based algorithm, SoPriM consists of three
stages: conformation sampling, roadmap building, and
roadmap querying, as shown in Alg. 1. The result of the
sampling stage is an ensemble of conformations, denoted by
C, that provides a discrete representation of the conforma-
tion space expected to be relevant for the transition event.
In roadmap building, a graph R = (C, E) is constructed
by connecting each conformation c ∈ C to several of its
nearest neighbors. In roadmap querying, costs associated
with roadmap edges are used to obtain a set of lowest-
cost paths that connect the given start and goal structures
by going over all the possible subsets of a set of specified



1545-5963 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2586044, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, MONTH 2016 4

structures, referred to as landmarks and denoted by L. The
rest of the section describes each stage in more detail.

3.1 Conformation Sampling
The input to SoPriM is a set Ω of experimental struc-
tures of a protein, collected and curated as described in
section 4. These structures are projected to the space of
considered variables to obtain conformations with which
to seed the growing ensemble C. While uniform sampling
has worked well when applying roadmap algorithms to
robot motion-planning problems [11], it is impractical when
dealing with high-dimensional conformation spaces, since
the sampled conformations are likely to have high energies.
To effectively populate the roadmap, SoPriM relies on a low-
dimensional conformation space on which iterative applica-
tion of a selection and a perturbation operator result in new
samples/conformations that satisfy geometric and energetic
constraints. The selection operator selects a conformation
from the current ensemble C . The perturbation operator
modifies the selected conformation to yield a new one,
which is subjected to a local improvement operator before
being added to C. This process is repeated until at least
a user-specified minimum number of conformations have
been sampled. As described later in the section, roadmap
sampling is interleaved with roadmap building until the
start, goal, and landmark conformations are connected,
i.e., belong to the same graph component in the roadmap
R = (C, E), or a maximum number of conformations have
been obtained.

3.1.1 Defining the Conformation Space for Sampling
SoPriM leverages the set Ω of known structures of a protein.
These structures are stripped down to their CA atoms and
are subjected to Principal Component Analysis (PCA) [53]
to reveal collective variables (principal components – PCs)
over which to define the conformation space for sampling.
This is motivated by our prior work on evolutionary algo-
rithms that employ PCA to find basins in energy landscapes
of proteins [54], [55]. PCA and other linear dimensionality
reduction techniques are shown effective for many multiple-
basin proteins important to human biology and disease [54],
[56].

The CA traces of the experimental structures are first
aligned to a reference CA trace (arbitrarily set to the
first one) using the optimal superimposition process em-
ployed when identifying least root-mean-squared-deviation
(lRMSD) between two structures [57]. The purpose for the
alignment is so that PCA does not capture trivial structural
variations due to rigid-body motions. An average trace is
then computed and subtracted from all traces so that a
centered matrix of structural variations can be defined. The
matrix is subjected to the dgesvd routine in LAPACK [58]
to obtain a singular value decomposition X = UΣV T .
Rows of the U matrix contain the new axes (PCs), rotated
to identify the axes of highest variance. The variance of the
data along each axis is given by the eigenvalues, which can
be calculated by squaring the singular values contained in
the diagonal of the Σ matrix.

Ordering the PCs by the variance they capture allows
identifying a few (if PCA has been effective) that cumula-
tively capture a desired total variance. In this paper and

Algorithm 1 SoPriM

Input: Ω: initial ensemble of conformations
cs, cg ∈ Ω,L ⊂ Ω: start, goal, and landmark conformations
nmin, nmax: min/max nr. of conformations in roadmap
nadd: nr. of conformations to add to roadmap at each stage
k, r: nr. and range for nearest neighbors
G: 2D-grid, i.e., minx,y,maxx,y , nr. of rows/columns
−δmin, δmax: min/max perturbation step
Output: a set of paths P = {pathS : S ⊆ L} over
the roadmap R = (C, E) where pathS is the lowest-cost
path in R that starts at cs, ends at cg , and reaches each
conformation in S

define ρ(ci, cj) = ||PCPROJECTION(ci)−PCPROJECTION(cj)||2
define COST(ci, cj) = max{SCORE(cj)− SCORE(ci), 0}
1: R = (C, E)← (∅, ∅); Γ← ∅; P ← ∅; n← nmin; i← 1
2: for each c ∈ Ω do ADDCONFORMATION(R,Γ, c)
3: repeat
4: while |C| < n do
5: γ ← SELECTGRIDCELL(Γ)
6: c← SELECTCONFORMATION(γ)
7: cnew ← GENERATESUCCESSOR(c, RAND(δmin, δmax))
8: UPDATESTATISTICS(γ, c, cnew)
9: if cnew 6= null then ADDCONFORMATION(R,Γ, cnew)

10: n← min{|C|+ nadd, nmax}
11: while i ≤ |C| do
12: c← i-th conformation in C; i← i+ 1
13: neighs← NEARESTNEIGHBORS(R, ρ, c, k, r)
14: for c′ ∈ neighs do E ← E ∪ {(c, c′), (c′, c)}
15: until CONNECTED(R, cs, cg,L) = true or |C| > nmax
16: for each S ⊆ L do
17: pathS ← SHORTESTPATH(R, COST, cs, cg,S)
18: P ← P ∪ {pathS}
19: return P

{local procedure ADDCONFORMATION(R,Γ, cnew)}
1: C ← C ∪ {cnew}
2: 〈p1p2 . . . pd〉 ← PCPROJECTION(cnew)
3: γ ← LOCATEGRIDCELL(p1, p2)
4: if γ 6∈ Γ then Γ← Γ ∪ {γ}
5: INSERT(γ, cnew)

related employments of PCA, a 90% cutoff is used. When
PCA is effective, this cutoff can be reached by a number
of PCs that is a significant reduction over the original
dimensionality of the space. For instance, for all the proteins
considered here, the original dimensionality is over 300
(number of x, y, z coordinates of CA atoms), whereas no
more than 25 PCs are needed to preserve 90% of the original
data variance. This effectively results in a reduced search
space, where conformations are points with coordinates on
each of the top-selected PCs.

3.1.2 Perturbation and Improvement Operator: Generating
a Successor via Perturbation and Improvement

A new conformation, cnew, is obtained from a conformation
c ∈ C via perturbation and local improvement (Alg. 1:7).
Given c as a point in the space of the top d PCs, the pertur-
bation operator computes cnew as c+v, where v = 〈v1 . . . vd〉
specifies displacements along each PC. The displacement
v1 along PC1 is sampled uniformly at random inside a
given interval [δmin, δmax]. To ensure that displacements are
proportionate with the variations captured by each PC,
every other displacement is computed as vi = v1λi/λ1,
where λi is the eigenvalue of PCi.
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After the perturbation, cnew is subjected to a local im-
provement operator so a potential energy can be associated
with it. First, cnew is lifted to an all-atom structure where
the CA trace is obtained by adding cnew to the reference
trace, the backbone is obtained via the BBQ program [59],
and side chains are packed via the SCWRL4 program [60].
The resulting all-atom structure is then subjected to a stan-
dard, AMBER-recommended minimization protocol [61].
The protocol uses the Amber ff14SB force field and sander
to conduct 50 steps of steepest descent followed by 50 steps
of conjugate gradient descent (maxcyc = 100, ncyc = 50).
Nonbonded interactions beyond 10Å are cutoff. The im-
plicit, generalized Born solvation model is used (igb = 1),
and energies associated with conformations include the
solvation term.

The conformation now corresponds to a local minimum
in the all-atom energy surface. If the potential energy is
above 0kcal/mol, the minimization is considered to have
failed and null is returned by GENERATESUCCESSOR. Since
the minimization can change CA coordinates, the all-atom
structure is projected back onto the PCs to obtain final coor-
dinates for cnew. This is key to controlling the accumulation
of structural errors expected from iterative-based sampling.
The experimental structures are subjected to the same mini-
mization protocol to resolves unfavorable interactions often
present in X-ray and NMR models and others arising when
threading structures reported for a variant onto the WT
sequence.

3.1.3 Selection Operator: Conformation Selection

Conformation selection is key to controlling sampling in
conformation space. A two-dimensional grid G is imposed
over the top two PCs (which capture > 50% of the original
dynamics/variations for all proteins here) to bias sampling
so the roadmap can cover the reduced conformation space.
The grid G is also used to promote the generation of low-
energy conformations. Specifically, each grid cell γ ∈ G
keeps track of the conformations in C that map to it. Note
that c ∈ C maps to γ if the point defined by the coor-
dinates associated with PC1 and PC2 is inside γ. The set
Γ = {γ : γ ∈ G and nrConfs(γ) > 0} denotes all the
non-empty cells, where nrConfs(γ) indicates the number
of conformations in C that map to γ. Moreover, a weight
w(γ) is maintained for each non-empty grid cell γ ∈ Γ.
The specific formula employed for w directly impacts the
exploration capability of SoPriM, and here we investigate
two different ways of defining w that correspond to two
different implementations of the selection operator.

The first, intuitive definition for w is one where all non-
empty cells have equal probability of being selected, i.e.,
w(γ) = 1/|Γ|. A second definition biases the selection by
including various statistics gathered and updated during
the course of SoPriM’s execution, i.e.,

w(γ) =
e−minE(γ)·α

(nrConfs(γ) · nrSel(γ) · nrFailures(γ))2
, (1)

where minE(γ), nrSel(γ), and nrFailures(γ) denote the min-
imum potential energy over conformations that map to γ,
the number of times γ has been selected (Alg. 1:5), and
the number of times GENERATESUCCESSOR has failed to

generate a successor when using a conformation mapped
to γ (Alg. 1:9, when cnew = null), respectively.

The probability of selecting γ (Alg. 1:5) is then defined
according to its weight as

prob(γ) = w(γ)/
∑
γ′∈Γ

w(γ′). (2)

The weight formulation in Equation 1 allows
SELECTGRIDCELL (Alg. 1:5) to discourage cells that
lead to failures, encourage cells that protrude deep in the
energy landscape, and reject cells that have been selected
many times and have too many conformations in them
already so as to penalize oversampling in the same region
of conformation space. The α parameter is a user-defined
constant to tune the importance of selecting based on
energy versus the other statistics.

Once a cell γ is selected, a weighting function and
probability distribution can be used over the conforma-
tions in γ in order to select a conformation (Alg. 1:6)
for the GENERATESUCCESSOR function. An intuitive choice
is to grant equal weight to each conformation in γ, i.e.,
w(c) = 1/nrConfs(γ). Alternatively, the selection can be
biased, i.e.,

w(c) =
e−E(c)·α

(nrSel(c) · nrFailures(c))2
,

prob(c) = w(c)/
∑
c′∈γ

w(c′).
(3)

In section 4, we compare the uniformly at random selections
of γ and c to the biased selections that results from defining
w(γ) and w(c) as in Equations 1 and 3.

3.2 Roadmap Building

To capture the connectivity of the conformation space,
each c ∈ C is connected to several of its near-
est neighbors according to the Euclidean distance ρ
in the space of d PCs (Alg. 1:11–14). Specifically,
NEARESTNEIGHBORS(R, ρ, c, k, r) returns at most k near-
est neighbors whose distance from c is also ≤ r. Corre-
lation analysis between root-mean-squared deviation and
Euclidean distance in the space of PCs yields a reasonable
value for r (data not shown). The idea is to restrict edges to
thermal fluctuations.

The latter stage of roadmap querying depends on the
start cs, goal cg , and landmark structures L belonging to
the same graph component in the roadmap R. Therefore,
the sampling and roadmap building proceed iteratively.
Once a minimum number nmin of conformations have been
sampled, conformations are then sampled in sets of nadd,
checking for the presence of a connected component after
each such set has been added to the growing ensemble C.
Hard cases where no connected component can be obtained
are identified by stopping the computation when a maxi-
mum number of conformations nmax have been sampled.
Note that the parameter nmin effectively gives a burn-in
phase to the algorithm. If the algorithm checks every nadd
conformations without this burn-in phase, possibly very dis-
tant neighbors can be joined through edges (in the absence
of a distance criterion in nearest-neighbor computations).
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3.3 Roadmap Querying
The input to the query consists of the start cs, goal cg , and
a set L of other experimental structures serving as possible
intermediate structures in the sought transition event. These
structures, referred to as landmarks, are part of the ensemble
Ω initializing the sampling stage, so they are already in the
roadmap. The objective of roadmap querying is to compute
a set of paths P = {pathS : S ⊆ L} where pathS is the
lowest-cost path in the roadmap that starts at cs, ends at cg ,
and reaches each conformation in S (Alg. 1:16–18).

The cost of a roadmap edge (c, c′) ∈ E is defined as
COST(c, c′) = max{E(c′)− E(c), 0}, (4)

whereE(c) stands for the ff14SB energy of the reconstructed
structure corresponding to c (roadmap edges are directed).
This definition only records uphill energetic variations; the
latter represent the amount of energy that the protein needs
to accumulate through thermal vibrations to move from c
to c′. The cost of a path, which is the sum of the costs
of its edges, represents the total amount of energy needed
for a transition event to occur. This definition implements
the concept of mechanical work, which has been shown
to assess the quality of a path and thus the relevance of
a lowest-cost path as a representative of the transition event
better than the integral cost along the path [62].

To effectively obtain P = {pathS : S ⊆ L}, Dijkstra’s
algorithm is used to compute the lowest-cost path, denoted
by path(c, c′), for every pair (c, c′) where c, c′ ∈ {cs, cg}∪L.
Given S = {s1, . . . , s`}, pathS is computed by considering
all the permutations of s1, . . . , s`. For a permutation
sπ1

, . . . , sπ`
, let path(〈sπ1

. . . sπ`
〉) denote the lowest-cost

path in R that starts at cs, reaches sπ1
, . . . , sπ`

in order,
and ends at cg . Such path is obtained by concatenating
path(cs, sπ1

), path(sπ1
, sπ2

), . . . , path(sπ`−1
, sπ`

), path(sπ`
, cg).

Thus, pathS corresponds to path(〈sπ1
. . . sπ`

〉) with the
lowest cost over all permutations of s1, . . . , s`. As described
in section 4, the set P is analyzed to identify experimental
structures that serve as intermediates in a transition event.

3.4 Implementation Details
SoPriM is implemented in C/C++ and run on ARGO, a re-
search computing cluster provided by the Office of Research
Computing at George Mason University. Compute nodes
used for testing are Intel Xeon E5-2670 CPU with 2.6GHz
base processing speed and 3.5TB of RAM. Different param-
eter values are investigated for the proteins considered here,
resulting in running times from 3 to 48 hours on one CPU.
SoPriM is run 5 times on each parameter setting in order to
account for the stochastic nature of the algorithm.

Parameter Values: nmin is set at 3, 000, nmax is set at
5, 000 and nadd is set at 50. Different parameter values are in-
vestigated, with k ∈ {10, 20, 30, 40, 50} , and r correspond-
ing to lRMSDs of {0.25, 0.5, 1.0, 2.0, 3.0}Å, depending on
the magnitude of the transition and protein size. δmin is set
to −δmax, and δmax is varied in the set {0.5, 1.0, 2.0}.

4 RESULTS

4.1 Test Cases and Data Preparation:
Performance is evaluated on 3 proteins of importance to
human biology and disease, the catalytic domain of uncom-
plexed H-Ras, the superoxide dismutase [Cu-Zn] (SOD1),

and Calmodulin (CaM). The lengths of these proteins varies
from 144 to 166 amino acids. X-ray and NMR structures
collected for each of these proteins are restricted to those
of sequences with no more than 3 mutations over the
wildtype sequence. Structures with missing internal regions
are discarded. This results in 86 structures for H-Ras, 186 for
SOD1, and 697 structures for CaM. PCA is applied to each
of these three datasets, and a cumulative variance of 90% is
reached at 10, 25, and 10 PCs for H-Ras, SOD1, and CaM,
respectively. The cumulative variance profiles, not shown
here, can be found in [54], where evolutionary algorithms
operate over PC projection spaces to probe multiple-basin
energy surfaces.

4.2 Experimental Setup
Two separate analyses are conducted. The first analysis,
presented in Section 4.3, investigates the impact of the
selection operator (detailed in Section 3.1.3) on conforma-
tion ensemble obtained by SoPriM. The second analysis,
presented in Section 4.4, is conducted on applications of
SoPriM on selected proteins.

4.3 Analysis of Impact of Selection Mechanism
Energetic and structural features of the growing conforma-
tion ensemble C are tracked over the iterations in SoPriM. In
the analysis below, the displacement magnitude δmax is set
to 1; Appendix A analyzes the impact of the displacement
magnitude and its interplay with the selection operator.

The growing ensemble Ci is evaluated at regular snap-
shots i ∈ {0, w, 2w, . . .}, where w is the number of iterations
SoPriM is allowed to execute before the ensemble is re-
evaluated. Recall that C0 consists of (energetically-refined)
conformations obtained by threading the experimentally-
known structures onto the sequence of interest, as described
in Section 3. Two settings are considered, one where SoPriM
uses the uniformly at random selection operator, and an-
other where SoPriM uses the biased selection operator.

Two separate evaluations of Ci are conducted. In the first,
conformations in Ci are shown in the PC1-PC2 embedding
(effectively using only the first two coordinates of each
conformation), and the projections are color-coded based on
the AMBER ff14SB energy values of the all-atom structures
corresponding to conformations in Ci. The result of this
projection of the probed energy surface over the top two
collective variables (PCs) is what is often referred to as
an energy landscape; for all proteins studied here the top
two PCs capture at least 50% of the cumulative variance,
and in turn projections on the top two PCs can be used to
drawn observations. By visualizing the energy landscape as
C grows, one obtains a dynamic view of how the selection
operator steers the exploration in SoPriM. The baseline at
i = 0 allows seeing how the emerging landscape features
are influenced, if at all, by the initialization. Comparing
landscapes obtained at the point in time, but by the two
different selection operators, allows drawing qualitative
observations on the impact of the two implementations on
the exploration capability of SoPriM. The second evaluation
concerns the structural diversity of Ci. This is measured
via the distribution of pairwise CA lRMSDs among the
structures corresponding to the ensemble Ci.
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These two evaluations are related on a selected protein,
H-Ras. Fig. 1 juxtaposes the energy landscape correspond-
ing to C0 (the experimental structures) to three landscapes
corresponding to i = 500, i = 1, 500 and i = 3, 000
iterations, shown on the left panel for the uniformly at
random selection operator and on the right for the biased
selection operator.

Comparison of the right panel to the left panel in Fig. 1
shows that the biased selection scheme affords higher ex-
ploration capability to SoPriM. New regions are populated
more rapidly. In contrast, the uniformly at random selection
scheme results in SoPriM exploring regions nearby the en-
ergy basins populated by the experimentally-known struc-
tures. While all conformations in Ci have equal probability
of being selected, in terms of organization by basins, the
basins with higher population will be selected more often
for enrichment by the uniformly at random selection oper-
ator than basins with lower population. As can be seen in
the slow growth of the landscape in Figures 1(b1),(c1),(d1),
significant execution time has to pass for the uniformly at
random operator to allow SoPriM to expand away from the
existing basins, as new, under-populated regions have lower
probability of selection than well-populated regions.

Fig. 2 shows the structural diversity of Ci by plotting
the pairwise CA lRMSD distributions for H-Ras at the
same 4 intervals, juxtaposing SoPriM with the uniformly
at random selection operator on the left panel with SoPriM
with the biased selection operator on the right panel. The
distributions obtained at later iterations are superimposed
over those obtained at earlier iterations.

Fig. 2(a) shows that the uniformly at random selection
operator does not readily change the distribution in C0; the
operator causes SoPriM to spend further time populating
the already well-populated bins at i = 0. In contrast,
Fig. 2(b) shows that the distribution obtained by SoPriM
when using the biased selection operator quickly fills out
new regions of the conformation space; in particular, the
population of bins around lRMSD 1.2 − 1.5Ågrows. This
region is about halfway between the On and Off active
states of H-Ras, and corresponds to an energy barrier in
the landscape (as found by SoPriM and visible in Fig. 1(c2),
(d2)). Comparison of Fig. 2(a) to Fig. 2(b) shows that the
biased selection operator allows SoPriM to quickly populate
this region and more readily explore regions different from
those populated by the initial structures.

Taken together, the above analysis suggests that the bi-
ased selection operator is more effective at exploration than
the uniformly at random operator. However, a uniformly
at random selection operator affords more exploitation ca-
pability to SoPriM; that is, drilling down in a basin. The
latter behavior can also be accomplished by interleaving
a more exploration-driven selection operator, such as the
biased selection one used here, with a prudent perturbation
operator (demonstrated via additional analysis in Appendix
A). The analysis suggests that the biased selection operator
combined with different displacement magnitudes in the
perturbation operator provides a good balance between
exploration and exploitation. For this reason, the rest of our
analysis on the three protein systems is conducted over con-
formation ensembles that combine those obtained by 5 in-
dependent runs; as suggested by the above analysis, all runs

use the biased selection operator, but three different dis-
placement magnitudes are considered; δmax ∈ {1.0, 2.0, 3.0}.
Once conformations are obtained, lowest-cost paths and
tours are computed at different values of nearest neighbors
k and range r. Specifically, k ranges in [10, 20, 30, 40, 50]. For
H-Ras and SOD1, r ranges in {0.25, 0.5}Å. For CaM, where
the maximum pairwise lRMSD between the experimentally-
known structures is 21Å, r ranges in {1, 2, 3}Å. The lowest-
cost paths and tours obtained by the different runs are
collected, and only those with costs no higher than a thresh-
old of 3.5kcal/[mol · residue] of the lowest cost obtained
are retained for further analysis. Such paths and tours are
visualized on the PC1-PC2 energy landscapes.

4.4 Summary Analysis of Landscapes and Paths Ob-
tained by SoPriM

The analysis on the three selected proteins is conducted over
ensembles obtained by SoPriM with the Amber ff14SB force
field. In a proof-of-concept demonstration of SoPriM in [12],
we utilized the ff12SB force field. Comparative analysis in
Appendix B shows that the two force fields lead SoPriM to
obtain highly similar landscapes.

4.4.1 Landscape and Low-cost Paths Obtained for SOD1
SOD1 is a 150 amino-acid long enzyme critical in the
detoxification of superoxide radicals in the body. SOD1
misfolding and aggregation have been associated with the
development of late-onset neurodegenerative diseases such
as Parkinson’s, Alzheimer’s, and Amyotrophic Lateral Scle-
rosis (ALS). Mutations in SOD1 have been linked to famil-
ial ALS. SOD1 WT is a dimer held together by disulfide
bridges. Oxidation of SOD1 involves binding of Cu and Zn
ions to each subunit. Cu- and Zn-deficient states of SOD1
are destabilized and prone to monomerization. Different
states of metallation of SOD1 in monomeric forms have
been the focus of several studies, as these structures tend to
be pathogenic. At normal conditions, SOD1 functionality is
satisfied by the Cu-Zn binding regulation mechanism. Wet-
laboratory evidence suggests that in the absence of free Cu
ions, the Zn alone is able to provide the Zn-Zn regulation,
maintaining SOD1 functionality [63].

We use SoPriM to study the transformations between
WT apo- and fully-metallated WT SOD1 structures to better
understand Cu-Zn and Zn-Zn regulation. SoPriM is applied
to the SOD1 functional region that is implicated in three
biological processes, SOD1 oxidation regulated through the
binding Cu and Zn ions, glutathionylation, and phosphory-
lation. The latter two impact SOD1 activity through interac-
tions with other proteins [64].

The preliminary investigation in [12] applies SoPriM to
the region consisting of amino acids at positions 1−150.
SoPriM-obtained conformations are projected onto PC1
and PC2 and color-coded by Amber ff14SB energy values
to visualize the energy landscape. The landscape shown
in Fig. 3(a) contains two basins separated by an energy
barrier; the known structures project to the basins (black
dots). This organization is due to structural changes upon
phosphorylation and has been also reported by prior work
applying an evolutionary algorithm to probe multiple-basin
energy surfaces [54]. Analysis of SoPriM-obtained lowest-
cost paths and tours in [12] shows that structures reported
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(a)

(b1) (b2)

(c1) (c2)

(d1) (d2)
Fig. 1. The growing ensemble Ci is projected onto the top two PCs and color-coded by AMBER ff14SB energy values to obtain a dynamic view of
the SoPriM-generated H-Ras energy landscape. (a) shows the landscape probed immediately after initialization, when only experimentally-known
structures of H-Ras are present in the ensemble. (b1) and (b2) juxtapose the landscapes probed after 500 iterations when using (b1) the uniformly
at random versus (b2) the biased selection operator. Similarly, (c1) and (c2) juxtapose the landscapes probed after 1, 500 iterations, and (d1) and
(d2) provide the juxtaposition after 3, 000 iterations by the uniformly at random versus the biased selection operator, respectively.
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(a) Uniformly at random selection (b) Biased selection

Fig. 2. The distribution of pairwise CA lRMSDs among conformations obtained after every i ∈ {0, 500, 1, 500, 3, 000} is shown (i = 0 corresponds
to the distribution over experimentally-known structures that initialize the ensemble Ci) to track the structural diversity of the growing ensemble. (a)
does so over when SoPriM uses the uniformly at random selection operator and (b) shows the results when SoPriM uses the biased selection
operator. In both settings, the displacement magnitude δmax = 1.

in PDB id 2NNX, orange dots in Fig. 3(a), mediate the
inter-basins transition corresponding to phosphorylation.
This PDB entry is reported for a disease-associated double
mutant that diminishes Cu binding and dimer stability;
SoPriM finds these structures to be semi-stable for the WT
and mediate the transition.

Phosphorylation-induced motions of N-terminal
residues in SOD1 are large and dominate PC1. To study
other, more subtle motions possibly related to the oxidation
mechanism in SOD1, the PCA analysis is repeated here
on residues 3−150, and SoPriM is reapplied. The new
landscape is shown in Fig. 3(b), which shows that, when
the phosphorylated region is removed, known structures
organize in a single basin. As a result, a greater variety of
energetically-similar paths are involved in the oxidation
process. Fig. 3(b) relates this by showing the region of
the landscape involved in low-cost paths from the same
start structure, WT apo-SOD1 form (PDB id 1HL4) to four
different goal structures (PDB ids 1HL5, 1SPD, 2C9S, and
2C9V) corresponding to different metallated forms of SOD1.

SoPriM-obtained paths from apo- to metallated Cu-Zn
binding structures range in energetic costs from 0.05 to 1.5
kcal/mol, with an average of 0.45 kcal/mol. Paths from
the apo to the Zn-Zn binding structures have higher costs
in the range 0.6 to 3.4 kcal/mol, with an average of 0.65.
These quantitative results suggest that, even though the Zn-
Zn state appears to be as stable as the Cu-Zn metallated
state [65], the formation of Cu-Zn structures may be more
preferable from the apo state.

An additional observation can be drawn regarding the
role of SOD1 structures reported under PDB id 2NNX.
In addition to a mediating role for phosphorylation, these
structure seem to mediate the transitions in the oxidation
process, as well. Based on the location in the transitions ob-
tained for SOD1 and drawn in Fig. 3(b), further stabilization
of this structure upon mutations may slow the transition,
thus affecting SOD1 function. Taken together, these results
suggest that, though SOD1 is a challenging protein to study,

specific structures, such as the highlighted double mutant,
can be further investigated to better understand function
modulation in SOD1 WT and variants.

4.4.2 Landscape and Low-cost Paths Obtained for H-Ras
H-Ras is 166 amino acids long, mediates signaling path-
ways controlling cell proliferation and growth and switches
between two states, On and Off, to regulate its activity.
The switch is a slow process, and at normal conditions is
accelerated by the binding of On H-Ras to the G-protein
activating (GAP) and Off H-Ras to the guanine nucleotide
exchange factor (GEF) [66]. Most wet-laboratory studies
aim to find alternatives to the GAP- and GEF-regulated
mechanism to accelerate the On-Off switch in the case of
mutations in H-Ras.

The landscape and low-cost On-Off paths obtained by
SoPriM on WT H-Ras are drawn in Fig. 4. All conformations
obtained are projected onto the top two PCs and color-
coded by their Amber ff14SB energy values on order to
visualize the energy landscape reconstructed by SoPriM.
The experimentally-known structures used by SoPriM are
shown by drawing their projections in black. Specific struc-
tures crucial to our analysis are drawn in different col-
ors. The start structure (projection is drawn blue) used by
SoPriM for path queries is the WT On structure with PDB
id 1QRA. The goal structure (projection drawn in green) is
the WT Off structure under PDB id 4Q21. Structures used
by SoPriM in tour queries are highlighted by coloring their
projections in orange. Various annotations on the sides of the
landscape provide information on the PDB ids and known
biophysical characteristics and activity of these structures.

Fig. 4 shows multiple basins that contain different
groups of known structures. We note that many of these
structures are only observed on variants of H-Ras and not
the WT. Threading them onto the WT and minimizing
them as described in Section 3 provides possible semi-stable
structures for the WT. The location of their projections on
low-energy regions discovered by SoPriM is a confirmation
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SOD1

(a)

(b)
Fig. 3. Conformations obtained by SoPriM on the (a) 1−150 amino-
acid region and then on the (b) 3−150 amino-acid region of SOD1 are
projected onto the top two PCs and color-coded by AMBER ff14SB
energy values. Projections of known structures are drawn in black.
Projections of structures under PDB id 2NNX are in orange. (b) Lowest-
cost paths and tours that meet the energetic criterion are summarized
via transition tubes. Different settings are considered, using the same
start structure (in blue) but four different goal structures (in green).

of the principle of conformational selection; that is, stable
structures of variants are semi-stable for the WT. Three dis-
tinct low-energy regions are observed, separated by energy
barriers. The widest, low-energy region appears on the top
left of the landscape and corresponds to the On state (based
on the location of the projection of the On structure under
PDB id 1QRA). While containing many deep local minima,
this region is highly rugged. This has implications for the
On-Off regulation, as observed when comparing low-cost
paths and tours between the On and Off states (detailed
later). The second widest appears on the bottom right and
corresponds to the Off state (based on the location of the
projection of the Off structure under PDB id 4Q21).

Several known WT structures project onto the region
corresponding to the On state in Fig. 4. These include not

only the GTP-bound structure under PDB id 1QRA and the
canonical structure under PDB id 1CTQ, but also the GTP
GAP-bound structure under PBD id 1WQ1 and the WT SOS-
bound structure under PDB id 1NVW. The co-location of the
latter two structures supports wet-laboratory evidence that
both GAP and SOS effectors use the same mechanism of On-
Off activation [67], [68]. Additional insights can be drawn.
In particular, the landmark structures that SoPriM uses in
tour calculations have been selected to be structures with
severe, oncogenic mutations (at G12 and Q61) and structures
employed in MD simulations [69], [70], [71]. These struc-
tures are organized in different sub-groups and project onto
different regions within the On basin, based on whether
they have effectors or not. For instance, oncogenic structures
without effectors are closer to the canonical and GTP-bound
On structures, whereas oncogenic structures with effectors,
such as Raf, PI3K kinase, and GSP, are further away.

Recent experiments report the presence of an allosteric
switch in H-Ras [72] (marked by light green circles and an-
notations in Fig. 4); it is speculated that this allosteric switch
may mediate the On-Off switch in H-Ras [72], [73]. These
recently-found structures are classified as either having an
On or an Off shift, based on structural features [73]. Inspec-
tion of the projections of these structures on the SoPriM-
obtained landscape shows that the projections fall in two
distinct groups, in agreement with the On and Off shifts.
The On-shifted structures are closer to the On structures,
whereas the Off-shifted ones are further away.

Low-cost paths and tours (that meet the energetic crite-
rion) are now analyzed. The paths are shown in detail in Ap-
pendix C. In the interest of clarity, Fig. 4 summarizes them
via transition tubes, essentially grouping the observed paths
based on regions they navigate. The widths of the tubes cor-
respond to path diversity. As can be seen in Fig. 4, SoPriM
obtains three conformation switching scenarios/routes for
the On to Off transition. The widest transition tube makes
use of the allosteric switch structures. This route has greater
energetic diversity (paths have costs ≥ 2.5kcal/mol) but is
also marked by higher path diversity. MD studies, which
confirm the stability of allosteric binding [74], [75], provide
complementary evidence of the possible role of the allosteric
switch in the On-Off regulation in H-Ras, as obtained here
by SoPriM.

The other two routes obtained by SoPriM have less path
diversity but lower costs, as low as 1.3kcal/mol. These paths
are harder to find (and result only when k = 50), which is
due to high ruggedness in the vicinity of 1LF0 (a stringent
energetic threshold in our preliminary investigation in [12]
provided evidence of these two routes only). These routes
are interesting, as they have also been proposed in previous
MD simulation studies of the On to Off transition [69], [71].
Taken together, these results suggest that the On to Off
transition in H-Ras may make use of distinct routes and thus
presents an opportunity for drug-induced On-Off regulation
in oncogenic variants.

4.4.3 Summary Analysis of Low-cost Paths of CaM
CaM is a 144 amino-acid long enzyme that has been cap-
tured in diverse bound and unbound states in the wet labo-
ratory. Different settings are investigated to observe CaM
transitions from an open state to closed/peptide-binding
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H-Ras

Fig. 4. Conformations obtained by SoPriM are projected onto the top two PCs and color-coded by AMBER ff14 energy values to obtain a view
of the SoPriM-generated H-Ras energy landscape. The landscape is enriched with information on where experimentally-known structures project
in the embedding. PDB ids are shown, together with brief function information. The start and goal are in blue and green, and landmarks are in
orange. The regions of the space navigated by energetically-similar lowest-cost paths and tours are shown via transition tubes. The width of the
tubes relates to the diversity of paths in them (detailed paths can be found in Appendix C).

states. The open state is represented by the structure with
PDB id 1CLL and used as start. Two different structures are
employed as goals in different runs of the algorithm, the
ones with PDB id 2F3Y and 1NWD (these bind to different
peptides and show different degrees of collapse of the N-
and C- domains in CaM). One landmark is specified, the
structure with PDB id 1CFD, to investigate the hypotheses
that open-to-close transitions in CaM go through the apo
(calcium-free) state, where the internal helix connecting the
N- and C-terminal domains is partially unfolded to possibly
accommodate further collapse of the domains.

Many low-cost paths and tours are related in an earlier
investigation of SoPriM [12], where it is observed that paths
that go through 1CFD have higher cost. These results are
synthesized in a schematic in Fig. 5(d), which shows that
the transitions from 1CLL to the closed state 1NWD may
not make use of 1CFD (tours obtained by SoPriM forced to
go through 1CFD have a higher cost of about 3.5kcal/mol
per residue). PDB ids of known structures participating in
the different routes to each of the closed states are shown.
Fig. 5(b) also shows the successive structures corresponding
to the two lowest-cost paths (that do not make use of 1CFD)
to the closed states. The succession of structures shows that
the domain collapse, re-arrangement, and partial unfolding
of the helix linker are gradual, as captured in various
structures in the NMR ensemble with PDB id 2K0E. This
ensemble has been contributed to the PDB by work in [76].

The 2K0E ensemble represents the structure and dy-
namics of calmodulin (CaM) in the calcium-bound state

(Ca(2+)-CaM) and in the state bound to myosin light chain
kinase (CaM-MLCK). Analysis in [76] shows that corre-
lated motions within the Ca(2+)-CaM state direct the struc-
tural fluctuations toward complex-like substates. This is in
great agreement with the results obtained by SoPriM for
CaM. SoPriM elucidates that the lowest-cost path for the
transition between the open and peptide-binding states of
CaM does not make use of the apo/calcium-free structure
reported under PDB id 1CFD but instead makes use of
Ca(2+)-bound structures and MLCK-bound structures cap-
tured in the wet-laboratory under PDB id 2K0E. While work
in [76] was restricted to MLCK binding, the results obtained
for CaM here suggest that the same mechanism observed
in [76] prepares CaM for binding to other peptides (the C-
terminal Domain of Petunia Glutamate Decarboxylase in
1NWD and the IQ domain in 2F3Y). Taken together, the
results here point to a general mechanism for the open-
to-closed/complexed dynamics of CaM, where correlated
motions within the calcium-bound state direct the fluctua-
tions and population shift to the peptide-bound states. This
result illustrates the capability of SoPriM to both confirm
wet-laboratory work and make new discoveries.

5 CONCLUSION

The definition of edge weight here employs the concept of
mechanical work. Future work will consider additional con-
cepts, such as minimum resistance. Another direction will
consider adaptive selection operators that switch between
exploration and exploitation during execution.
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CaM

(a)

(b)
Fig. 5. (a) Schematic summarizes lowest-cost paths obtained by SoPriM, showing PDB ids of known structures participating in the transitions. (b)
Successive structures in the lowest-cost paths found for the 1CLL to 2F3Y and 1CLL to 1NWD transitions are also shown. Numbers indicate model
number within an NMR entry.

Other lines of further investigation concern multivariate
statistical analysis techniques of existing experimental struc-
tures. Here we employ a linear technique that allows di-
rectly sampling in the reduced space. Non-linear techniques
will be considered in the future. The additional demand of
direct sampling in the reduced space will have be addressed.
While beyond the scope of this paper, several local strategies
can be employed in this regard. Techniques, such as NMA,
can also be employed to soften the reliance on a set of
experimental structures.

Future work will investigate applications on variants of
a protein. This setting will allow comparing landscapes and
paths to understand the role of structure and energetics in
the impact of sequence mutations on misfunction.
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