
REVIEW

Principles and Overview of Sampling Methods
for Modeling Macromolecular Structure and
Dynamics
Tatiana Maximova1, Ryan Moffatt1, Buyong Ma2, Ruth Nussinov2,3*, Amarda Shehu1,4,5*

1 Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America,
2 Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National
Cancer Institute, Frederick, Maryland, United States of America, 3 Sackler Institute of Molecular Medicine,
Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel
Aviv, Israel, 4 Department of Biongineering, George Mason University, Fairfax, Virginia, United States of
America, 5 School of Systems Biology, George Mason University, Manassas, Virginia, United States of
America

* nussinor@helix.nih.gov (RN); amarda@gmu.edu (AS)

Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding

how macromolecules carry out their functions in the cell. Significant advances have been

made toward this end in silico, with a growing number of computational methods proposed

yearly to study and simulate various aspects of macromolecular structure and dynamics.

This review aims to provide an overview of recent advances, focusing primarily on methods

proposed for exploring the structure space of macromolecules in isolation and in assem-

blies for the purpose of characterizing equilibrium structure and dynamics. In addition to sur-

veying recent applications that showcase current capabilities of computational methods,

this review highlights state-of-the-art algorithmic techniques proposed to overcome chal-

lenges posed in silico by the disparate spatial and time scales accessed by dynamic macro-

molecules. This review is not meant to be exhaustive, as such an endeavor is impossible,

but rather aims to balance breadth and depth of strategies for modeling macromolecular

structure and dynamics for a broad audience of novices and experts.

Author Summary

This paper provides an overview of recent advancements in computational methods for
modeling macromolecular structure and dynamics. The focus is on methods aimed at pro-
viding efficient representations of macromolecular structure spaces for the purpose of
characterizing equilibrium dynamics. The overview is meant to provide a summary of
state-of-the-art capabilities of these methods from an application point of view, as well as
highlight important algorithmic contributions responsible for recent advances in macro-
molecular structure and dynamics modeling.
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Introduction
A detailed understanding of how fundamental biological macromolecules, such as proteins and
nucleic acids, carry out their biological functions is central to obtaining a detailed and complete
picture of molecular mechanisms in the healthy and diseased cell. Furthering our understand-
ing of macromolecules is central to understanding our own biology, as proteins and nucleic
acids are central components of cellular organization and function. Many abnormalities
involve macromolecules incapable of performing their biological function [1–4], either due to
external perturbations, such as environmental changes, or internal perturbations, such as
mutations [5–10], affecting their ability to assume specific function-carrying structures.

It has long been known that the ability of a macromolecule to carry out its biological func-
tion is dependent on its ability to assume a specific three-dimensional structure (in other
words, structure carries function) [11,12]. However, an increasing number of experimental,
theoretical, and computational studies have demonstrated that function is the result of a com-
plex yet precise relationship between macromolecular structure and dynamics [13–21]. Most
notably, in proteins, the ability to access and switch between different structural states is key to
biomolecular recognition and function modulation [22,23].

The intrinsic dynamic personality of macromolecules [18] is not surprising and can indeed
be derived from first principles. Feynman highlighted the jiggling and wiggling of atoms well
before wet-laboratory techniques provided evidence of macromolecular dynamics [24]. In the
late 1970s and early 1980s, it became clear that treating macromolecules as thermodynamic
systems and employing basic principles allowed anticipating and simulating their intrinsic
state of perpetual motion [25,26]. The thermodynamic uncertainty principle was coined by
Cooper in [26] to refer to the inherent uncertainty about the particular state a macromolecule
is or will evolve to at any given time. Cooper was among the first to employ tools from statisti-
cal thermodynamics to show that macromolecular fluctuations are a direct result of thermal
interaction with the environment and that any detailed description of macromolecular struc-
ture and dynamics entailed employing probability distributions. Further work by Wolynes and
colleagues continued in this spirit, popularizing a statistical treatment of macromolecules with
tools borrowed from statistical mechanics and culminating in the energy landscape view
[5,13,27,28].

Great advances have been made in the wet laboratory to elucidate macromolecular structure
and dynamics. Nowadays, techniques such as X-ray crystallography, Nuclear Magnetic Reso-
nance (NMR), and cryo-Electron Microscopy (cryo-EM) can resolve equilibrium structures
and quantify equilibrium dynamics. Macroscopic measurements obtained in the wet laboratory
are Boltzmann-weighted averages over microstates/structures populated by a macromolecule
at equilibrium. Though in principle wet-laboratory techniques are limited in their description
of equilibrium structures and dynamics to the time scales probed in the wet laboratory (a prob-
lem also known as ensemble-averaging), much progress has been made [29–31]. The ensemble
of structures contributing to macroscopic measurements obtained in the wet laboratory can be
unraveled with complementary computational techniques [32–36]. In addition, wet-laboratory
techniques, such as NMR spectroscopy, can on their own directly elucidate picosecond-milli-
second long relaxation phenomena [37,38]. Indeed, recent single-molecule techniques have
achieved great success at bypassing the ensemble averaging problem and elucidating equilib-
rium dynamics [31,39–47].

Transitions of a macromolecule between successive structural states can be captured in the
wet laboratory [31,46,48–53]. Wet-laboratory techniques can resolve key well-populated inter-
mediate structures along a transition [52,54], but they are generally unable to span all the time
scales involved in a transition and so fully account for a macromolecule’s equilibrium
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dynamics. A complete characterization of macromolecular dynamics remains elusive in the
wet laboratory due to the disparate time scales that may be involved. Dwell times at successive
states along a reaction may be too short to be detected in the wet laboratory. The actual time a
macromolecule spends during a transition event can be short compared to its dwell time in any
particular thermodynamically stable or meta-stable structural state. Indeed, neither wet- nor
dry-laboratory techniques can, on their own, span all spatial and time scales involved in
dynamic macromolecular processes [55].

Macromolecular modeling research in silico is driven by the need to complement wet-labo-
ratory techniques and obtain a comprehensive and detailed characterization of equilibrium
dynamics. Such a characterization poses outstanding challenges in silico. In principle, a full
account of macromolecular dynamics requires a comprehensive characterization of both the
structure space available to a macromolecule at equilibrium as well as the underlying free
energy surface that governs accessibility of structures and transitions between structures. Early
work on protein modeling focused on short protein chains and simplified representations
models that laid out amino-acid chains on lattices. These distinct choices made it possible to
perform interesting calculations revealing key properties of protein folding and unfolding [56],
as well as predict quantities of importance in protein stability and function, such as pKas of
ionizable groups [57]. On-lattice models incidentally also allowed key theoretical findings on
the computational complexity associated with computing lowest free-energy states in the con-
text of ab initio (now also known as de novo) protein structure prediction [58–60]. The compu-
tational complexity of finding the global minimum energy conformation was shown to be NP-
hard. These findings made the case that sophisticated algorithms would be needed to comple-
ment wet-laboratory characterizations of macromolecular structure and dynamics for the pur-
pose of elucidating biological function.

The advent of Molecular Dynamics (MD) simulations and the concept of an energy func-
tion promised to revolutionize macromolecular modeling, as in principle the entire equilibrium
dynamics could be simulated by simply following the motions of the atoms constituting a mac-
romolecule down the slope of the energy function. Research in this direction was made possible
by a growing set of equilibrium structures resolved in the wet laboratory, from myoglobin
[61,62] and lysozyme [63] by 1967 to more than a hundred thousand structures now freely
available for anyone in the Protein Data Bank (PDB) [64]. Seminal work in the Karplus labora-
tory on the MDmethod and in the Lifson laboratory on the design of consistent energy func-
tions and simplified molecular models set the stage for a computational revolution in
structural biology. Commercialization of computers was critical to this revolution.

MD simulations had been shown successful in reproducing equilibrium properties of argon
[65], but it was McCammon and Karplus who provided the earliest demonstration in 1977 of
the power of MD-based modeling to simulate protein dynamics [25]: a short 9.2 picosecond-
long trajectory was obtained showing in-vacuum, atomistic fluctuations of the bovine pancre-
atic trypsin inhibitor around its native, folded structure. Realizing the power of MD simula-
tions to extract precious information on macromolecular structure and dynamics, the Karplus
laboratory democratized modeling by offering the CHARMM program to the computational
community [66]. Further work by Karplus and McCammon showed that significant features of
protein dynamics would only emerge over longer time scales. The simulation in [67] reached
100 picoseconds, but it would soon become clear that MD-based probings of macromolecular
structure and dynamics were in practice limited by both macromolecular size (spatial scale)
and time of a phenomenon under investigation (time scale). A significant body of complemen-
tary work in macromolecular structure and modeling investigated non-MD based methods. In
fact, two years earlier to the 1977 MD simulation by Karplus of equilibrium fluctuations of the
bovine pancreatic trypsin inhibitor, Levitt and Warshel had presented a computer simulation
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of the folding of the same inhibitor through a simplified (now known as coarse-grained)
model, in which each residue was reduced to one pseudo-atom, and an algorithm based on
steepest descent [68]. Reproducibility of this work has so far remained elusive.

Further work by Levitt and Warshel, prompted by the visionary Lifson at the Weizmann
Institute of Science, focused on the design of a consistent energy function for proteins [69].
The idea was to come up with a small number of consistent parameters that could be transfer-
able from molecule to molecule and not depend on the local environment of an atom. Once
such an energy function was implemented, simple algorithms could then be put together by
making use of the function, its first derivative (the force vector), and the second derivative (the
curvature of the energy surface). It is interesting to note that though Lifson andWarshel were
the first to introduce a consistent energy function, they did so for small organic hydrocarbon
molecules. It was Levitt who realized that their parameters could be used to carry out calcula-
tions on proteins. In 1969, Levitt published the first non-MD, steepest descent algorithm on a
simplified model encoding only heavy atoms of the X-ray structures of hemoglobin and lyso-
zyme [70]. This work was seminal for Levitt and Warshel to claim the first simulation of pro-
tein folding [68]. The algorithm used in these simulations was quite sophisticated, changing
torsion angles, as proposed by Scheraga [71], and using normal modes to rapidly compute low-
energy paths out of local minima [72].

Further work on coarse-grained and multiscale models built with the quantum mechanics
(QM)/molecular mechanics (MM) method proposed by Warshel [73] was seminal in allowing
simulation to reach longer spatial and time scales. Warshel, who had a background in quantum
mechanics, realized that large molecular systems could be spatially divided into a region
demanding quantum mechanical calculations (e.g., due to bonds being broken) with the rest
sufficiently represented by empirical force fields. This method remains the cornerstone of mod-
ern multiscale modeling [74–80] and, together with the idea of representing complex systems
in different resolutions at different time and length scales [76], has allowed simulations to elu-
cidate structures, dynamics, and the biological activity of systems of increasing complexity,
from enzymes [74,77,81] to complex molecular machines [82–91].

In tandem with these developments, a new method, Metropolis Monte Carlo (MC) [92,93],
made its debut in computational structural biology. In 1987, important work in the Scheraga
laboratory introduced an MC-based minimization method to simulate protein folding [94]. In
1996, the Karplus laboratory demonstrated the ability of MC simulations on a cubic lattice to
simulate the folding mechanism of a protein-like heteropolymer of 125 beads [95]. Following
work in the Scheraga laboratory further made the case for the utility of MC-based methods in
studies of macromolecular structure and dynamics [96–98]. Kinetic MC methods were
designed to address the lack of kinetics in the classic MC framework [99]. In light of contribu-
tions that gave birth to computational structural biology [100], it is no surprise that the Nobel
2013 prize in chemistry recognized computational scientists, namely, Karplus, Warshel, and
Levitt for their seminal work in the development of multiscale models for complex chemical
systems [101–103].

Improvements in hardware over the last forty years have been critical to extending the reach
of MD- and MC-based modeling. For example, MD-based studies have expanded their scope,
scale, and thus applicability due to specialized architectures, such as Anton [104,105], Graphics
Processing Units (GPUs) [106–109], and petascale national supercomputers, such as Blue-
Waters, Titan, Mira, Stampede [110,111]. The pervasiveness of supercomputing has spurred
great advances in algorithmic techniques to effectively parallelize MD. Typically, in parallel
MD, the interacting particles are spatially divided into subdomains that are assigned to differ-
ent processors. In this framework, load balancing becomes an issue for large-scale MD simula-
tions now performed on thousands of processors and involving billions of particles [112].
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Many techniques now exist for dynamic load balancing [113]. In addition, while each processor
is responsible for advancing its own particles in time, processors need to exchange information;
accurate force calculations require knowledge of neighbor particle positions. Work in [114]
describes recent strategies for efficient neighbor searches in parallel MD. Other techniques that
permit parallelization of MD address and optimize force splitting in the context of the particle-
mesh Ewald algorithm [115]. It is worth noting that many of these techniques are now inte-
grated in publicly-available parallel MD code, such as NAMD [116].

Important contributions in enhancing exploration capability have also been made from
non-MD or non-MC frameworks but rather adaptations of stochastic optimization frame-
works often designed for modeling other complex, non-biological systems. These frameworks,
though less mature than MD and MC, are summarized here in the interest of introducing read-
ers to interesting complementary ideas. Algorithmic advances, whether to extend the applica-
bility of MD- and MC-based frameworks or adapt other frameworks for macromolecular
modeling, now allow predicting native structures of given protein amino-acid sequences [117–
120], mapping equilibrium ensembles, structures spaces and underlying energy landscapes of
macromolecules [6,8,121–126], revealing detailed transitions between stable and meta-stable
structures [127–134], modeling binding and docking reactions [135–137], revealing not only
equilibrium structures of bound protein-ligand or protein-protein assemblies but also calculat-
ing association and disassociation rates [138,139], and more.

This review aims to provide an overview of such advances. Given the rapidly growing body of
research in macromolecular modeling, aiming to provide an exhaustive review would be a task in
futility. For instance, while the development of molecular force fields is recognized as crucial to
accurate modeling [140,141], this review does not focus on force field development. Other
important contributions due to the development of ever-accurate coarse-grained representations
of macromolecules, solvent models, and multiscaling techniques are acknowledged, but the
reader is referred to existing comprehensive reviews on these topics [76,142–144]. Instead, this
review focuses on sampling methods for the exploration of macromolecular structure spaces and
underlying energy surfaces for the purpose of characterizing equilibrium structure and dynamics.
This focus is warranted due to the recognition that sampling remains a problem [102,128,145].
The goal is to introduce a broad audience of researchers both to most recent and exciting
research from an application point of view, as well as highlight important algorithmic contribu-
tions responsible for recent advancements in modeling macromolecular structure and dynamics.

Recent Applications Made Possible by Hardware and Algorithmic
Advancements
There is by now a wealth of computational studies aimed at extracting information on equilib-
rium structures and dynamics of macromolecules in molecular assemblies or isolation. Non-
MD based studies can extract information about thermodynamically stable or meta-stable
structures while foregoing simulations of a system’s dynamics. On the other hand, MD-based
studies readily provide information on the dynamics but can only elucidate structures accessi-
ble within the time of the simulation. While non-MD based methods have made it possible to
predict, for instance, biologically active structures of proteins given their amino-acid sequences,
a problem known as de novo structure prediction, only MD-based methods can provide
detailed information on protein folding and unfolding. Different aspects of protein-ligand
binding, protein-DNA, protein-protein docking, equilibrium fluctuations, structure prediction,
folding, and unfolding can be modeled with MD and non-MDmethods.

Disparate time scales are involved in macromolecular dynamics, and they constitute the
main challenge in describing macromolecular dynamics in fullness and detail via MD-based
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simulations. For instance, bond vibrations occur on the femtosecond time scale, solvent effects
take anywhere from a few picoseconds up to a few nanoseconds, transitions in side-chain rota-
tion and secondary structure occur on the 10–100 nanosecond time scale, large global struc-
tural transitions can occur on the microsecond time scale, ligand binding and allosteric
regulation are usually on the millisecond time scale, and protein folding takes anywhere from a
few microseconds to a few seconds, depending on protein size. In extreme cases, natural ligand
and drug binding is a much longer event that can occur on the hours scale [146].

Despite such challenges, much progress has been made. Equilibrium, atomistic, MD simula-
tions can reproduce in detail microsecond-long folding events for small proteins on specially-
designed supercomputers [104,105,147,148]. Protein-ligand binding with full ligand flexibility
and protein flexibility limited to the binding site can be simulated up to 100 microseconds
[146,149]. Brownian dynamics simulations can capture events that occur in the microsecond
time scale; when coupled with enhanced sampling techniques, these simulations have been
reported to capture slow events of large proteins binding and sliding on DNA at 25 microsec-
onds at a coarse resolution [150]. Longer simulations of an estimated time scale of more than
48 milliseconds of the lac repressor sliding on DNA have been reported via atomistic MD in
explicit solvent [151].

Coarse-grained modeling and longer time steps can can further increase time scales but
often at the cost of essential details [152]. However, multiscale MC simulations have been
reported to allow studying in detail processes that occur in the range of milliseconds [76,78].
Organizations of short MD or MC trajectories in Markov state models (MSMs) can extract pre-
cious information on structure and dynamics for events that occur on longer time scales, from
a few milliseconds to a few seconds [146,153].

In the following we provide a short overview of the current applications pursued by MD
and non-MDmethods without describing in detail the algorithmic ingredients of such meth-
ods. We highlight key examples where recent advances in MD and non-MDmethods have
made it possible to address problems and systems not possible before due to the large spatial
and time scales involved. Descriptions of the algorithmic ingredients responsible for such
computational advancements follow.

Simulation and Modeling of Macromolecular Interactions
Simulating interactions of macromolecules with other macromolecules or small molecules is
important to understand the molecular basis of mechanisms in the healthy and diseased cell.
Typically, three categories of interactions are of interest to researchers: those of a protein with
a small ligand, those of a protein with another protein, and those of a protein with other molec-
ular systems that include DNA, RNA, and membranes. These specific applications can be
approached in two different ways. One considers simply the problem of predicting the three-
dimensional native structure of the complexed system from knowledge of the structures of the
unbound units, whereas the other additionally simulates the process of the units diffusing
towards and then binding with one another. For the problem of structure prediction, non-MD
based methods are currently the norm. They include algorithms enhancing MC or adapting
other stochastic optimization frameworks under the umbrella of evolutionary computation.
For the problem of actually simulating the dynamics of interacting units, MD-based studies
provide more detail but typically require more computational resources or algorithmic
enhancements in order to surpass the long time scale often needed for a complexation (bind-
ing) event to occur.

One of the challenges with modeling and simulating macromolecular interactions with
other small molecules or macromolecules is the possibility of induced fit. Induced fit,
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introduced by Koshland in [154], refers to the mechanism of an initially loose complex that
induces a conformational change in either one or all loosely bound units, which then triggers a
cascade of rearrangements ultimately resulting in a tighter-bound complex. The induced fit
mechanism seems to question the idea that structure-guided studies can focus on shape com-
plementarity first, but many wet-laboratory studies, as well as the success of complementarity-
driven methods, have demonstrated that induced fit cannot describe all binding events [155].

In response, inspired by the free energy landscape view presented by Frauenfelder and
Wolynes [13,27], Nussinov and colleagues proposed a new concept to explain binding events,
that of conformational selection, also known as population shift [156–158]. Conformational
selection refers to the idea that all conformational states of an unbound unit are present and
accessible by the bound unit. The binding or docking event causes a shift in the populations
observed in the unbound ensembles towards the specific bound conformational state. Though
Nussinov and colleagues were inspired by the free energy landscape view of Frauenfelder and
Wolynes, it is worth noting that the conformational selection model is a generalization of a
much earlier model, the Monod-Wyman-Changeaux (MWC) model [159]. The MWCmodel,
also known as the concerted or symmetry model, proposed the idea that regulated proteins
exist in different interconvertible states in the absence of any regulator, and that the ratio of the
different states is determined by the thermal equilibrium. The MWCmodel has been credited
with introducing the concept of conformational equilibrium and selection by ligand binding,
though in its original formulation the model was restricted to two distinct symmetric states
and to proteins made up of identical subunits.

The review in [23] summarizes many studies that observe conformational selection for pro-
tein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. We
highlight work in [160], where unfolded structures of uncomplexed ubiquitin in explicit sol-
vent were subjected simultaneously to restraints from NMR Nuclear Overhauser Effect (NOE)
and Residual Dipolar Coupling (RDC) data comprising solution dynamics up to microseconds.
The obtained ensemble of structures covered the structural homogeneity observed in 46 crystal
structures of ubiquitin at the time; the majority of the crystal structures were in complex with
other proteins. These results suggest that conformational selection rather than induced fit suf-
fices to explain the molecular recognition dynamics of ubiquitin.

While at face value the concepts of induced fit and conformational selection appear mutu-
ally exclusive, studies have shown that versions of each are indeed observed; for instance, con-
formational selection is usually followed by slight conformational adjustments. In 2010,
Nussinov and colleagues presented an extended view of binding events where conformational
selection and induced fit were seen as complementary to each other [161]. In many cases, fol-
lowing conformational selection, minor adjustments of side chains and backbone are observed
to take place to optimize interactions [161]. Based on such observations, extended models have
been proposed that combine conformational selection, induced fit, and the classical lock-and-
key mechanisms [162]. A better understanding of contributions of each of these three mecha-
nisms has contributed over the years to several effective methods for modeling and simulating
binding and docking events. A detailed review in the context of protein-ligand binding for
structure-based drug discovery is presented in [163].

The overview below summarizes methods based on the lock-and-key mechanism, as well as
methods based on the induced-fit and conformational selection mechanisms. While the lock-
and-key mechanism allows disregarding flexibility, the other mechanisms clearly make the
case for modeling the flexibility of the units participating in the complexation event. While the
induced-fit mechanism seems to suggest that only MD-based methods can describe a complex-
ation event, the conformational selection mechanism has inspired many non-MDmethods to
integrate flexibility during or prior to complexation, thus contributing to a rich and still
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growing literature. In the following we provide an overview of this work, guided by applications
on protein-ligand binding, protein-protein docking, and protein-DNA docking.

Protein-ligand binding. In protein-ligand binding, the structure prediction problem
involves predicting both the binding site, unless this is known, the pose of the ligand, and its
configuration. Established and widely-adopted software now exist and include DOCK [164],
FlexX [165,166], GOLD [167,168], Autodock [169–171], Glide [172], RosettaLigand [173,174],
SwissDock [175], Surflex-Dock [176], DOCKLASP [177], rDock [178], istar [179], and more.
The majority of existing software employ evolutionary algorithms that approach the problem
of protein-ligand binding under stochastic optimization, where the goal is to find the lowest-
energy structure of the complex of bound units. Evolutionary algorithms have been demon-
strated more effective than other MD- or MC-based algorithms at finding the lowest-energy
binding pose (position and orientation) and configuration of a ligand on a macromolecule. For
instance, while earlier versions of the well-known Autodock software employed MC simulated
annealing (MC-SA), Autodock 3.0.5 and onwards switched to the Lamarckian Genetic Algo-
rithm (GA) due its higher efficiency and robustness over the MC-SA of earlier versions for
binding flexible ligands onto rigid receptors [180].

The superiority of evolutionary algorithms for binding flexible ligands onto rigid receptors
is additionally demonstrated in a high-throughput screening setting. In this context, we note
representative work in the Caflisch laboratory [181], where a set of publicly-available tools
have been developed for high-throughput screening of large sets of small ligand molecules by
fragment-based docking for the purpose of computer-assisted drug discovery (CADD). The
high-throughput setting is made possible due to a fast decomposition of a flexible ligand into
rigid fragments, fast docking and evaluation of binding free energy of docked fragments, and
efficient docking of a full flexible ligand through a GA rapidly searching over poses of fragment
triplets and evaluating poses with an efficient scoring function. Fragment-based docking can
be traced back to Karplus, whose work with Miranker on the minimization of multiple copies
of functional groups in the MCSS force field is considered the first fragment-based procedure
for drug discovery [182].

Fragment-based high-throughput binding is leading to significant advances in CADD. For
instance, recent work in [183] identifies inhibitor chemotypes for the EphA3 tyrosine kinase, a
transmembrane protein belonging to the class of erythropoietin-producing hepatocellular
receptors with deregulations implicated in severe human pathologies such as atherosclerosis,
diabetes, and Alzheimer’s disease.

While the majority of protein-ligand binding software can handle flexible ligands, the
computational costs that would be incurred by fully flexible receptors remain impractical in
most settings. Fortunately, a significant number of binding modes fall under the lock-and-key
mechanism, which has been demonstrated effective in cases of predicting structures of
enzyme-inhibitor complexes with largely static binding interfaces [184–188]. As expected,
however, rigid receptor docking algorithms are ineffective in cases of induced fit, where struc-
tural flexibility during binding is not limited to the ligand.

To take into account ligand and receptor flexibility without incurring impractical computa-
tional costs, many protein-ligand binding algorithms implement soft docking, where some
overlap between the flexible, bound ligand and the rigid receptor is allowed during docking.
Unfavorable interactions due to the overlap are resolved in a post-processing stage on selected
bound complexes, effectively providing some localized flexibility to the bound receptor. This
approach is practical and warranted in settings where the goal is to screen large libraries of
potential drug compounds [189–191]. An extensive review of the unique challenges in these
settings can be found in [163,192].
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One way to control computational cost while taking into account both ligand and receptor
flexibility is by limiting flexibility to specific dihedral angles [193–197]. Typically, existing
approaches limit receptor flexibility to side-chain and/or backbone bonds of receptor amino
acids on or near the binding site.

Other methods attempt to take into account full receptor flexibility without explicitly
modeling it during binding. These methods, known as ensemble or conformer docking, obtain
an ensemble of low-energy conformations/conformers of the receptor prior to the binding sim-
ulation [198]. The ensemble is obtained via any conformational sampling methods, whether
MD- or non-MD based (reviewed below). The ligand or a library of ligands are then bound to
each of the receptor conformers [199]. While effective at controlling computational cost, these
methods are limited in what aspects of flexibility they model [200]. It is worth noting that they
make use of the conformational selection principle of which there is now increasing evidence
[201].

Methods that consider full receptor flexibility and go beyond ensemble docking exist, and
are based on MC or MD. MC-based methods are represented by the RosettaLigand software
[173,174]. Work in [202] employs long, unbiased MD simulations to simulate the physical pro-
cess by which a ligand diffuses and then binds a protein target. Studies on specific protein-
ligand complexes provide an opportunity for MD-based methods to reveal the kinetics of
ligand-receptor interactions and estimate binding affinities from a large number of MD simu-
lations of the binding process. Yet, even in such studies computational cost needs to be con-
trolled, as binding can be too slow to observe on the time scales routinely accessible via MD
[203].

Given the time scale challenge, many enhanced sampling strategies have been proposed for
MD simulations. These include accelerated MD, replica-exchange MD, umbrella sampling
MD, and metadynamics methods [8,149,203–206]. Replica exchange MD and metadynamics
methods are among the most popular to simulate binding. To control computational cost, the
simulation is limited to the immediate binding and unbinding events. To discourage spending
computational resources on the diffusion process, the ligand is either tethered (through dis-
tance restraints) to the receptor, or many short MD simulations are conducted at various place-
ments of the ligand relative to the receptor. In the former, explicit geometric restraints are
enforced on the ligand to keep it within the binding volume and save the MD simulation from
wasting precious computational time on simulating the diffusion process [149]. In the latter,
the sampled receptor and ligand configurations are organized in an MSM, which allows obtain-
ing estimates of association and disassociation rates [139]. Other approaches include the pow-
erful self-guided Langevin dynamics method and the accelerated adaptive integration method,
among others. A description of these methods and others is provided later in this review. In
summary, the goal of all these methods is to enhance sampling of the receptor and ligand poses
so that the binding event can be observed within a reasonable computational budget.

Here we highlight some successful protein-ligand binding simulations. One concerns the
GTP and GDP nucleotide binding that is accompanied with a conformational switch in the Ras
and Rho proteins, which was studied in [207] due to the central role of these proteins in cell
growth regulation and a variety of human cancers [122]. In [207], MD is used to simulate the
ligand-free Ras and Rho proteins. In the absence of the ligand, these proteins show intrinsic
flexibility and are able to convert between different conformations. The presence of the nucleo-
tide restricts the conformation space accessible by the GTP-bound structure. Significant cou-
pling is observed in the bound state between motions on the nucleotide-binding site and
motions of the membrane-interacting C-terminus via the highly flexible loop 3. The impor-
tance of this loop was originally suggested in [208]. Classic MD simulations with a double loop
3 mutant of Ras confer greater flexibility during conformational switching. This provides
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evidence that loop 3 may represent a potential allosteric site in Ras and other monomeric G-
protein coupled receptors. This information, pieced together from various studies, is valuable
for structure-based drug design, because it highlights relevant receptor structures for CADD
[163].

Another successful example of the utility of computational methods for protein-ligand
binding concerns drug prediction for the influenza virus. Several inhibitors have been widely
used as anti-influenza drugs. However, due to naturally-occurring drug-resistant mutations
[209], their inhibition ability has gradually decreased. The family of influenza virus proteins,
like M2, H1-H9, attaches itself to sialic acids on the surface of epithelial cells of the upper respi-
ratory tract of the host using its own proteins that cover the surface of the virus, hemagglutinin
and neuraminidase [210,211]. Inhibitors bind to the active sites of hemagglutinin and neur-
aminidase, preventing linkage of the virus to epithelial cells.

Protein-ligand docking via MD simulations is being used to model inhibitor binding to the
influenza virus (or only the surface proteins hemagglutinin and neuraminidase). One group of
methods focuses on finding new inhibitors (ligands) that can bind to the continuously mutat-
ing hemagglutinin and neuraminidase active sites [210,211]. Representative findings are illus-
trated in Fig 1.

In particular, work in [211] focuses on finding new inhibitors for hemagglutinin. Several
ligands are considered to bind to the hemagglutinin H5 and H7 trimers. The exposed position
of the binding site is used to guide the development of a trimeric ligand with a centrally posi-
tioned core structure with radial topology. The core structure of the ligands mimicks the C3
symmetry of the trimers. A specific ligand, referred to as ligand 1, is found to bind to all three
binding sites on H5 (deposited in the PDB under PDB ID 3M5G) at two different times of an
MD simulation. Motion is predominantly found at the core structure, while all three sialic acid
residues remain in their binding site during the simulation, indicating that 1 is also a good
ligand for H7. Ligand 1 also has a KD in the high nanomolar range and is therefore a compound
with one of the best reported affinities.

Another group of methods aims to modify (add new residues or suggest mutations) to
already known inhibitors in order to increase their binding ability [212,213]. Finally, some
methods focus on calculating binding free energies by quantum mechanics/molecular mechan-
ics simulations to predict binding abilities of possible inhibitors [214]. The combined result of
all these methods has been to suggest a mechanism through which the inhibitor-virus binding
can significantly influence viral neutralization.

In addition to MD simulation methods, we draw attention to Brownian Dynamics methods
[215], which have been employed to simulate protein-ligand [216] and protein-protein
[217,218] binding. In these methods, the net force experienced by a modeled particle contains
a random element, which models the implicit interactions with solvent molecules. The norm of
the random element is chosen from a probability distribution function that is a solution to the
Einstein diffusion equation (a list of already built probability distribution functions can be
found in [219]). By coarse-graining out the fast motions, Brownian dynamics methods can
simulate longer time scales than can be typically approached in a classic MD simulation [220].
However, the particle-based part still necessitates using relatively small time steps for an accu-
rate description of the particle interactions. The Reaction Before Move method determines
reaction probability functions that extend time steps and further speed up such simulations
[219].

The importance of accounting for receptor flexibility in protein-ligand binding is further
appreciated in light of allosteric effects. Allostery refers to couplings between the active site and
a regulatory, allosteric site, which is typically far away from the active site, but causes chemical
and/or physical changes in the active site that affect binding. A detailed review of all observed
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Fig 1. Free-energy landscape of GB3 obtained with work in [302] using chemical shifts as collective variables. Panel A shows a two-dimensional
projection of sampled conformations. The x-axis shows values of the CamShift collective variables for each conformation, which measures the difference
between the wet-laboratory and calculated chemical shifts for the backbone. The y-axis shows the backbone RMSD between each conformation and the
reference structure (PDB ID 2oed). Some selected conformations, from extended to compact, are highlighted, drawn with the Visual Molecular Dynamics
(VMD) software [303]. Panel B shows a conformation with the lowest backbone RMSD (0.5 Å) from the reference structure. Such native-like conformations
are visited multiple times by the method. Panel C draws hydrophobic side chains to illustrate that the internal packing of these side chains is practically
identical to that observed in the reference structure. This figure is reproduced with permission of the executive editor of PNAS from article Granata et al., 2013
[302].

doi:10.1371/journal.pcbi.1004619.g001
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interactions between allosteric and binding sites is presented in [221]. The structural view of
allostery considers interactions among residues responsible for the allosteric coupling between
allosteric and binding sites. Uncovering allosteric communication among residues is becoming
increasingly important in CADD, as residues that mediate the allosteric communication may
make for druggable binding sites. Many methods are devoted to uncovering allosteric commu-
nication, and a review of such methods is presented in [137]. Successful methods include early
ones based mainly on topological analyses of structures resolved in the wet laboratory, such as
graph theory, statistical coupling analysis, and perturbation algorithms [222–227], and meth-
ods based on analyses of simulation trajectories. While MD and enhanced versions of MD-
based methods are used for the simulations, the analysis is conducted with normal mode analy-
sis (NMA) [228–230], correlation matrices [231–233], community-network analysis [234],
mutual information [235], and dynamical network analysis [236–238]. MC-based methods
have also been applied. The MCPath method introduced in [239] models a receptor as a
weighted network of interacting residues and builds an MC trajectory by repeatedly applying
MC moves that directly propagate a signal between two interacting residues. MCPath is able to
uncover allostery pathways as well as allostery sites.

Protein-nucleic acid and protein-protein docking. The computational challenges
incurred when modeling protein-ligand binding grow more severe when modeling interactions
between macromolecules due to the much larger spatial scales involved. Most current research
addresses only the dimeric setting, where the number of bound units is limited to two. In addi-
tion, the majority of methods applied to the pairwise docking setting are non-MD based meth-
ods focused on obtaining the native structure of the complex without information on the
kinetics of the docking process. Methods implementing MC or evolutionary algorithms are by
now the most popular. This is not surprising, given the overwhelming number of atoms whose
motions would have to be followed in an MD simulation. Specific MD-based studies on
dimeric systems of known proteins exist, and typically some information is employed from
wet-laboratory studies on the docking site to orient the units favorably and additionally tether
them to each other so as to steer the simulation towards the docking event [240,241]. In gen-
eral, however, even when foregoing kinetics, predicting the correct native structure of the
bound units remains challenging.

Computational research in structure prediction for macromolecular pairwise docking is
active, and there are now many methods [242–255] driven by the community-wide CAPRI
experiment [256,257]. The focused computational setting of a protein dimer has allowed the
application of demanding energy-driven optimization methods and even modeling of struc-
tural flexibility for high-accuracy docking [243,251,258]. In the light of variable interfaces, such
as antibody-antigen interfaces [259], accounting for flexibility is key but exceptionally expen-
sive. Methods such as RosettaDock [260] allow full flexibility and employ various models of
increasing detail (from low-resolution, to centroid-mode, coarse-grained, and then all-atom).
RosettaDock has been reported to achieve docking funnels for 63% of antibody-antigen targets,
62% of enzyme-inhibitor targets, and 35% of other targets; funnels are achieved on only 14% of
targets deemed difficult, on which substantial conformational changes are expected to accom-
pany docking [261]. Other methods that consider ensemble docking have also been applied,
though with limited success due to the difficulty of obtaining a conformational ensemble repre-
sentative of the intrinsic structural flexibility of a macromolecule [262].

Several CAPRI summaries make the case that high-accuracy pairwise docking is to remain
challenging for the near future [257,263,264]. There is great difficulty, for instance, in locating
the native interaction interface or even part of it, with top methods shown to predict only
30%–58% of the correct interface in any given target [257]. An energy-based treatment is not
guaranteed to drive the optimization process towards the right interface. Much research is
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invested in this direction. Machine learning methods, though not the focus of this review, are
showing promise in elucidating features of native interaction interfaces so as to bypass the
employment of interaction energy functions at a global layer [265–268]. For instance, work in
[269] proposes a learned model to be used as a top filter to label sampled protein-protein
dimers before attempting to refine them with more accurate and computationally costly inter-
action energy functions. Rather than employing information from machine learning models,
methods such as HADDOCK [243], the Integrative Modeling Platform (IMP) [270] and others
[271,272], employ wet-laboratory data to restrict sampling of bound conformations to those
that reproduce the wet-laboratory data. Work in [273] uses chemical shifts from NMR to pre-
dict conformational changes upon complex formation in a class of engineered binding proteins
known as affibodies. Similarly, Haddock also restricts sampling through NMR chemical shifts
[243], whereas the IMP software provides more versatility by allowing the integration of differ-
ent types of wet-laboratory, biochemical and biophysical data and the employment of models
of various resolutions [270]. It is worth noting that, while the majority of protein-protein dock-
ing algorithms are restricted to the dimeric setting, the IMP software allows modeling multi-
meric assemblies of an arbitrary number of units. Work in [274], for instance, reveals the
native structure of the nuclear pore complex, a 50 MDA complex comprised of 456 proteins.
Work in [275] reveals a higher-resolution structure of a heptameric module in the yeast NPC
by satisfying spatial restraints derived from negative-stain electron microscopy and protein
domain-mapping data.

While wet-laboratory techniques such as X-ray crystallography can provide high-resolution
structures for protein-protein dimers and even multimers, protein-DNA dimers are typically
difficult to crystallize. There is great need for docking methods to reveal both binding mecha-
nisms and final bound structures of protein-DNA complexes. In contrast to the diversity of
protein-protein interaction interfaces, protein-DNA interaction interfaces often exhibit con-
served sequence motifs and are thus accurately detected with machine learning techniques
[276,277]. Knowledge, even if partial, of the interaction interface has greatly helped the applica-
bility of docking methods for protein-DNA binding [278,279]. Haddock, for instance, already
a top protein-protein docking method, has been demonstrated effective for protein-DNA dock-
ing [280]. By now, comprehensive maps of protein-DNA binding landscapes have been put
together for the largest class of metazoan DNA-binding domains, known as zinc fingers [281].
These landscapes are essential to support efforts to determine, predict, and engineer DNA-
binding specificities. For instance, work in [282] studying interactions that proteins make with
nucleic acids, small molecules, ions, and peptides reveals genes that are rich in mutations in the
binding sites of proteins for which they encode and are thus functionally-important in cancer.

The setting of modeling macromolecular interactions naturally suggests expanding the
focus beyond dimeric docking to multimeric docking. Elucidating structural details of oligo-
mers suggested by wet-laboratory studies is indeed key to advancing further research on the
role of oligomerization in the healthy and diseased cell [283,284] and is expected to keep moti-
vating the design of algorithms for multimeric docking. Computationally-demanding optimi-
zation and willingness to spend significant computational resources on a dimeric assembly
make application of current pairwise docking methods to protein assemblies of an arbitrary
number of units impractical. Adaptations of these methods to extend their applicability to the
multimeric setting are neither trivial nor obvious.

Early work by Nussinov and colleagues introduced a greedy, systematic algorithm, Comb-
Dock, for the problem of multimeric docking [285,286]. The algorithm is general and can han-
dle heteromeric and asymmetric complexes but is challenged by the combinatorial explosion in
the number of dimensions of the space of configurations with increasing number of units.
Other following work narrows the focus to symmetric complexes and applies search and
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bound techniques from AI with additional information of distance-based constraints from
NMR to control the size of the search space [287–291]. Work in the Sali lab, culminating in the
IMP software [270], focuses exclusively on the setting where integration of wet-laboratory data
is key to narrow the search space and model assemblies of hundreds of units at a low resolu-
tion. Research on multimeric docking in the absence of wet-laboratory data is sparse.

In [292], an evolutionary algorithm, Multi-LZerD, is proposed that operates in the absence
of wet-laboratory data but is guided by interaction energy. Its success varies with complex size.
The mixed results obtained by Multi-LZerD reflect the mixed state of the art in multimeric
docking. In addition to successful cases, where the native multimeric structure is reproduced,
Multi-LZerD reports in various cases decoys that do not reproduce the known native struc-
tures. While the decoys can be as far as 23.59 Å away from a particular native structure, typi-
cally, the decoys contain correct subcomplexes within 4.0 Å. It is worth noting that the
evolutionary algorithm is also computationally demanding. Time concerns as well as the qual-
ity of current predictions suggest that there is much room for improvement in multimeric
docking.

Modeling of Macromolecular Structural Flexibility
Modeling the structural flexibility of uncomplexed proteins is key not only to allow application
of methods such as ensemble docking to the protein-ligand and protein-protein docking prob-
lems, but also to obtain detailed information on the role of protein sequence on structure,
dynamics, and function. While it is in principle very difficult to map the entire conformation
space and underlying energy landscape of a protein sequence, many methods are dedicated to
specialized sub-problems. For instance, literature is rich in methods that obtain a sample-based
representation of the equilibrium conformation ensemble of a protein. Other methods extend
this characterization to proteins that exhibit not only local fluctuations around an average,
wet-laboratory, equilibrium structure but indeed are characterized by multi-basin landscapes
where distinct structural states have comparable Boltzmann probabilities. Many methods focus
on such proteins and particularly on modeling transitions between similarly stable structural
states as a way to obtain information on function modulation and changes to function upon
sequence mutations. Other methods are dedicated to capturing allosteric regulation and identi-
fying coupled motions not in the vicinity of binding sites. Yet others focus on obtaining
detailed structural characterizations of meta-stable states and other states present at low popu-
lations, even in natively unfolded proteins, as a way to understand aggregation, misfunction,
and other disorders. In the following we provide an overview of these applications, highlighting
selected ones to showcase current capabilities.

Sampling of equilibrium conformation ensembles. In principle, complete information
about structure and dynamics can be obtained from mapping the energy landscape of a given
macromolecular sequence. Despite advances in atomistic MD simulations, this remains an
insurmountable computational task but for the smallest peptides. As such, we separate here the
discussion of work on sampling the ensemble of folded conformations from work that focuses
on protein folding and/or structure prediction. Methods that initiate their search for other con-
formations of the equilibrium ensemble from one or a few given conformations or wet-labora-
tory data are in practice more efficient and have been employed to characterize both local
fluctuations and large-scale motions connecting conformations of the equilibrium or native
state in proteins.

We highlight here work that builds over the MD or MC frameworks but restricts sampling
in conformation space to regions that reproduce wet-laboratory data. In particular, chemical
shifts, which are NMR observables measured under a wide range of conditions and with great
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accuracy, are proving very useful to methods in generating conformation ensembles that cap-
ture macromolecular dynamics in solution. For instance, work in [293,294] uses chemical shifts
for backbone atoms as restraints in a replica-averaged MD simulation. Work in [295] addition-
ally incorporates NMR chemical shifts for side chains and demonstrates as a result great agree-
ment between reconstructed conformation ensembles and wet-laboratory data, thus improving
the accuracy of computational methods and ability to make useful predictions on macromolec-
ular structure and dynamics. Work in [296] characterizes in detail the native conformation
ensemble of the src-SH3 domain and role of water. Work in [297] incorporates diffuse X-ray
scattering data to characterize the conformational dynamics of a crystalline protein at the μs
time scale. In other works [129,298–301], restraints from wet-laboratory data are employed to
improve the quality and thus accuracy of simulation methods.

In the above works, the main idea is to incorporate the wet-laboratory data into a restraint
potential that is added to a molecular mechanics force field. In [302], the free energy landscapes
of small-size proteins are characterized by using the NMR chemical shifts as collective vari-
ables, also known as reaction coordinates in slight abuse of terminology) in metadynamics sim-
ulations. Doing so enhances sampling and allows visiting multiple free energy minima not
typically reached by classic MD simulations [302]. The free-energy landscape reconstructed for
the third Ig-binding domain of protein G from streptococcal bacteria (GB3) in [302] is shown
in Fig 1. In [34], the interdomain motions of the hen lysozome are characterized using RDC
data to restrain MD simulations.

The idea of incorporating wet-laboratory data in energy functions, thus resulting in pseudo-
energy functions, has been popular for over a decade and demonstrated effective not only in
the context of MD sampling but also of MC sampling for reconstructing equilibrium confor-
mation ensembles (and even structure prediction, as we review below). For instance, work in
[304] demonstrates that the use of replica-averaged structural restraints in MD simulations
with a particular force field and a set of wet-laboratory data can provide an accurate approxi-
mation of the Boltzmann distribution of a macromolecule. Though NMR chemical shifts are
proving more general at capturing the extensive equilibrium dynamics, NOE, RDCs, S2 order
parameters, J couplings, and hydrogen exchange data have been used to restrain both MD and
MC sampling and obtain detailed information on structure and dynamics of equilibrium states
and transition states in proteins [32,35,36,305–313]. The main advantage of incorporating wet-
laboratory data is to remedy inherent biases in force fields and guide the sampling of the con-
formation space to relevant regions. Concerns of accuracy then entirely shift on the breadth of
sampling and the generality of the wet-laboratory data to capture the equilibrium dynamics.
Recent work affirms that NMR chemical shifts are very powerful in this regard, and combined
with enhanced sampling techniques for MD and MC, allow sampling equilibrium conforma-
tion ensembles and thus faithfully capturing equilibrium dynamics [273,293–295,314]. It is
worth noting that there is great difficulty in the wet laboratory in calculating chemical shifts, J-
couplings, and other measurements from structures. A central issue is the large uncertainty
inherent in such calculations. One way in which computational methods address this issue is
by integrating different types of experimental data [315,316].

Other non-MD based methods have also been applied, particularly to model internal, equi-
librium structural fluctuations of uncomplexed proteins. These methods, such as CONCOORD
[317], FIRST/FRODA [318,319], and PEM [320–322], are designed to rapidly populate the
conformation space in a neighborhood around a given structure. They typically restrict an
underlying stochastic optimization process based on MC or other non-MD algorithms with
geometric constraints. The constraints are obtained from analysis of a given structure resolved
in the wet laboratory and considered representative of the equilibrium conformation ensemble.
For instance, work in [317] repeatedly generates and then corrects random conformations
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until a set of upper and lower geometric bounds obtained from the given structure are satisfied.
Work in [318,319,323] is based on constraint theory and models a given structure as a bar and
joint framework. This model allows employing rigidity analysis to reveal underconstrained
backbone angles on which sampling focuses to obtain inherent internal fluctuations. Work in
[320–322] is based on the treatment of inverse kinematics in robotics and computes local fluc-
tuations by restricting ends of consecutive overlapping segments of the protein chain to posi-
tions in the given structure.

Structure-guided methods, while useful at probing regions of a conformation space around
a given structure, are not readily useful when the goal is to populate a highly heterogeneous
equilibrium ensemble for which there may not be sufficient representative structures. On such
proteins, often referred to as multi-basin proteins due to the existence of potentially compara-
bly-deep basins in the free-energy landscape, large conformational changes are observed
between basins. Detailed reconstruction of the energy landscape of a protein is at this point
challenging. Non-MDmethods have been devised and applied to capture thermodynamically
stable and semi-stable structural states in multi-basin proteins [125,126]. In [126], an MC-SA
method is devised that employs multiple scales of representational detail and the fragment
replacement technique popular in de novo structure prediction to map the energy landscape of
the uncomplexed adenylate kinase (AdK) protein. However, only a subset of the known states
are captured, pointing to the general challenge to devise enhance sampling techniques capable
of reconstructing energy landscapes of proteins in the absence of any a priori information. For-
tunately, significant, even if partial, information now exists from wet-laboratory techniques on
stable or semi-stable states of wildtype and variant sequences of proteins. The method in [324]
exploits this information to define a lower-dimensional search space on which extensive sam-
pling can be afforded to reveal diverse thermodynamically stable and semi-stable structural
states. We note that such states are stable in the lower-dimensional space, as no information is
available on the true potential energy surface.

While MD-based methods are challenged in a de novo setting, they are particularly suitable
to reveal the detailed structural transitions connecting two known structural states. Providing
detailed transitions is key to understanding the mechanistic basis of several disorders linked to
transition-modifying mutations. This promise has attracted other non-MDmethods that can
sample conformational paths connecting two structural states of interest without direct time-
scale information on the transition. In the following we provide an overview of work in model-
ing and simulating structural transitions.

Modeling of Structural Transitions
Many proteins undergo large conformational changes that allow them to tune their biological
function by transitioning between different structural states, effectively acting as dynamic
molecular machines [325]. Since it is generally difficult for wet-laboratory techniques to eluci-
date a transition in terms of intermediate conformations (though successful examples exist
[326]), computational techniques provide an alternative approach [327]. However, transition
trajectories may span multiple length and time scales, connecting structural states more than
100Å apart. This length scale is up to two orders of magnitude larger than a typical interatomic
distance of 2 Å. Transitions can also demand micro-millisecond time scales, which is six to 12
orders of magnitude larger than typical atomic oscillations of the femto-pico second time scale.

Typically, three types of methods are applied to model structural transitions, MD-based
methods, morphing-based methods, and robotics-inspired methods.

MD-based methods typically have to employ powerful algorithmic enhancements to surpass
high-energy barriers in structural transitions. However, cases exist when classic MDmethods
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have been able to capture spontaneous transitions of allosteric proteins by monitoring the
structural relaxation upon removal of the bound molecule from the binding pocket [328,329].
These works further highlight the utility of the conformational selection or population shift
principle, as removal of the bound molecule prompts spontaneous movement towards a new
equilibrium state.

In cases of high-energy barriers, biased or targeted MDmethods are useful to expedite tran-
sitions between given structures [127,330], but the concern with such methods is that the tran-
sition trajectory may not correspond to the true one, as these methods modify the underlying
energy landscape; the order of events in transition paths computed via targeted MDmethods
depends on the direction in which the MD simulations are performed. For example, an applica-
tion of biased MD to capture transitions of Ras between its active and inactive structures
resulted in unrealistic, high-energy structures [330]. It is worth noting, however, that recent
work in [331] has proposed a technique to remove the length-scale bias from targeted MD sim-
ulations. Essentially, the technique formulates local restraints, each acting on a small connected
portion of the protein sequence, resulting in a number of potentials that are then used in tar-
geted MD simulations. The technique has been demonstrated effective on an application to the
open$ closed transition in the protein calmodulin. The free energy barriers associated with
the computed paths have been shown comparable to those obtained with a finite-temperature
string method.

In contrast to biased MDmethods, accelerated MDmethods do not change the entire land-
scape but only the relative height of the basins corresponding to the structures that need con-
necting with intermediate conformations [332]. Accelerated MD has been applied to several
proteins to capture the transition of H-Ras between the inactive and active structural states
[10], map the structural and dynamical features of kinesin motor domains [91], compute
domain opening and dynamic coupling in alpha subunit of heterotrimeric G proteins [333],
and more. Representative results on an application of accelerated MD for capturing the
dynamics of the Eg5 kinesin motor domain are shown in Fig 2.

Even accelerated MDmethods are limited in their ability to elucidate transition trajectories
that cross high energy barriers [10]. In contrast, the dynamic importance sampling (DIMS)
MDmethod [334,335] is more effective at simulating macromolecular transitions with energy
barriers. In DIMS, the next conformational state sampled to obtain a transition from a state A
to a state B will be chosen to satisfy the most productive movement to B and cross the energy
barrier. The productive movement is indicated by a robust progress variable, the instantaneous
RMSD over heavy atoms between a conformation and the target structure. DIMS is integrated
in CHARMM and has been tested on several systems [336], including modeling of slow transi-
tions in AdK [334], folding of protein A and protein G, and conformational changes in the cal-
cium sensor S100A6, the glucose–galactose-binding protein, maltodextrin, and lactoferrin,
showing good agreement between sampled intermediates and experimental data [336].

In particular, in [334], DIMS is applied to sample the ensemble of open-to-closed transi-
tions for AdK. AdK is an enzyme that regulates the concentration of free adenylate nucleotides
in the cell by catalyzing the conversion of ATP and AMP into two ADP molecules. The enzyme
undergoes a large conformational change in its transition between an open and a closed struc-
tural states, and this change has been observed even in the absence of a substrate. As a result,
AdK is one of the few proteins for which wet-laboratory studies have been able to capture a
great number of intermediate structures populated during the open-to-closed transition. For
this reason, AdK is a poster system to measure the capability of computational methods to
reproduce transitions in great structural detail. Work in [334] is one of the few to provide
atomistic detail, as well as reproduce and map with great accuracy the location of known inter-
mediate structures along the transition. Representative results are shown in Fig 3.
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Morphing- and string-based methods provide an alternative way to compute transition tra-
jectories. Morphing-based methods include MolMov [337], FATCAT [338], NOMAD-Ref
[339], MinAction [130], Climber [340], and more. In Climber, the interresidue distances in a
given start structure are pulled towards distances in the goal structure, using harmonic

Fig 2. Probing of coupledmotions in the Eg5 kinesin motor domains in [91] through accelerated MD simulations. The top panel shows the structure
and catalytic cycle of the kinesin motor domain. The ATPase catalytic site sits at the top of the β-sheet, flanked by three highly-conserved loops (P-loop, SI,
and SII) connected to helices (also annotated) on either side of the sheet. The secondary structure topology is drawn, with β -strands drawn as triangles and
α-helices as circles. The kinesin catalytic cycle is shown: Kinesin (K) has a weak affinity for the microtubule in the ADP-state. ADP release is followed by
strong microtubule-binding. ATP binding may occur followed by hydrolysis and product release to regenerate the weakly-bound ADP state. The bottom panel
projects conformations sampled by 200 nanosecond-long accelerated MD every 20 picoseconds on the two principal modes of motion. The latter are
obtained through principal component analysis of collected X-ray structures for wildtype and variant Eg5. Three simulations are highlighted, the nucleotide-
free (APO) one in (A), ADP-bound one in (B), and ATP-bound one in (C). The nucleotide-free simulation covers more of the conformation space, whereas
restricted sampling is observed when Eg5 is bound to ATP or ADP. One of the conclusions in [91] is that structural changes from the ADP- to ATP-bound
states which are evident in the collection of X-ray structures, are encoded in the intrinsic dynamics of the nucleotide-free motor domain; the nucleotides
effectively rigidify the motor domain by narrowing the conformation space accessible by it, as evident in the restricted sampling observed through accelerated
MD. This figure is reused from Scarabelli et al., 2013. CC-BY PLOSONE [91].

doi:10.1371/journal.pcbi.1004619.g002
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restraints incorporated in a pseudo-energy function. MolMov and FATCAT interpolate linearly
in Cartesian space or over rigid-body motions. NOMAD-Ref uses elastic normal modes and
interpolates interresidue distances per the elastic network algorithm in [341]. MinAction solves
action minimization equations at each of the provided structures assuming a harmonic potential
at them. Other methods include those based on elastic network models (ENMs) [131,341], the
nudged elastic band, zero- and finite-temperature string methods [340,342–347]. In particular,
the string-based methods make use of the committor function to account for not generally know-
ing the collective variables underlying the transition [343], whereas methods based on ENMs
show the ability of coarse-grained models at capturing allosteric transitions in supramolecular
systems on the order of megadaltons [131]. In general, while efficient, all these methods tend to
reproduce similar conformational paths in independent runs rather than provide a possibly het-
erogeneous ensemble of conformational paths realizing the transition.

Fig 3. Sampling of the ensemble of closed-to-open and open-to-closed transition trajectories in AdK
through the DIMSmethod [334]. An ensemble of 330 DIMS trajectories is compared to 45 Escherichia coli
AdK X-ray structures. The conformations in each trajectory are projected onto a progress variable δRMSD
measured as the RMSD of the conformation from the closed AdK structure (PDB ID 1ake:A) minus the RMSD
of the conformation from the open AdK structure (PDB ID 4ake:A). For each of the 45 collected X-ray
structures and each trajectory, the conformation in the trajectory closest in backbone RMSD to an X-ray
structure is recorded, and the δRMSD value of the conformation along a trajectory is recorded. A probability
distribution is then constructed for each X-ray structure over all DIMS trajectories to indicate where an X-ray
structure is located along the simulated trajectories. The color bar indicates the probability density. The
median of each distribution is marked by a white circle. The X-ray structures whose PDB IDs are listed on the
y-axis are rank ordered based on the median. The second white line traces the location of the median when
the simulations are repeated to sample open-to-closed transition trajectories. Out of 45 structures sorted by
δRMSD, about 24 are closed-state structures, four are open, and 17 are intermediates. This work is an
example of the capability of computational methods to elucidate transitions in detail and accurately map the
location of experimentally determined structures in the transitions. This figure is adapted from Beckstein
et al., 2009 [334]. The image was created by O. Beckstein.

doi:10.1371/journal.pcbi.1004619.g003
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Work in [348,349] tackles this issue of possibly high inter-run path correlations with the
weighted ensemble method (WEM). WEM, originally proposed in [350], has been shown a
useful enhanced sampling method for off-equilibrium and equilibrium processes. WEM uses a
multiple-trajectory strategy where MC trajectories spawn new ones upon reaching new regions
of the conformation space. One of the first applications of WEM to path sampling was on a
72-residue domain of the calmodulin protein. Coupled with a united residue model, WEM was
able to capture the transition between the calcium-bound and calcium-free structural states
and compare well with brute force simulations in a fraction of brute-force simulation time. In
[349], WEM is used to investigate the mechanism of the conformational change that the 5HIR
benzylhydantoin transporter Mhp1 undergoes from a state poised to bind extracellular sub-
strates to a state that is competent to deliver substrate to the cytoplasm. WEM reveals a hetero-
geneous ensemble of outward-to-inward conformational paths and identifies two distinct
modes of transport.

Robotics-inspired methods have also been applied to model structural transitions. They rely
on deep analogies between robot motion planning and macromolecular motion simulation. In
particular, the T-RRT [351] and PDST [352] methods, adapted from tree-based robot motion
planning frameworks, have focused on the problem of computing conformational changes
connecting two given structures in small and large proteins. While T-RRT has been shown to
connect known low-energy states of the dialanine peptide (two amino acids long) [351], the
PDST method has been shown to produce credible information on the order of conformational
changes connecting stable structural states of large proteins (200–500 amino acids long) [352].
Both methods control the dimensionality of the conformation space by either focusing on sys-
tems with few amino acids [351] or by employing very coarse-grained representations to limit
the number of modeled parameters in large proteins [352]. Work in [353] extends the capabil-
ity of these frameworks to address large conformational changes in proteins, such as calmodu-
lin and AdK, while providing high-resolution intermediate conformations by employing
fragment-based moves. Other work detaches the sampling of the structure space from analysis
of motions [354]. MSM-based analysis of sampled conformations is conducted to compute
average properties of interest, such as expected number of transitions connecting two given
structural states in lieu of direct time-scale information.

Protein Folding and Structure Prediction
Protein folding and structure prediction are often treated as two sides of the same coin. Protein
folding, however, focuses on uncovering the detailed series of conformational changes that a
protein goes through from a denatured, unfolded state to its long-lived, equilibrium, folded
state. The folded or native structure is the end-result of this process, but not the only goal.
Indeed, there are many protein folding algorithms that employ information about the native
structure in order to expedite the search for the folding mechanism. Structure prediction algo-
rithms focus more on the end result; that is, the goal is to uncover the native, folded structure
even if the process by which these methods do so does not resemble the physical folding one.
In its broadest context, the protein folding problem aims to shed light on the physical code by
which a protein amino-acid sequence determines the native structure, the speed with which
proteins fold, and the design of effective algorithms for predicting the native structure from
sequence.

An extensive review of protein folding is presented in [355]. The credit with introducing the
problem to the computational biology community goes to Kendrew and coworkers, who pub-
lished the first structure of a globular protein, myoglobin and showed the complexity and lack
of symmetry or regularity in protein native structures [61]. Since then, a general mechanism
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for folding has been elusive. Various paradigms have been proposed, evolving from the early
days when folding was thought to proceed deterministically, through a unique series of confor-
mations for a protein at hand, to the free energy landscape view founded upon description of
an inherently stochastic but biased process. The latter emerged from polymer statistical ther-
modynamics and built evidence that protein folding energy landscapes are funnel-like, nar-
rower at the bottom, as the freedom of the protein to populate low-energy regions is gradually
restricted [5,28,356]. While the energy landscape view has inspired many folding and structure
prediction algorithms, in itself there is no suggestion of a mechanism that can be followed to
efficiently fold proteins in silico.

Application of MD simulations to observe the rare transition of a protein from an unfolded
state to a folded state have come a long way in both the size of the proteins that can be handled
and the time scales that can be modeled. Hardware advances, improvements in force fields,
coarse-grained models, multiscaling techniques, and novel enhanced sampling techniques for
MD have been crucial to surpassing spatial and time scales. Atomistic MD simulations can now
be afforded [357], with supercomputers such as ANTON allowing running folding simulations of
proteins of 50–100 amino acids for milliseconds [358], and software such as GROMACS [359],
NAMD [116], and AMBER [360] becoming more accessible and easy to use to many researchers.
In the following we elect to highlight recent work that showcases the state of protein folding. We
then proceed with an overview of complementary work in de novo structure prediction.

Protein folding. Some of the most striking advances in protein folding with atomistic, equi-
librium MD simulations in the presence of water molecules have come from the Pande group,
particularly through the Folding@Home project [148,361–364]. In 2005, van der Spoel and col-
leagues provided the first folding simulation that also predicted the native structure of a peptide
based on the Gibbs energy landscape [365]. In 2010, Shaw and colleagues successfully modeled
the folding of a 35-residue protein in explicit solvent [147]. Soon afterward, Lindorff-Larsen
and colleagues in the Shaw group managed to fold 12 fast-folding proteins of length up to 80
amino acids and diverse native topologies with atomistic detail and in explicit solvent [105].
Some striking observations were made from analysis of the folding trajectories of these small
proteins, which generated much discussion in the protein folding community [366]. In addi-
tion to matching folding rates measured in the wet laboratory, work in [105] demonstrated
that the folding trajectories contained discrete transitions between native and unfolded states,
in agreement with barrier-limited cooperative folding. Pathway heterogeneity was shown to be
minimal for nine of the 12 proteins, with pathways sharing more than 60% of the native con-
tacts. These results naturally suggested that the pathways observed in simulation were varia-
tions of a single underlying folding pathway.

The conclusions in [105] were also supported by wet-laboratory work in [367], which
detected a limited set of pathways and only four intermediates for the folding of the calmodu-
lin. Moreover, in [105] it was observed that long-range contacts locking in place the native fold
formed early along, together with a significant amount of secondary structures and surface
burial. This was confirmed in other folding simulations, as well [368]. While the amount of
residual structure is questioned by wet-laboratory studies and may possibly be the result of the
bias of current force fields [366], the observations in [105] build the case for sequential stabili-
zation as a mechanism for the folding of small, fast-folding proteins. The term sequential stabi-
lization, coined in [369], refers to the fact that folding may not be completely cooperative but is
characterized by small-scale events that add secondary structure elements named foldons [370]
in a stepwise manner. Because foldons are intrinsically unstable, low-energy paths are likely to
involve foldons building on top of existing structures, thus resulting in sequential stabilization.

Demonstration of the contribution and role of long-range native contacts early on in folding
provided further justification for the use of Gō-models and other coarse-grained models that
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assume native contacts are the only ones that are kinetically-relevant [143]. However, while the
wet-laboratory study of the folding of calmodulin in [367] demonstrated the presence of non-
native intermediates in larger, more complex proteins, which is certainly observed in de novo
structure prediction algorithms in the richness of non-native local minima. It is worth noting
that a growing body of wet-laboratory studies are adding to the list of proteins known to fold
through distinct native-like intermediates [371].

From a methodological point of view, a significant body of recent work in protein folding
employs long, equilibrium, atomistic MD simulations in explicit solvent to observe multiple,
spontaneous folding and unfolding events and reliably measure thermodynamic and kinetic
quantities, such as folding rates, free energies, folding enthalpies, heat capacities, ϕ-values, and
temperature-jump relaxation profiles [104,105,368]. While generally short, off-equilibrium
MD simulations can at best sufficiently capture a single folding event, recent work that embeds
many short off-equilibrium runs in coarse-grained kinetic models, such as MSMs, is able to
approximate well the underlying folding dynamics [123,133,372]. Methods that embed many
short simulations (MD or other stochastic optimization methods) in MSMs for the calculation
of system dynamics is gaining ground in diverse applications, from folding, to structural transi-
tions, to binding [128,132,354,373–375].

De novo protein structure prediction. The de novo structure prediction problem is per-
haps one of the most popular and recognized ones in computational biology. The goal is to
compute a structure that is representative of the protein native state given the amino-acid
sequence of a protein with no known sequence homologs. This problem sprung from Anfin-
sen’s findings that the amino-acid sequence determines to a great extent the native state of a
protein [11]. Knowing the native structure of a protein is central to protein-ligand binding
studies, particularly in the context of CADD. The significant technological advances that have
made high-throughput sequencing possible have also resulted in 1,000-fold more sequences
than structures known for proteins.

Advances in in silico structure prediction can be attributed to Moult and colleagues, who
founded the important Critical Assessment of protein Structure Prediction (CASP) competi-
tion to spur research in the structure prediction community in a competitive setting. At CASP
gatherings, structures resolved in the wet laboratory and withheld from computational compet-
itors are later revealed and compared with predictions. Community evaluations are then pub-
lished and serve as a good measure of the progress in structure prediction. For instance, the
latest review of structure prediction methods in [376] demonstrates that overall performance
in CASP 10 improved substantially compared to previous competitions.

An exponential growth in the number of structures solved in the wet laboratory has had a
dramatic effect on the utility of comparative modeling methods, which model structures of a
target protein sequence after known structures/templates of proteins with similar sequences to
the target; homologous structures can now be detected for most proteins [376]. HHPred is one
of the most successful template-based predictors in CASP [377]. Nevertheless, de novo (or
template-free, free, ab initio) modeling remains of great interest. Techniques used in de novo
algorithms to model conformations of variable regions, such as loops, are also employed in
template-based methods to fill in incomplete models [378]. Second, the goal of obtaining infor-
mation on the equilibrium structure(s) of a protein from its amino-acid sequence is key to
understanding function and changes to function upon perturbations.

Currently, state-of-the-art methods for de novo structure prediction rely on usage of the
fragment replacement technique also known as fragment assembly. The technique allows sim-
plifying and discretizing the conformation space explored by algorithms by essentially modify-
ing a bundle of consecutive parameters, typically backbone angles of consecutive amino acids,
simultaneously, as opposed to modifying individual backbone angles separately. A stretch of
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consecutive backbone angles is known as a fragment, and any protein conformation can yield a
new one if a fragment can be selected in it and its configuration replaced with a new one. Origi-
nally introduced by Baker [379], the new configurations were obtained from a pre-compiled
library configurations built over known protein structures in the PDB. Essentially, known pro-
tein structures are excised in consecutive overlapping fragments, and their configurations are
recorded in a library indexed by the amino-acid sequence of a fragment. Replacement of frag-
ment configurations naturally makes for a move or step in the context of an MC search, and
most methods that use fragment replacement essentially implement enhanced sampling algo-
rithms over baseline MC. For instance, the most recognized de novo structure prediction
method, Rosetta [118], implements a multiscale MC method, which carefully switches from
coarse-grained to atomistic representations in the growing MC trajectory, employing specifi-
cally-designed energy functions and even switching between two effective temperatures to
cross energy barriers and so allow the MC search escape shallow local minima.

It is worth noting that careful construction of energy functions and representations of vari-
ous granularity can be credited as much as the fragment replacement technique with advances
in de novo structure prediction [119]. However, at the moment, a saturation point has been
reached [380], and current research is focusing either on specialized moves for MC-based
methods or other, higher-level mechanisms by which to enhance MC sampling. In current top
CASP performers, secondary structures are built and packed relatively easily, and the difficulty
in correct predictions is localized to variable regions such as loops. For this reason, efforts are
devoted to rethinking the moves in an MC-based setting beyond fragment replacement.

Work in [119,120], which has resulted in the highly-successful Quark method, shows the
utility of designing different types of moves and employing them at various stages during the
MC search. As reported inn [120], Quark performs very well in the free modeling category.
Performacne on 34 free modeling targets is measured by calculating the TM-score between the
best prediction and the known native structure for each target versus target length (TM-score
is a metric for measuring structural similarity and is considered superior to RMSD [381]; the
reader is directed to Ref. [382] for details.). Performance is unusually high (>0.5) for targets
(R0006-D1, R0007-D1, and R0012-D1) that are longer than 150 amino acids. In particular, two
of the targets, R0006-D1, R0007-D1, were considered difficult targets in the CASP10-ROLL
experiment. On R0006-D1, which is a β-barrel protein 169 amino acids long, Quark generates
five models with the highest TM-score of 0.32. Structural superposition extracts a model with
TM-score 0.5, which improves to a TM-score of 0.622 after energetic refinement via I-TASSER
[383]. On R0007-D1, which is an α protein 161 amino acids long, Quark generates a best
model with TM-score 0.43. Structural superposition extracts a model with TM-score 0.48 from
the LOMETS template pool, which then improves to a TM-score of 0.62 after energetic refine-
ment via I-TASSER. These results suggest that the focus on designing specialized moves is well
placed.

Other work is focusing on enhancing the sampling capability beyond a simple MC-based
search or even an MC-SA, though there is a growing consensus that improving accuracy in
scoring functions may be more important than enhancing sampling to advance the state of de-
novo structure prediction. Progress in enhancing sampling comes from different communities
of computational biologists and computer scientists. One direction focuses on gradually nar-
rowing the search space, either by iteratively fixing segments of the chain exhibiting low diver-
sity among sampled low-energy conformations [384] or indirectly achieving the same effect
but by changing the probability distribution function over the fragment configuration library
[385]. Other work builds on model-based search and uses information gathered during the
search to guide exploration towards promising regions of the conformation space [386,387]. In
[386] gathered information is used to identify near-optimal minima worth exploring in greater
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detail with all-atom energy functions. In [387], a robotics-inspired algorithm adapts the search
towards under-sampled but low-energy regions of the conformation space to balance breadth
versus depth.

The issue of how to balance computational resources between exploring the breadth of con-
formational space while going deep down in local minima is a core one in stochastic optimiza-
tion. Progress has been made over the years, particularly by evolutionary algorithms that are
now competitive with MC-based methods such as Rosetta [388–390]. Pursuing evolutionary
algorithms for conformation sampling in de novo structure prediction has opened up novel
directions on the design of effective moves [391] and multi-objective optimization [392],
where the goal is not to minimize an aggregate energy score but instead improve on several
orthogonal categories.

Currently, de novo structure prediction methods are focused on proteins with one well-
defined native structure. Multi-basin proteins present a challenge, as they demand much more
computational resources be spent on exploring the breadth of the energy landscape. In addi-
tion, conformation sampling (also known as decoy sampling) is not the only challenge with de
novo structure prediction. Analysis of sampled conformations to identify the native structure
and offer it as prediction presents its own challenges. This problem in itself is known as decoy
selection, and a review of challenges and the state of the art is presented in [393].

Modeling Structure and Dynamics of Intrinsically-Disordered Proteins
and Intrinsically-Disordered Protein Regions
Lately, increasing attention is paid to the problem of characterizing the structure and dynamics
of intrinsically-disordered proteins (IDPs) [394–396]. There are now growing databases of
IDPS and intrinsically-disordered protein regions (IDPRs), such as pE-DB, DisProt and
IDEAL [397–399]. CECAM now regularly includes a workshop dedicated to promoting the
development of new modeling methods and better understanding IDPs [400]. Since 2002, even
CASP provides an independent assessment of methods for IDPS [396]. Several reviews discuss
the fundamental principles of disorder in the biological function of IDPs/IDPRSs biological
functions, including the role of disorder in cancer, neurodegeneration, genetic forms of Parkin-
son’s disease, and cardiovascular diseases [401–405].

IDPs/IDPRs pose unique challenges in silico. They do not have stable tertiary structures but
still demonstrate biological activity. This phenomenon challenges the fundamental structure-
function relationship and is an extreme case of the exception to the lock-and-key model [395].
IDPs/IDPRs are not random coils. They exhibit different degrees of disorder, from molten
globules to coils, but even coil-like structures exhibit residual structure [402,405]. A recent rep-
lica exchange MD simulation study revealed the structural contents of intrinsically disordered
tau proteins. Tau proteins were discovered to be able to catalyze self-acetylation, which may
promote pathological aggregation. The work characterized the atomic structures of two trun-
cated tau constructs, K18 and K19, providing structural insights into tau’s paradox [406].

IDPRs sequences are very different from those of ordered proteins, poor in hydrophobic
amino acids and rich in charged amino aids. Disorder-promoting amino acids have now been
identified, and they include Ala, Arg, Gly, Gln, Ser, Glu, Lys, and Pro [404,405]. Based on
sequence information alone, tools now exist to estimate the propensity of a sequence for disor-
der [407]. There are many methods for disorder analysis and prediction of the location of dis-
ordered regions [124,408–411].

Computational methods are being designed to characterize structures and dynamics of
IDPs/IDPRs. With specifically designed force fields, some methods have shown promise in this
regard [412,413]. Treatment of IDPRs is now included in Rosetta [414]. Two main groups of
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methods focus on IDPs/IDPRs. The first group consists of wet-laboratory techniques based on
NMR Chemical Shifts and RDCs [415]. The second consists of MD-based methods
[152,153,408,416–418].

Both unrestrained MD [416] and long-range correlated MD [417] for well-characterized
disordered proteins demonstrate good agreement with wet-laboratory data. The replica
exchange with guided annealing method has also been shown suitable for IDPs [418]. The
method escapes nonspecific compact states more efficiently and speeds up the generation of
correct ensembles compared to classic replica exchange simulations. Work in [153] addition-
ally shows the effectiveness of MD and MSMs for IDP modeling.

Other methods combine NMR-based knowledge and MD simulations [6,302,314,413].
While NMR ensembles are better suited to characterize local conformational states of IDPs
[415], MD simulations allow calculating kinetics and elucidating meta-stable states and barri-
ers between states [314]. Given their unique characteristics, computational methods are
expected to continue their treatment of IDPS to better understand the connection between dis-
order and biological function and misfunction.

Protein Design
The protein design problem is that of finding an amino-acid sequence whose global free energy
minimum state corresponds to a desired, target structure or contains a structural motif associ-
ated with a desired function [419]. Also known as inverse folding or inverse structure predic-
tion, this problem is now at the crux of protein engineering, with applications in medicine,
biotechnology, synthetic biology, nanotechnology, biomimetics, and more [420]. Stated as an
optimization problem, protein design is amenable to algorithmic frameworks employed for
structure prediction.

Computational approaches to protein design can be categorized into forward design,
explicit negative design, and heuristic negative design [419]. In forward design, the sequence
and target fold/structure of a protein are known, and the goal is to optimize the sequence so
that the target structure reaches such a low energy that will make any other non-target struc-
tures less energetically favored. No explicit non-target structures are considered. A successful
application of forward design has yielded a very stable protein, Top7 [421], whose native struc-
ture was later shown identical to the determined X-ray structure. In explicit negative design,
alternative structures are explicitly considered. The sequence is optimized so that the target
native structure is lower in energy than all the alternative structures. Explicit negative design
has been used to design specific coiled coils and DNA-binding and -cleaving enzymes [422–
425].

The limitation of explicit negative design regarding prior knowledge and enumeration of
non-favored alternative states has motivated heuristic negative design. In heuristic negative
design, the goal is not to disfavor specific alternative structures; instead, the sequence is opti-
mized through features that are likely to increase the energy of most undesired structures. Fea-
tures follow closely strategies employed by nature to achieve the energy gap between the native
structure and other structures that seems to be required for thermodynamic stability and func-
tion [419]. It is worth noting that conclusions regarding energy gaps between native and non-
native structures when employing scoring functions need to be taken with a grain of salt. Work
in [365] relates gaps in Gibbs free energy to structure deviations (from NMR data).

Compared to the other two strategies summarized above, heuristic negative design seems
particularly important for biomolecular interactions [426,427]. Heuristic negative design also
seems to be employed by nature for IDPs and by pathogens to fend off the host immune system
[419].
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Successful cases of designing proteins with novel functions abound [428–430] and are made
possible by considerable advances in methods for de novo protein design. The current predom-
inant computational approach is based on the (inverse folding) paradigm proposed in [431],
which assumes a fixed backbone and searches over discrete low-energy configurations/rota-
mers of side chains for rotameric combinations that result in a lowest-energy all-atom tertiary
structure [432]. In the interest of tractability, energy models are limited to pairwise energy
functions. State-of-the-art functions for protein design are knowledge-based, relying on statis-
tical parameters derived from databases of known protein properties [433–437]. Even with
such energy models, the design problem with a rigid backbone and a discrete set of rotamers
has been proven to be NP-hard [438].

Two types of methods have been proposed to address the combinatorial optimization prob-
lem of finding rotameric combinations. The first are based on exact optimization and seek
completeness; that is, finding the global minimum energy conformation. The second forego
completeness and are based on heuristic optimization.

Exact optimization methods include dead-end elimination [439], branch-and-bound algo-
rithms [440–442], integer linear programming [443,444], dynamic programming [445], or cost
function networks [446]. These exact methods are efficient and they limit inaccuracies to the
inadequacy of the energy model, but their focus on one single assignment is highly subjective to
possible artifacts in the energy function, known and lamented in [447]. Moreover, the solution
provided by such methods may be overly stabilized (effectively residing in a narrow basin), that it
lacks the structural flexibility for the protein to operate the sought biological function under
physiological conditions [448]. It is worth noting that unlike discrete rotamer assignments, work
by Donald and colleagues pursues continuous rotamers and is able to reach lower-energy confor-
mations [449]. This functionality is integrated in the popular OSPREY software [450]. It is
expected that the design of a smoothed backbone-dependent rotamer library in [451], which
allows evaluating rotamer characteristics as smooth and continuous functions of the ϕ, ψ angles
will lead to more advances in taking into account side-chain flexibility in de novo design. An
illustration of the capability of protein design algorithms is provided in Fig 4.

Heuristic optimization methods for de novo design build on stochastic optimization or
meta-heuristics, such as MC-SA [433,453], Genetic Algorithms [454,455], and other stochastic
optimization methods [442,456,457]. Methods based on stochastic optimization, best repre-
sented by RosettaDesign [458], currently dominate, mainly due to the ability to provide an
ensemble of near-optimal solutions through their sampling-based approach. The backbone is
kept fixed, and rotameric states are sampled systematically or in a sampling-based manner
[433,453] over pre-built rotamer libraries [435,459]. All-atom energy minimization of the
entire resulting all-atom conformation is often carried out [460,461]. It is here, in the minimi-
zation stage to which all constructed conformations and sequences are subjected, that localized
backbone fluctuations are allowed. The extent of these fluctuations is small, limited to backrub
motions [462–465]. Larger motions are allowed, but only on loop regions, made possible by
efficient inverse kinematics techniques like Cyclic Coordinate Descent [320,466].

The importance of allowing backbone flexibility in the design process cannot be overesti-
mated. The simple model of the backrub motion consists of a small dipeptide rotation about
the C-Cα axis. Recent studies suggest that integrating backrub motions in the design process
leads to improved designs of protein-protein interaction interfaces and more realistic templates
with improved fit between simulated side-chain dynamics and NMR data [462,464, 467]. Addi-
tionally, work in [468] has demonstrated that taking into account backrub motions expands
sequence diversity during search and allows new residue interactions that rigid-backbone
approaches cannot accommodate. This leads to better designs with lower energies and has
been confirmed in other studies, as well [469,470].
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Finally, an important highlight in protein design is the fact that, despite the absence of evo-
lutionary history in newly-designed proteins, evolutionary information can be accommodated
in the design process. Work in [470] reveals strong correlations between residue covariance in
naturally-occurring protein sequences and sequences optimized for the same structures by
computational protein design. Covariance has been demonstrated for complementary changes
in residue size, residue charge, and hydrogen bonding [471–475]. These findings suggest that
structural restrains on co-evolving residues in contact can lead to further improvements both
in de novo protein design and structure prediction.

Categorization by Algorithmic Frameworks
In the following, we categorize methods by the algorithmic frameworks they modify and adapt
for investigating macromolecular structure and dynamics.

MD-Based Methods and Enhancements
In the classic MD setting, Newton’s equation of motion is iteratively solved on a finely discre-
tized time scale to observe collective movements of the atoms comprising a molecular system

Fig 4. Predicting a pathogen’s resistance mutations [452]. (A) Pictured is an illustration of a game between scientists and bacteria. For every drug that
scientists develop against bacteria (a “move”), bacteria respond with mutations that confer resistance to the drug. This paper shows that these “moves” by
bacteria can be predicted in silico ahead of time by the Osprey protein design algorithm. Donald, Anderson, and coworkers used Osprey to prospectively
predict in silico mutations in Staphylococcus aureus against a novel preclinical antibiotic, and validated their predictions in vitro and in resistance selection
experiments. Image (A) was created for this paper by Lei Chen and Yan Liang (L2Molecule.com). (B–C) Computationally predicting drug resistance
mutations early in the discovery phase would be an important breakthrough in drug development. The most meaningful predictions of target mutations will
show reduced affinity for the drug (C) while maintaining viability in the complex context of a cell (B). The protein design algorithm, K* in Osprey, was used to
predict a single nucleotide polymorphism in the target DHFR that confers resistance to an experimental antifolate (Compound 1) in the preclinical discovery
phase. Excitingly, the mutation was also selected in bacteria under antifolate pressure, confirming the prediction of a viable molecular response to external
stress. Images (B–C) were created by Adegoke Ojewole in the Bruce Donald Lab, Duke University.

doi:10.1371/journal.pcbi.1004619.g004
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through successive conformations terminating at a local minimum conformation in the sys-
tem’s energy surface. The ensemble of conformations obtained at equilibrium conditions
observes the Boltzmann distribution. A distinct advantage of employing MD to simulate the
equilibrium dynamics of a macromolecule is the ability to obtain great detail on individual and
correlated motions of specific atoms and specific sites on a macromolecule, as well as correlated
motions between macromolecular units of a complex. A disadvantage of the classic MD simu-
lation setting is the inability to sample rare events that occur on long time scales. In particular,
in the presence of high energetic barriers separating local minima in the energy surface, a clas-
sic MD simulation may be trapped and never escape within the time scale of the simulation.

Limited sampling of the conformation space is a fundamental issue in classical MD, and
algorithmic enhancements are proposed on a regular basis to enhance sampling capability.
These include replica exchange, accelerated MD, umbrella sampling, biased or steered MD,
importance sampling, activation relaxation, local elevation, conformational flooding, jump
walking, multicanonical ensemble, MSM-driven MD, discrete timestep MD, swarm methods,
and others [8,149,203–206,334,476–489].

Recent reviews of advanced MD-based methods and outstanding issues are discussed in
[124,490–495]. A comprehensive list of commonly used MD packages for biomolecular simu-
lation is presented in [493]. Examples of MD applications on proteins with large conforma-
tional changes that occur on long time scales, such as G-proteins, Ras-proteins, kinases,
signaling proteins, and others can be found in [121,122]. In the following, we highlight some of
the algorithmic enhancements to the classical MD setting that are responsible for surpassing
traditional MD time scales and characterizing the dynamics of complex systems.

Accelerated MD and adaptations. The accelerated MDmethod [496,497] locally flattens
the potential energy surface to decrease the free energy barriers between two conformational
states. When the system’s potential energy falls below some predefined threshold energy E, a
bias potential is added. The level of flattening is regulated by two parameters that are typically
specified by the user: the threshold energy E, which controls the portion of the potential surface
affected by the bias, and the acceleration factor α, which determines the shape of the bias
potential and thus how flattened the energy surface becomes. The bias potential allows escap-
ing deep minima separated by high energy barriers, thus accelerating the transition between
two conformational states of interest and extending the time scale of events that can be
observed in simulation. Recent accelerated MD simulations with nanosecond steps [498] can
explore more conformational dynamic events [499,500]. However, Boltzmann statistics need
to be recovered from the simulations, and the effect of the bias potential must be unwinded. A
reweighting procedure is typically used, which attempts to convert an accelerated MD trajec-
tory to the canonical ensemble at a given temperature [8,501].

Enhancements and adaptations of the baseline accelerated MDmethod are being proposed.
We note here first the self-learning, reconnaissance metadynamics method [502], which com-
bines principles of accelerated MD and the concept of collective variables that is the foundation
of the metadynamics strategy. Similar to the baseline method, a bias potential is added to the
true potential to locally flatten the energy surface. However, the bias potential is constructed
over the low free energy region defined over a large number of locally-valid collective variables.
The accelerated adaptive integration method [203] can be considered another adaptation of
the baseline accelerated MDmethod for the problem of modeling ligand-binding processes. A
ligand coupling parameter λ is introduced to keep track of the end points of the receptor-ligand
coupling and decoupling process; λ takes values from 0 to 1. The method assumes that some
transitions can be more accessible if a certain stage of coupling/decoupling (λ) is reached; the
potential energy function is flattened at intermediate values of λ instead of at some threshold
energy value E.
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Replica exchange MDmethods. Replica exchange is a popular enhancement of the classi-
cal MDmethod; it is also known as parallel tempering. Originally, replica exchange was intro-
duced to improve properties of the MC framework [503], but has since then been adapted to
enhance MD sampling [504]. The usual continuous MD trajectory is broken into several rep-
lica simulations randomly initialized and conducted at different temperatures. The number of
replica simulations is typically determined by the user. So is the decision on temperatures
assigned to the replica simulations. The simulations exchange information with one another by
exchanging conformations at regular intervals. At a time, two simulations are selected, and
their instantaneous conformations are exchanged according to the Metropolis criterion. The
exchange often allows a particular simulation to escape a local minimum by making conforma-
tions accessed at higher temperatures available to those at lower temperatures, thus enhancing
sampling capability. In addition, the setting of multiple simulations encourages parallel imple-
mentation and employment of distributed architectures with message passing. This gives rep-
lica exchange high exploration capability. Many adaptations and applications of replica
exchange exist [149,478,505]. Work in [506] proposes a technique to deduce kinetics data from
a heterogeneous ensemble of simulation trajectories. A detailed review of methods based on
replica exchange can be found in [478].

Restrained ensemble MDmethods. We note here two methods to illustrate the employ-
ment of experimental data as restraints in MD-based simulations, the replica-averaged MD
method and the replica-averaged metadynamics method. The employment of experimental
data to correct a molecular force field and thus steer the sampled conformation ensemble
towards the Boltzmann distribution has a rich history in macromolecular modeling. The idea
of using experimental measurements as averaged structural restraints in MD simulations was
first implemented for distances derived from NOE [35]. A penalty term was added to the force
field if the time-average of an NMR observable calculated from an MD trajectory differed from
that provided by experiment. A variation of this idea is to measure not a time-average but an
ensemble-average observable. The latter is referred to as the replica-averaged approach, and a
variety of restraining algorithms, including those that conduct both time and ensemble averag-
ing, have been developed and applied to sample and characterize native, transition, intermedi-
ate, and unfolded states of proteins [17,32,34,312,316,507–512].

Vendruscolo and colleagues [304] have demonstrated that MD simulations with replica-
averaged structural restraints allow generating structural ensembles according to the maximum
entropy principle introduced by Jaynes [513]. Jaynes addressed the problem of incorporating
information from experiments into a structural model while avoiding corrupting the model
with spurious and arbitrary biases. His maximum entropy method, however, proved too cum-
bersome. The restrained ensemble methods of Vendruscolo and others provide an alternative
practical approach, but, until recently, it was not known whether these methods obey the maxi-
mum entropy principle. In addition to work in [304], Roux and collaborators demonstrate in
[514] that restrained-ensemble MD simulations produce statistical distributions that are for-
mally consistent with the maximum entropy principle.

Distance restraints from NOE data, if available, can be integrated in ALMOST, an all-atom
molecular simulation open-source package for macromolecules structure determination and
analysis [515]. In the replica-averaged metadynamics method [516], in addition to making use
of replica-averaged restraints in the force field, the metadynamics framework is exploited to
enhance sampling. Application on the α-conotoxin SI, a 13-residue peptide that has been char-
acterized extensively in the wet laboratory, shows that the method enables accurate reconstruc-
tion of the free energy landscape.

Umbrella sampling. Umbrella sampling [517–519] is another method that employs col-
lective variables. Umbrella sampling is related to importance sampling in statistics. Umbrella
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sampling addresses systems with energy landscapes where a high energy barrier separates two
regions of the conformation space. The relevant system coordinates are grouped into sets of
collective variables, with each set determining a separate umbrella window. A restraint bias
potential forces the collective variables in a window to remain close to the center of mass. The
restraint potential often takes a quadratic or harmonic form, determining the weighting func-
tion of a given window. If the configurations in a window are far from the equilibrium state,
the weighting function will be large, and the simulation will be biased away from the initial
configuration. The sets of collective variables must allow for slight overlap of their windows for
proper reconstruction of the transitions between them. Extracting corresponding Boltzmann
averages and handling overlapping weighting functions are key issues. The information from
each window-biased simulation is converted into local probability histograms. The weighted
histogram analysis method (WHAM) [520] is now the standard method to combine results
from a set of umbrella sampling simulations. Work in [521] introduces superlinear numerical
optimization algorithms to diagnose and quantify systematic errors due to limited sampling
and to obtain fast and accurate solutions of coupled nonlinear WHAM equations. Work in
[522] introduces a bootstrap method to accurately estimate error due to insufficient sampling
and incorporates autocorrelations to reduce such errors. The method, g_wham, has been incor-
porated in the popular GROMACS molecules simulation suite [359]. The umbrella sampling
scheme can be integrated into other enhanced MD or MC strategies. We highlight here the
self-learning umbrella sampling method in [523], which learns, through a feedback mecha-
nism, which regions of a multidimensional space are worth exploring and automatically gener-
ates a set of windows. This method needs a significant smaller number of umbrella windows to
characterize the free energy landscape over the most relevant regions without any loss in accu-
racy. Umbrella sampling has been employed to study processes with large conformational
changes or rare events, such as ligand binding and ion induced diffusion in membrane proteins
[523,524].

Adaptive MD sampling methods. Guiding MD sampling via on-the-fly analysis of
obtained conformations to determine undersampled regions of the conformation space is gain-
ing ground in macromolecular modeling. The principal difficulty with adaptive sampling is the
identification of meaningful collective variables over which to project conformations and
obtain lower-dimensional embeddings of the conformation space for the identification of
under-sampled regions and calculation of interesting statistics. While collective variables, such
as number of native and non-native contacts, hydrogen bonds, dihedral angles, RMSD, radius
of gyration remain popular, these variables have been shown to result in overly smooth land-
scapes [525] and mask interesting transitions. Recent work by Clementi and colleagues has
reintroduced diffusion-based dimensionality reduction methods for extracting collective vari-
ables and has demonstrated the power of such methods for characterizing complex energy
landscapes [526,527]. Further work by the same authors in [528,529] employs the identified
collective variables to guide and expedite sampling of rare events via MD.

In contrast to methods that rely on the identification of collective variables, a different line
of work in the early 2000s introduced the concept of kinetic clustering and conformation space
network. Both were precursors of the MSM. The main idea was to organize conformations in
discrete, graph-based models of connectivity to both visualize the free energy surface and carry
out interesting calculations on such models.

The concept of kinetic clustering evolved from the disconnectivity graphs put forth sepa-
rately by Karplus andWales [530–532]. Work by Rao and Caflisch took this idea further by
proposing complex network analysis both to visualize and study the conformation space and
folding of peptides [533]. In lieu of geometric clustering, conformations in [533] were grouped
together by secondary structure, and the different emerging groups were abstracted as nodes of
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a network, with links between nodes recording observed transitions between groups. Interest-
ing observations were made regarding network topology and peptide folding kinetics in [533]
and in later applications investigating the impact of single-point mutations on peptide folding
[534] (a detailed review of the conformation network idea can be found in [535]), but the
broader analogy (and generalization) between conformation space networks and MSMs would
emerge later. In tandem with the conformation space network proposed by Caflisch, related
work by Karplus further propelled the disconnectivity graphs to additionally employ max-
flow/min-cut algorithms to lay bare the hidden complexity of free energy surfaces of peptides
and proteins [525,536]. It is worth noting in this context that the free energy surface generated
by implicit solvent is often very different and more complex than that generated by explicit sol-
vent [537]. Early work in [538] demonstrates that explicit solvent smooths the energy surface.

Kinetic clustering continues to be useful and has been used successfully to characterize pro-
tein folding through very long MD simulations [147]. In [147], conformations are assigned to
clusters so that the long time scale behavior in cluster-space mimics that in the MD simulation.
Autocorrelation functions of the time series of a large number of atomic distances are calcu-
lated to match the long time scale of these functions with corresponding correlation functions
calculated over dynamics in cluster space. The assignments and then the construction of transi-
tions between distinct long-lived states identifies the slower transitions [147].

It was only around 2005 that the analogy between the conformation space network and the
MSMwas made by Pande and coworkers [363,539]. The notion of kinetic clustering was general-
ized, and the conformation space networks evolved into kinetic networks connecting meta-stable
states, effectively MSMs [540]. The integration of MSMs [146,153,541] into MD simulations
allows investigating macromolecular dynamics even beyond the second time scale [123]. Origi-
nally, MSMs were only employed to analyze the connectivity of conformational states sampled
through multiple, long MD simulations and employ calculations over the MSM to derive kinetic
measurements [363]. In [123], MSMs were employed to reconstruct folding pathways from short
off-equilibrium, all-atom simulations in explicit solvent. MSM andMDmethods have been
applied to model folding [542–545], protein-ligand binding [136,138,546], protein switches in
kinase and GPCRs [547,548], allostery [549] and IDPs [541,550], revealing extensive statistical
details about intermediates states [136,542,551] and molecular interaction mechanisms. The
employment of MSMs to focus computational resources to under-sampled regions of the confor-
mation space in an adaptive manner is a rather recent development in macromolecular model-
ing. A semi-automatic protocol has been proposed in [552] to simulate the folding and unfolding
of the villin headpiece in a very efficient manner. Work in [128] also proposes a semi-automatic
protocol analyzingMD trajectories with a constructed MSMmodel to pinpoint where more sam-
pling needs to be conducted. As of now, a fully automatic protocol remains elusive [553].

While MSM-guidedMD sampling relies on obtaining a discrete model of the connectivity of
the sampled conformation space to guide further sampling, other methods rely on modifying the
energy function itself to bias the simulation away from already-sampled conformations. One of the
earliest methods to do so was local elevation [481]. In local elevation, the actual potential energy
surface is modified in order to drive conformational sampling away from visited conformations (a
bias term that is the sum of of repulsive functions is added to the potential energy function).

Metadynamics methods follow a similar approach [554,555]. The assumption in these
methods is that the system can be described in terms of a few collective variables. During the
MD simulation, the location of the system is calculated in terms of the collective variables. A
positive Gaussian potential is then added to the energy landscape so that the simulation is
biased to return to the previous location. During the simulation, more and more Gaussians add
up to the point that the system is discouraged from going back to previous locations in the
energy landscape, thus exploring the full landscape. The time interval between the addition of
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two Gaussians and the height and width of a Gaussian are all tunable parameters to optimize
the ratio between accuracy and computational cost. The crucial issue in metadynamics, as in
other techniques based on collective variables, is to identify the right collective variables. Strate-
gies to do so are reviewed in [555]. The metadynamics strategy is available as a portable plugin
for MD simulation platforms in PLUMED [556]. Metadynamics MD has been applied to study
the folding process of small proteins [557,558], protein switches [559–561], and ion induced
diffusion of small molecules in cavities and channels [562,563]. Metadynamics methods have
also allowed modeling the docking process with full protein flexibility [135,564–567].

MC-Based Methods and Enhancements
While a significant portion of research on macromolecular structure and dynamics employs
MD-based methods, a just as significant portion employs MC sampling. In MC, the evolution
of one conformation into another is not guided by Newton’s equation of motion but instead a
programmed move or step designed to introduce a small or large conformational change. The
end result of the move is only accepted according to the Metropolis criterion in order to pro-
mote the trajectory of consecutive conformations to converge to the global minimum while
allowing some non-zero probability of escaping a current minimum. MC-based methods
employ the notion of effective temperature to regulate the height of energy barriers that can be
crossed. While generally regarded to have higher sampling capability than MD, MC methods
also are prone to convergence to local minima and forego any direct information of time scales
and kinetics. Many of the enhancement strategies for MD can be applied to MC-based meth-
ods. In the following we highlight two such enhancements.

Collective motions molecular dynamics and Monte Carlo. Collective MD [568] belongs
to the family of enhanced MD sampling methods that simplify sampling considering only the
most dominant, low-frequency, low-resolution, collective motions. The latter are identified by
modeling a structure through the anisotropic network model (ANM) [569]. The basic
approach is to deform the structure collectively along the modes predicted by the ANM. A
Metropolis-based MC scheme is employed to select the ANMmodes; the stochasticity permits
the system to occasionally circumvent energy barriers. The ANMPathway is a related sampling
method that uses modes extracted from two ENMs representative of the experimental struc-
tures that constitute the end points of the transition under investigation [570]. Both methods
have been tested on modeling open-close transitions in AdK [568,570] and several transporting
membrane proteins [570]; the transition pathways were captured in great detail and at signifi-
cantly lower computational cost than other methods [571].

Weighted ensemble method. The weighted ensemble method (WEM) [572] is an
enhanced sampling method with simplified sampling. WEM uses a multiple-trajectory strategy
in which individual trajectories can spawn multiple daughter trajectories upon reaching new
regions of configuration space called bins. The daughters are suitably weighted to ensure statis-
tical rigor. WEM can yield rigorous estimates for time scales that are much longer than the
simulations themselves. The idea to split and propagate re-weighted trajectories had been ini-
tially introduced in MC simulations, but WEM can be used as a sampling method for MD sim-
ulations, as well [572]. WEM has been employed to model folding [573], non-equilibrium
[574] and equilibrium and processes [572], and conformational transitions between end-points
separated by high energy barriers [575].

Other Algorithmic Frameworks
Morphing methods. Geometric morphing uses the linear interpolation of each atom to

construct a path between conformations. MolMovDB [337,576] was the first online tool to
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allow obtaining and visualizing such paths. After each linear interpolation, the morphing algo-
rithm in MolMovDB conducts an energy minimization to fix possible distortions and restore
the stereochemistry of the intermediate points in the interpolated trajectory. The created
morphs are stored in the database of motions and can be found by protein name, PDB ID, or
motion type [577].

Conformational trajectories based on linear interpolation do not necessarily represent
actual conformational pathways. Several morphing-based methods have been developed that
provide non-linear interpolations between the start and goal structures to be connected
through intermediate conformations [130,338,341,578–580]. Non-linear morphing methods
rely on normal mode analysis (NMA) of harmonic-type models, such as the ENM and its vari-
ants, to obtain principle motions of a macromolecule about a local minimum. Such models are
based on early concepts by Go, Scheraga, and Flory [581–583], and they rely on the assumption
that macromolecules can be treated as deformable elastic bodies, where the interatomic poten-
tial function can be represented by a harmonic model [584,585], and interactions depend only
on the density of neighbors [586,587]. The earliest application of NMA to elucidate equilibrium
dynamics was conducted in the Karplus laboratory [228], though the usage of normal modes
predates this by seven years; Levitt and Warshel used normal modes to jump out of local min-
ima in pioneering folding simulations [68,72]. Further work demonstrated the effectiveness of
such models for capturing thermal vibrations and predicting experimental B-factors
[584,585,588–590]. Other work employed normal modes extracted via NMA from a single
structure to model equilibrium fluctuations and in some cases even capture simple conforma-
tional switching [591–598]. The NOMAD-Ref server [339] provides tools for online NMA of
large molecules (of up to 100,000 atoms, maintaining atomistic detail of their structures) and
access to a number of programs that use the normal modes to model deformations and conduct
refinements of experimental structures.

The earliest employment of NMA in the non-linear morphing setting, to extract informa-
tion on intermediate conformations mediating the transition between a goal and start struc-
ture, appeared in [341,599]. In [599], a geometric morphing technique is proposed to bridge
two ENMs corresponding to given start and goal structures. Related ideas appeared in
[600,601], moving along a few normal modes from the start structure pointing to the target
structure and then parameterizing the elastic network along the pathway. In [578], the start
and goal structures are interpolated upon optimal superposition of the CA atoms, but, in con-
trast to linear morphing methods, the resulting displacement vector is expanded as a linear
combination of the normal modes calculated on the start structure.

Since, typically ENMs involve only a single energy minimum and are not immediately appli-
cable to model transitions between multiple stable and semi-stable structural states of a macro-
molecule, mixed ENMs [579,602] and other, related, ENM-based models have been developed
[130,603–606]. The fundamental issue addressed in different ways in these works is how to
interpolate the ENMs at the start and goal structures so that the resulting potential retains
these structures as local minima [602]. The plastic network model (PNM) introduced in [603]
can include additional known intermediate structures and is parameterized to account for
known fluctuations available as experimental B-factors.

A group of non-linear morphing methods based on ENMs, mixed ENMs, and variants such
as PNM, compute transitions that are minimum-energy paths (MEP) in the energy landscape.
In [603], the conjugate peak refinement (CPR) algorithm [607] is used to compute a series of
steepest descent paths from saddle points to nearest minima to connect two structures of inter-
est with a continuous curve in the conformation space. Similarly, in the Climber method
[340,608], a restraining energy depends linearly on the distance deviation between the current
conformation and the target conformation in a way that allows full flexibility and enables the
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protein to move around high-energy barriers, rather than over them, resulting in the MEP.
KOSMOS [609] is another online morph server that, in addition to offering NMA for nucleic
acids, proteins, and their complexes, also generates plausible transition pathways by optimizing
a topology-oriented cost function that guarantees a smooth transition without steric clashes.

Transition path sampling and chain-of-states methods. The main challenge with com-
puting transitions of a macromolecule between meta-stable states or basins is due to the fact
that a macromolecule may spend a very long time in one basin before transitioning to another.
The disparity between the effective thermal energy and the typical energy barrier is manifested
in long waiting periods where the macromolecule diffuses in a basin followed by a sudden
jump to another basin. Such sudden jumps are rare events, and a significant body of work in
macromolecular modeling is dedicated to enhancing conventional MC or MD simulation
frameworks to capture such events in a reasonable time frame. These methods operationalize
seminal ideas put forth by Pratt on transition path sampling (TPS) [610]. Even though the
energy landscape of a complex system is typically dense in saddle points, only a few saddle
points are relevant for transitions between basins. TPS methods do not rely on identifying sad-
dle points in the potential energy surface. Instead, they implement importance sampling over a
reduced set of collective variables that span the important regions of the high-dimensional
search space [611–616]. TPS methods are numerical techniques that effectively conduct MC
sampling of the ensemble of transition paths [617]. Detailed reviews of these methods can be
found in [617,618].

Transition paths obtained via TPS methods can be quite complicated for systems with high-
dimensional conformation spaces and rugged energy landscapes; a statistical mechanics frame-
work, known as the transition path theory (TPT) [619], is needed to organize and analyze the
transition path ensemble. Moreover, the success of TPS methods depends on the particular
progress coordinate defined to distinguish the transition path in the search space, but finding
an effective coordinate is non-trivial. Indeed, multiple progress coordinates may need to be
defined to describe the transition.

Therefore, a second group of methods founded on TPT implement the chain-of-states
approach, which assumes that the transition path can be meaningfully encoded as a series or
chain of structures (also referred to as images) [342,607,620–623]. These methods can track an
arbitrary number of progress coordinates while restraining sampling to effectively one dimen-
sion. In chain-of-states methods, a string of images is created between the given meta-stable
states, and the images are relaxed to the transition pathway. Similar ideas had already appeared
in [607,620]. Two types of chain-of-states methods were proposed afterwards, the nudged elas-
tic band (NEB) methods and the string methods.

The NEB method [624] addresses a key issue that arises when an artificial spring force is
introduced to maintain even spacing between images. The problem is that when minimizing
the elastic band, the component of the spring force that is perpendicular to the elastic band
tends to pull the images off the MEP. To address this problem, in NEB, a minimization of the
elastic band is carried out where the perpendicular component of the spring force and the par-
allel component of the true force are projected out. In this way, the spring force does not inter-
fere with the relaxation of the images perpendicular to the path. The result is that the series of
relaxed configurations is an approximation to the MEP, converging to the MEP when there is
sufficient resolution in the discrete representation of the path (when enough images are
included in the chain). It is worth noting that the MEP is just one, special path selected from
curves connecting two given conformations. Work in [625] explains that this special path mini-
mizes the absolute value of the mechanical work and so is the most probable path for an over-
damped Brownian particle at 0 K [625] (in other words, the most probable Brownian trajectory
in the absence of kinetic energy). Improvements to the NEB method introduced in [624] have
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been proposed, particularly regarding improving the tangent estimate [621] and lowering the
computational cost of minimizations [342].

Generally, NEB methods require that the energy landscape be relatively smooth and are not
effective on rugged energy landscapes [619]. Remedies have been proposed by having NEB
methods operate on the free energy landscape [623], which is expected to be smoother, or by
introducing temperature corrections to the MEP [626]. Caution must be exercised not to dou-
ble count entropy when operating on free energy landscapes. One implication is that implicit
solvent potentials cannot be employed to model dynamics on free energy landscapes.

In string methods, splines are used instead to calculate tangents. In addition, image spacing
is maintained via reparameterization. The first string method proposed in [622] belongs to the
sub-category of zero-temperature string methods [344]. Extensions to operate on the space of
collective variables and compute the minimum free energy path (MFEP) rather than MEP have
also been proposed [343,345]. Finite-temperature string methods were later proposed
[347,627] to better deal with overly rugged energy landscapes.

String methods do not assume the energy landscape is smooth. They can also handle a large
number of collective variables. Effective choices of collective variables have been discussed and
tested in [628]. Work in [619] draws a difference between string methods and chain-of-states
methods, as string methods start with an intrinsic formulation of the dynamics of curves/
strings in configuration space and only resemble chain-of-states methods after discretization of
the curves. String methods sample the configuration space with strings, which are smooth
curves with intrinsic parameterization. The mean force and other conditional expectations are
computed locally over the discretization points along the string. The string satisfies a differen-
tial equation that by construction guarantees that the string evolves to the most probable tran-
sition path connecting two meta-stable states.

In particular, the finite-temperature string method has been applied recently to model the
complex α-helix to β-sheet transition in a β-hairpin mini protein in implicit solvent [629].
Transition pathways constructed by string methods have been reported in [630–634]. To fully
appreciate the scope of the string method proposed in [343], we additionally note here its
application to model in detail the transition of the converter of myosin VI between the PPS
and R conformations by computing the associated MFEP for the R$ PPS isomerization, the
free-energy profile along the transition pathway, and estimating the interconversion rate [635].

String methods make use of the approximation that, with high probability, the flux associ-
ated with transition paths is concentrated inside one or a few thin (reaction) tubes. This may
not be a reasonable assumption, particularly for complex systems. The WEM is combined with
a string method in [636] to address this issue. Another method, proposed in [637] and tested in
[638,639], combines a string method with swarms of trajectories [637].

Another drawback of string methods is their computational cost due to the multiple gradi-
ent calculations performed on images located far away from the transition state. Many methods
are proposed to reduce this computational burden. We note here the growing and the freezing
string methods [640–645]. The growing string method attempts to reduce the number of calcu-
lations in the iterative steps of string methods. Essentially, two string segments are grown inde-
pendently from the start and goal structures until they join each other. The freezing string
method additionally reduces costs related to the parameterization in string methods. The
images are optimized in a direction perpendicular to the progress coordinate with a few conju-
gate gradient steps and are then frozen in place, effectively constructing an approximate Hes-
sian. Work in [646] demonstrates that this approximation performs as well as growing string
methods that use the exact Hessian. As evidenced by the rich number works cited, work on
methods for computing transition paths, rates, and transition states is very active.
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Evolutionary Algorithms
An important group of methods to address optimization-related problems in macromolecular
modeling consists of evolutionary algorithms (EAs). EAs approach stochastic optimization
under the umbrella of evolutionary computation, where the main idea is for computation to
mimic the process of evolution and natural selection to find local optima of a complex objec-
tive/fitness function. The realization that the potential energy landscape of a macromolecule
can be non-linear and multimodal, and that many structure-centric macromolecular modeling
problems can be cast as optimization problems makes EAs highly appealing for macromolecu-
lar modeling.

Though EAs are highly customizable algorithms, they all follow a simple template. A popu-
lation of samples of a configuration space (generally referred to as individuals) is evolved over
a number of generations. An initialization mechanism specifies the initial population, which
can consist of random samples or include configurations known to be local optima (for
instance, experimentally-available structures may play this role). The population evolves either
over a fixed, user-defined number of generations or until a different termination criterion is
reached. In each generation, individuals with high fitness are repeatedly selected and varied
upon. The selection mechanism specifies which individuals to select as parents for reproduc-
tion. The improvement mechanism consists of reproductive or variation operators, which can
be asexual, introducing a mutation on a parent, or sexual, combining the material of two
parents at one or more crossover points to generate offspring. A survival mechanism deter-
mines which individuals survive to the next generation. In non-overlapping or generational
survival mechanisms, the offspring replace the parents. In overlapping ones, a subset of indi-
viduals from the combined parent and offspring pool are selected for survival onto the next
generation. A comprehensive review of EAs can be found in [647].

EAs are very rich algorithmic frameworks, as different design decisions in the initialization,
variation, selection, and survival mechanisms can lead to very different behaviors. The decision
on how to represent individuals is key both to the effectiveness and ease with which variation
operators can be designed to produce good-quality individuals. EAs that employ crossover in
addition to the asexual (mutation) operator are referred to as genetic algorithms (GAs). EAs
that additionally incorporate a meme, which is a local improvement operator to improve an
offspring and effectively map it to a nearby optimum, are referred to as hybrid or memetic EAs
(MAs). The employment of multiple, independent objective functions as opposed to a single
fitness function results in multi-objective EAs (MO-EAs). Specific variants that build over GA
are respectively referred to as MGAs and MO-GAs.

One of the first EAs for macromolecular structure modeling was a GA, proposed in [648]
for the de novo protein structure prediction problem. Work in [648] also demonstrated that
EAs are better able to escape local minima of a protein energy function than MC [648]. This
result is not surprising, considering that the algorithm able to compute Lennard-Jones optima
of atomic clusters in [649] was in fact an EA. Referred to as Basin Hopping, the algorithm was
a 1+1 MA, which refers to an MA that has only one parent and one offspring. In a 1+1 MA, the
population evolving over generations has size 1, and the offspring competes with the parent.
We recall that MA refers to an EA where the offspring is subjected to a local improvement
operator (energetic minimization). In Basin Hopping, the offspring replaces the parent with a
probability resembling the Metropolis criterion. An MC search can also be viewed as an EA,
specifically, a 1+1 EA, and all MC-based methods can be conceptualized as EAs employing
highly specific insight about the optimization problem at hand.

Given the early work in [648], EAs have a long history in de novo protein structure predic-
tion. Customized EAs for this problem contain many evolutionary strategies and meta-
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heuristics, including the employment of a hall of fame to preserve “good” individuals (decoys),
tabu search to improve the performance of a meme, co-evolving memes, niching, crowding,
twin removal for population diversification, structuring of the solution space to facilitate dis-
tributed implementations capable of exploiting parallel computing architectures, and more.
The main focus of algorithmic research on EAs is what mechanisms avoid premature conver-
gence and allow finding the global optimum in overly rugged fitness landscapes. This is of par-
ticular interest on applications of EAs for different structure-centric problems in
macromolecular modeling [650]. A comprehensive review of EAs for de novo protein structure
prediction can be found in [651].

Though they have a long history in de novo structure prediction, EAs are not considered
among the top performers in this problem for proteins no longer than 200 amino acids. On
long protein chains, where off-lattice models result in impractical computational demands, on-
lattice EAs are by now the only viable algorithms [652,653]. However, on shorter chains, where
off-lattice models can be afforded, the injection of specialized operators (moves), such as
molecular fragment replacement, and sophisticated hybrid potential energy functions have
allowed rather simple MC-based algorithms to outperform non-customized EAs. Of note here
are the Rosetta and Quark methods that often dominate the leader board in the CASP competi-
tion [118–120].

Even though EAs have yet to become state of the art in the de novo structure prediction set-
ting, much progress has been made in recent years [390,391,654]. Recently, EAs have incorpo-
rated state-of-the-art, off-lattice representations and energy functions to become competitive
with MC-based methods such as Rosetta [390,391]. The additional recasting of the structure
prediction problem as a multi-objective optimization one has resulted in higher exploration
capability and conformation quality over single-objective optimization approaches such as
Rosetta [392,655]. EAs are also employed to address protein folding [656].

While there is still much work to be done to demonstrate EAs as the state-of-the-art
approaches for de novo structure prediction, there are three domains in macromolecular struc-
ture modeling where EAs are by now the best performers: protein-ligand binding, multimeric
protein-protein docking, and cryo-EM reconstruction;

In protein-ligand binding, some of the top algorithms are EAs. For instance, Autodock now
employs a Lamarckian GA, which has been demonstrated to result in better-quality receptor-
ligand bound configurations over the MC-SA algorithm employed in earlier releases [180]. In
particular, work in [180] demonstrates that both the Lamarckian GA and a traditional GA can
handle ligands of more degrees of freedom than MC-SA, and that the Lamarckian GA outper-
forms the traditional GA. The latter is due to the fact that in a Lamarckian GA, contrary to the
Darwinian model of evolution, where only genetic traits are inheritable, an offspring is replaced
with the result of the local improvement operator to which it is subjected. This results in essen-
tially introducing phenotypic traits in the genotypic pool (improvements are passed onto the
next generation), per Jean Baptiste Lamarck’s now discredited claim that phenotypic character-
istics acquired during an individual’s lifetime can be become inheritable traits; (epigenetics is
bringing more credibility, however, to Lamarck’s claims). It is worth pointing out that many
MAs (for instance, even Basin Hopping) are Lamarckian EAs. MAs that are not Lamarckian
choose not to replace the offspring with the result of the local improvement operator to which
it is subjected but use the improved fitness in the survival mechanism; this is known as the
Baldwin effect [657].

A domain where EAs are showing promise is in structure prediction for asymmetric, hetero-
meric assemblies. Currently, the only algorithm that has been shown capable of producing
native asymmetric structures of heteromeric assemblies in the absence of wet-laboratory data is
Multi-LZerD [292]. Multi-LZerD is a GA that represents multimeric conformations through
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spanning trees. The nodes in the tree represent the units, and the edges encode the presence of
a direct interaction. As presented, Multi-LZerD proceeds over 3,000 generations. While prom-
ising, the algorithm incurs a high computational cost to be practical in its current form for mul-
timeric assemblies of more than 6 units.

Another domain where EAs are shown to be highly successful is the simultaneous registra-
tion problem in cryo-EM microscopy reconstruction. One issue with cryo-EM is that low-reso-
lution maps are often obtained for large asymmetric and/or dynamic macromolecular
assemblies. In such cases, an important problem is how to simultaneously fit known structures
of the units in the given map. A GA with specialized variation operators and tabu search has
been proposed in [658] to successfully address this problem. This GA has also been used in
later work in [659] to trace α helices in low- to mid-resolution cryo-EM maps.

While most of the work on EAs in the evolutionary computation community is driven by
algorithmic design and analysis of the exploration capability rather than data quality, key ideas
and strategies on evolutionary search are proving powerful in enhancing exploration capability
in macromolecular structure modeling problems. For instance, several algorithmic decisions
on how to select which parents for reproduction, generate offspring, and setup the competition
for survival are key for balancing the breadth (exploration) and depth (exploitation) issue in
exploration [647]. Lately, interesting ideas from multi-objective optimization are being incor-
porated in EAs for conformation sampling in de novo protein structure prediction. Namely,
instead of pursuing the global minimum of an aggregate energy score, EA-based methods are
proposed to obtain conformations that optimize specific sub-groupings of interatomic interac-
tions [392]. EA-based methods are also showing promise in mapping energy landscapes of pro-
teins with large conformational changes [324,660]. Due to the ongoing work in the
evolutionary computation community on powerful and effective algorithmic strategies for
obtaining solutions of complex objective functions and the realization of outstanding sampling
bottlenecks in de novo structure prediction [661], adoption of EAs holds great promise for
macromolecular structure modeling.

Robotics-Inspired Methods
Since simulation of dynamics is the limiting factor in dynamics-based methods, efficiency con-
cerns can be addressed by foregoing or at least delaying dynamics until credible conformational
paths have been obtained. A different class of methods focuses not on producing transition tra-
jectories but rather computing a sequence of conformations (a conformational path) with a
credible energy profile. The working assumption is that, once obtained, credible conforma-
tional paths can then be locally deformed with techniques that consider dynamics to obtain
actual transition trajectories. Such methods adapt sampling-based algorithms developed to
address the robot motion-planning problem and are thus known as robotics-inspired methods.

The objective in robot motion planning is to obtain paths that take a robot from a start to a
goal configuration. The robot motion planning problem bears mechanistic analogies to the
problem of computing conformations along a transition trajectory; in both problems the goal
is to uncover what of the underlying conformation or configuration space is employed in
motions of a mechanical or biological system from a start to a goal conformation or configura-
tion. Analogies between molecular bonds and robot links and atoms and robot joints are made
to perform fast molecular kinematics.

Robotics-inspired methods are tree-based or roadmap-based [662]. Tree-based methods
grow a tree in conformation space from a given, start to a given, goal conformation represent-
ing the structures bridged by the sought transition. The growth of the tree is biased so the goal
conformation can be reached in reasonable computational time. As a result, tree-based
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methods are efficient but limited in their sampling. They are known as single-query methods, as
they can only answer one start-to-goal query at a time; that is, only one path of consecutive
conformations that connect the start to the goal can be extracted from the tree. Running them
multiple times to sample an ensemble of conformational paths for the same query results in an
ensemble with high inter-path correlations due to the biasing of the conformation tree. Roadmap-
based methods adapt the Probabilistic RoadMap (PRM) framework [663]. These methods sup-
port multiple queries. Rather than grow a tree in conformation space, these methods detach the
sampling of conformations from the structure that encodes neighborhood relationships among
conformations in the conformation space. Typically, a sampling stage first provides a discrete
representation of the conformation space of interest, and then a roadmap building stage embeds
sampled conformations in a graph/roadmap by connecting each one to its nearest neighbors.

Roadmap-based methods bring their own unique set of challenges. Randomly-sampled confor-
mations have very low probability of being in the region of interest for the transition. In particular,
for long chains with many degrees of freedom (hundreds of backbone angles in small-to-medium
protein chains), a protein conformation sampled at random is very unlikely to be physically realis-
tic. Biased sampling techniques can be used to remedy this issue [664,665], but it is hard to know
which ones will focus sampling to regions of interest for the transition. In addition, both roadmap-
and tree-based methods rely on local planners or local deformation techniques to connect two
neighboring conformations. It is hard to find reasonable local planners for protein conformations.
A linear interpolation is often carried over the employed parameters, typically backbone angles,
but this can produce unrealistic conformations, and a lot of time can be spent energetically refining
these conformations. Recent work is considering complex local planners that are not based on
interpolation but are instead re-formulations of the motion computation problem. Recent work in
[666] introduces a prioritized path sampling scheme to address the computational demands of
complex local planners in roadmap-based methods for protein motion computation.

Roadmap-based methods have been employed to model unfolding of small proteins
[665,667]. Tree-based methods have been employed to model conformational changes and
flexibility, predict the native structure, and compute conformational paths connecting given
structural states [351,352,387,668–670]. In particular, the T-RRT method described in [351]
and the PDST method described in [352] have focused on the problem of computing confor-
mational paths connecting two given structures. While T-RRT has been shown to connect
known low-energy states of the dialanine peptide (two amino acids long) [351], the PDST
method has been shown to produce credible information on the order of conformational
changes connecting stable states of large proteins (200–500 amino acids long) [352]. Both
methods control the dimensionality of the conformation space by either focusing on systems
with few amino acids [351] or by employing coarse-grained representations to reduce the num-
ber of modeled parameters in large proteins [352]. The tree-based method in [353] employs
the fragment replacement technique to reduce the dimensionality of the conformation space
and sample conformational paths connecting two given structural states of proteins ranging
from from a few dozen to a few hundred amino acids. At each iteration, a conformation in the
tree is selected for expansion. The expansion employs molecular fragment replacement and the
Metropolis criterion to bias the tree towards low-energy conformations over time. The selec-
tion penalizes the tree from growing towards regions of the conformation space that have been
oversampled, thus resulting in enhanced sampling of the conformation space.

Conclusions
This review has highlighted the breadth and depth of research in macromolecular modeling
and simulation. A plethora of computational methods have been developed to study a wide

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004619 April 28, 2016 39 / 70



spectrum of molecular events. QMmethods are used to study molecular electronic structures
and obtain detailed and accurate electronic structure calculations. Work in [671] employs such
calculations to correlate quantum descriptors and the biological activity of 13 quinoxaline drug
compounds and then suggest effective compounds against drug-resistant Mycobacterium
tuberculosis. Recent efforts in quantum chemistry are devoted to circumventing computational
bottlenecks of large-scale electronic structure calculations and extending applicability to
molecular systems composed of hundreds of atoms [672]. At present, QMmethods have too
high a computational cost to be a competitive alternative to MD or MCmethods and their vari-
ants. For this reason, the focus of this review has been on MMmethods, such as MD and varia-
tions, which are the methods of choice to study macromolecular structure and dynamics. It
should be noted that hybrid, QM/MMmethods exist and are the methods of choice for model-
ing reactions in biomolecular systems [673].

One of the major themes in MM-based macromolecular modeling is the choice of resolution
or detail. As this review has summarized, atomistic, explicit solvent MD simulations are
becoming more affordable, both due to improvements in hardware and techniques that allow
aggressive parallelization. Despite the challenges posed by the disparate spatial and time scales
employed by macromolecules flexing their structures and interacting with their environment,
significant algorithmic and hardware advances have allowed breaking the millisecond barrier
[147]. Dynamical processes that involve millions of atoms can now be characterized. For exam-
ple, work in [674] tracks via MD simulations the microsecond-long atomic motions of 1.2 mil-
lion particles to study the dissolution of the capsid of the satellite tobacco necrosis virus.

MD and non-MDmethods that employ reduced, coarse-grained macromolecular models
are often regarded as “cheaper” albeit less accurate alternatives to atomistic MDmethods. Such
cheaper methods currently complement or facilitate atomistic MD-based studies. For example,
protein docking methods are routinely employed to assist cryo-EM in resolving structures of
molecular assemblies. Once such methods narrow down the possible conformation space, sub-
sequent atomistic MD simulations are employed to make final predictions by examining stabil-
ity and dynamics [111].

In some settings, these cheaper methods provide the only practical approach. Even with var-
ious accelerated MD simulations, mapping of protein energy landscapes remains challenging.
For example, work in [10] shows that the sampling capability of accelerated MD greatly
depends on the structure used to initiate a trajectory [10]. In our own laboratories, we have
been able to compare the cheaper methods to published atomistic MD simulations of H-Ras
[660]. In particular, on H-Ras, the evolutionary algorithm in [660] is able to map the energy
landscape of H-Ras wildtype and selected variants in atomistic detail better than what can cur-
rently be achieved via known MDmethods.

In MD-based research, two different directions seem to be pursued by researchers at the
moment. The first involves the employment of very long MD simulations, made possible by
complex MD-customized architectures, like Anton. Thermodynamic and kinetic quantities
can be readily extracted from such simulations. The second involves the employment of several
short, off-equilibrium MD simulations, which allows the employment of parallel architectures
but necessitates the employment of statistical models, such as Markov state models, to collect
and organize the simulations to describe the long-time behavior of a system. Both directions
are exciting and complementary. In particular, the second direction is leading to advances in
the combination of continuous and discrete models for expediting modeling of long-time scale
phenomena and is likely to lead to further algorithmic advancements. Within each of these
directions, several open questions remain for researchers to pursue. A combination of both
directions, dedicated architectures and continuous and discrete models promises to push the
spatial and time scales that can be observed in silico even further.
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As summarized in this review, many non-MD algorithmic frameworks are being pursued to
model different aspects of macromolecular structure and dynamics. Often, these frameworks
are inspired or initiated from diverse communities of researchers. Of note here are evolutionary
algorithms and robotics-inspired algorithms. While components of these algorithms are often
investigated in detail in each of the corresponding communities, the focus in these communi-
ties has traditionally been on often on computational performance rather than quality of find-
ings. Broad employment of these algorithms as tools complementary to MD is currently
challenged by an inability to demonstrate utility on a broad class of macromolecular systems
and validate findings with existing wet-laboratory or MD-based studies. Nonetheless, a grow-
ing body of researchers within each of these communities is introducing treatments focused on
both computational performance and data quality.

This review has summarized the current state of the art in diverse application areas. An
emerging theme is the need to characterize in detail the structural flexibility of a macromolecu-
lar system under specific conditions. While great progress is being made, computing a confor-
mation ensemble consistent with explicit or implicit constraints is likely to motivate the
development of novel algorithms for years to come.

Many other directions of research in macromolecular modeling and simulation could not
be described in detail here. These include the development of accurate and sensitive molecular
force fields [140,141] for macromolecular simulation, the development of increasingly accurate
coarse-grained representations of macromolecules, solvent models, and multiscaling tech-
niques [76,142–144], decoy/model selection algorithms [675] in de novo structure prediction,
as well as the development of algorithmic tools to assist structure resolution in the wet labora-
tory [676,677]. Additionally, while this review highlights some of the unique challenges posed
by intrinsically disordered proteins and regions, it does not provide an overview of similar chal-
lenges posed by membrane proteins. The reader is referred to work in [678] for a review of
such challenges and algorithmic advancements.

Expected advances in each of the reviewed application areas promise to provide us with a
more comprehensive and detailed understanding of our biology. In particular, unraveling the
behavior of macromolecules in isolation and assembly will help us understand the molecular
basis of mechanisms in the healthy and diseased cell. A truly synergistic employment of in-sil-
ico and wet-lab research to unravel molecular mechanisms also promises to lead to better ther-
apeutics for combating cancer, neurodegenerative disorders, infections, and other important
human disorders of our time. The journey into the future of computational structural biology
promises to be exciting, and we hope that this review has inspired a few more researchers to
join us on this journey.

Supporting Information
S1 Text. Abbreviations in alphabetical order. Abbreviations are provided for names of meth-
ods and proteins.
(PDF)
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