
June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Journal of Bioinformatics and Computational Biology
Vol. 9, No. 3 (2011) 399–413
c© Imperial College Press
DOI: 10.1142/S0219720011005586

A TWO-STAGE EVOLUTIONARY APPROACH
FOR EFFECTIVE CLASSIFICATION

OF HYPERSENSITIVE DNA SEQUENCES

UDAY KAMATH∗, AMARDA SHEHU† and KENNETH A. DE JONG‡

Department of Computer Science, George Mason University
Fairfax, Virginia 20123, USA

∗ukamath@gmu.edu
†ashehu@gmu.edu
‡kdejong@gmu.edu

Received 31 January 2011
Revised 6 April 2011

Accepted 14 April 2011

Hypersensitive (HS) sites in genomic sequences are reliable markers of DNA regulatory
regions that control gene expression. Annotation of regulatory regions is important in
understanding phenotypical differences among cells and diseases linked to pathologies
in protein expression. Several computational techniques are devoted to mapping out
regulatory regions in DNA by initially identifying HS sequences. Statistical learning
techniques like Support Vector Machines (SVM), for instance, are employed to classify
DNA sequences as HS or non-HS. This paper proposes a method to automate the basic
steps in designing an SVM that improves the accuracy of such classification. The method
proceeds in two stages and makes use of evolutionary algorithms. An evolutionary algo-
rithm first designs optimal sequence motifs to associate explicit discriminating feature
vectors with input DNA sequences. A second evolutionary algorithm then designs SVM
kernel functions and parameters that optimally separate the HS and non-HS classes.
Results show that this two-stage method significantly improves SVM classification accu-
racy. The method promises to be generally useful in automating the analysis of biological
sequences, and we post its source code on our website.

Keywords: DNase I hypersensitive sites; evolutionary algorithms; genetic programming.

1. Introduction

Locating DNA noncoding regions that regulate gene transcription is now the
remaining challenge in mapping out the entire human genome.1–3 The latest tech-
niques rely on identifying sites that are hypersensitive to DNA-modifying enzymes
and precede regulatory regions, as shown in Fig. 1.2–8 A wealth of short DNA
sequences determined to be hypersensitive (HS) sites are now available from high-
throughput experimental techniques.8,9

‡Corresponding author.

399

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0219720011005586

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

400 U. Kamath, A. Shehu & K. A. De Jong

Fig. 1. HS-sites are reliable markers that precede regulatory elements in eukaryotic DNA.

The abundance of known HS sequences allows applying statistical learning tech-
niques to automate the annotation process. Recent work explores the employment
of Support Vector Machines (SVMs) in classifying short DNA sequences as HS or
non-HS.10,11 SVMs have a solid theoretical foundation in statistical learning theory
and are the most widely used machine learning technique for binary classification
problems.12 In bioinformatics, SVMs have been applied to predict protein localiza-
tion sites, DNA translation start sites, and DNA splice sites.13–18

Despite their broad applicability, important decisions in constructing an SVM
classifier remain problem specific and require understanding the problem domain.
Essentially, an SVM maps non-vector data, such as text, graphs, and strings, into
a vector space where a hyperplane can be found to optimally separate the two
classes of mapped data. The process consists of two basic steps. In the context of
classifying input DNA sequences as HS or non-HS, the first step involves associat-
ing real-valued feature vectors with the input sequences. The second step involves
mapping the feature vectors into a higher-dimensional space where labeled data can
be linearly separated by a hyperplane. The success of an SVM classifier depends
on both the choice of the feature space and the internal transformation, the ker-
nel function. Finding discriminating features that distinguish HS sequences from
non-HS sequences is difficult. Even for experts, significant time and resources go to
finding features that result in meaningful SVM input vectors.

Choosing a kernel function that transforms the feature vectors into a higher-
dimensional space where the data are linearly separable is also problem-specific. In
addition, kernel functions have adjustable parameters as does the SVM itself. This
generally results in a tedious tuning process with many cycles of experimentation.

In this paper we propose a novel method that removes the need for expert
input and automates the two basic components of an SVM classification, feature
and kernel selection, all the while improving classification accuracy. Essentially,
the method consists of two evolutionary algorithms (EAs). As shown in Fig. 2,
the first EA finds a good set of discriminating features.11 A second EA finds the
best kernel with necessary SVM parameters, thus automating the design of a high-
performance SVM for sequence classification. Our results show that these two EAs
in combination improve SVM classification accuracy in a statistically significant
way as compared to other methods.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 401

Fig. 2. Overall Algorithm using EAs for both feature and SVM kernel optimization.

The rest of this paper is organized as follows. A brief summary of related work
is provided in Sec. 1.1. Our method is described in Sec. 2. Results follow in Sec. 3.
The article concludes with a discussion in Sec. 4.

1.1. Related work

The issue of extracting meaningful features from biological sequences is circum-
vented when employing implicit string kernels. These kernels directly associate dis-
tances in the feature space through suffix trees or other similarity measures.19 In
other applications, one first associates feature vectors with input sequences and
then uses a kernel function to obtain distances in the feature space through dot
product calculations.20 Extracting explicit features has distinct advantages. The
features can encapsulate important biological features, and their relative strength
or contribution to learning can be directly measured.

Often, the main novelty in applying an SVM to a new classification problem is
the extraction of meaningful features that allow converting the input data into vec-
tors. When there is no prior knowledge to guide the design of meaningful features,
spectrum features are often employed.20 A k-spectrum is the set of d = |Σ|k features
that correspond to all strings of length k (k-mers) generated from an alphabet Σ. A
d-dimensional feature vector is then associated with an input sequence by recording
the frequency of occurrence of each of the d k-mers in the sequence. This approach
is recently employed to recognize HS sequences.10

As the spectrum length increases, the number of features increases exponentially.
Various studies reveal that a small percentage of the 6-spectrum features actually
contribute to learning.10,11 Our work in Ref. 11 proposes an EA to explore the
space of fixed-length sequences in search of optimal motifs that best discriminate
between HS and non-HS sequences. We have shown the benefits of employing these
motifs over spectrum features in other bioinformatics applications.21 We employ
the EA proposed in Ref. 11 and briefly summarized in Sec. 2 to obtain features in
this work.

The success of an SVM classifier depends on the choice of both the feature space
and the kernel function. Many researchers test few predefined kernel functions to

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

402 U. Kamath, A. Shehu & K. A. De Jong

Fig. 3. An individual consisting of an evolved kernel and an evolved cost parameter.

select one that yields the highest classification accuracy.22 Grid-based optimization
then tunes kernel and SVM parameters.23 Evolutionary-based algorithms, such as
Genetic Programming (GP), are starting to be applied to design an optimal kernel
function.24–27 The kernel functions evolved by the GP in some researches are not
guaranteed to follow Mercer’s theorem, so optimality is not guaranteed. In all cur-
rent applications of GP, a small predefined set of kernel functions is employed to
evolve new kernel functions.28,29 The set consists of the Linear, Gaussian, and Poly-
nomial functions, excluding many other known kernel functions. The cost parame-
ter C, which controls the trade off between allowing misclassification errors during
training of the SVM and forcing rigid margins, is also kept fixed.28,29

In this paper, the optimal features obtained with an EA are combined with
an optimal kernel function obtained with a GP algorithm. The main novelty of
this work is that it simultaneously evolves kernel functions, their parameters, and
the SVM cost parameter C, while using evolved discriminating features. Figure 3
illustrates the structure of an individual in a GP population. The individual consists
of two trees, one containing an evolved kernel that combines Linear, Cauchy and
Scalar kernels, and one containing the evolved SVM cost parameter C.

2. Methods

The EA introduced in our recent work11 and employed here to obtain meaningful
features is summarized below. The section then details the GP algorithm we propose
to evolve kernel functions, their parameters, and the SVM cost parameter C.

2.1. Finding over-represented motifs in DNA sequences

The EA we introduce in Ref. 11 searches for motifs that best discriminate between
HS and non-HS sequences. The motifs are variable-length strings of length l gener-
ated from the the IUPAC code. In addition to the 4-letter {A, T, C, G} DNA alpha-
bet, the IUPAC code contains ambiguous symbols that capture groups of nucleotides
with shared chemical properties. The motifs vary in length (l ∈ {6, . . . , 12}) because
the length of optimal motifs is not known a priori. No shorter than 6-mers generated
over the DNA alphabet are needed to achieve high SVM classification accuracy.10

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 403

Our EA uses an island-model approach in which each island contains motifs of
the same length (i.e. one-motif species) and evolves in isolation and in parallel with
other islands without migration. On each island, a (µ + λ)-ES-style EA, where µ is
the number of parents and λ is the number of offspring generated. The mutation
used is the standard generalization of the bit flip operator to nonbinary alphabets
along with a standard 1-point crossover operator.

While the true fitness of an individual should be evaluated in the context of
SVM-based classification, doing so on each offspring is computationally impractical.
We employ a simpler fitness function that approximates how spectrum features are
employed in the kernel function.10 Given a k-mer w, the fitness value f(w) =
100 ∗ |c(w)HS/totalHS − c(w)non−HS/totalnon−HS|, where c(w) counts the number of
sequences containing w, and total normalized by the number of known sequences
in each class (HS or non-HS). In this way, a motif that is found in all HS sequences
but no non-HS sequences (or vice versa), will have the highest fitness score of 100.
A motif found with the same frequency in non-HS and HS sequences will have the
lowest score of 0. Analysis in our recent work shows that the fitness value of the top
motifs strongly correlates with the classification accuracy these motifs confer to an
SVM.11,21 The top 200 motifs of the final GP population are used to construct the
feature vectors from the input sequences.

2.2. Our kernel evolution algorithm

The EA we propose searches over the space of positive semi-definite kernel functions
in order to guarantee optimality. We first discuss the concept of kernel closure and
then detail the elements of the proposed EA.

2.2.1. Kernel closure

Kernel functions must be continuous, symmetric, and preferably have a positive
(semi)-definite Gram matrix.30 A positive-definite kernel insures that the optimiza-
tion problem will be convex and the solution will be unique.30 New kernel functions
can be constructed by combining well-known positive (semi)-definite kernel func-
tions through specific mathematical manipulations that guarantee closure. The new
kernel functions inherit the properties of the functions used to construct them.31

Here we employ an extensive list of known positive (semi)-definite kernel functions
(listed in Table 2) to evolve new kernel functions that obey the closure property.
The closure-preserving mathematical manipulations we use are listed in Table 1.

2.2.2. Genetic programming

Our EA for evolving new kernels is a standard GP algorithm.32 It simultaneously
searches the space of kernel functions (and their parameters) and SVM cost param-
eters C. Each individual in the population is represented as a forest of two trees
(see Fig. 4). One tree maintains the evolving kernel function, and the other the

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

404 U. Kamath, A. Shehu & K. A. De Jong

Table 1. Operations that guarantee kernel closure.

Operator Formula

Add k(x, y) = k1(x, y) + k2(x, y)
Scalar k(x, y) = a · k1(x, y)
Multiply k(x, y) = k1(x, y) · k2(x, y)

Exponential k(x, y) = ek1(x,y)

Table 2. All terminal and nonterminal nodes are shown.

Name Formula Args, constrs

Polynomial (P) k(x, y) = (αxT y + c)d 3, c, d ∈ R
Linear (L) k(x, y) = xT y + c 3, c ∈ R
Sigmoid (S) k(x, y) = e−σ‖x−y‖2

3, σ ∈ R
Laplace (Lp) k(x, y) = e−

‖x−y‖
σ 3, σ ∈ R

Anova (A) k(x, y) = (
Pn

k=1 e−σ(xk−yk)2)d 3, σ ∈ R
Rational Quadratic (RQ) k(x, y) = 1 − ‖x−y‖2

‖x−y‖2+c
3, c ∈ R

Inv. MultiQuadratic (IQ) k(x, y) = 1√
‖x−y‖2+c2

3, c ∈ R
Circular (CLR) k(x, y)= 2

π
arccos

“
− ‖x−y‖

σ

”
−

2
π

‖x−y‖
σ

q
1 − ‖x−y‖2

σ

3, σ ∈ R

Spherical (SPL) k(x, y) = 1 − 3
2

‖x−y‖
σ

+ 1
2

“ ‖x−y‖
σ

”3
if ‖x − y‖ < σ 3, σ ∈ R

Wave (W) k(x, y) = θ
‖x−y‖ sin

“ ‖x−y‖
θ

”
3, 0 ≤ θ < 2π

Spline (SLN) k(x, y) = Πd
i=1 1 + xiyi + xiyi min (xi, yi) −

xi+yi
2

min (xi, yi)
2 +

min (xi,yi)
3

3

3, d ∈ I

Bessel (B) k(x, y) =
Jv+1(σ‖x−y‖)
‖x−y‖−n(v+1) 4, n ∈ I

Cauchy (Cy) k(x, y) = 1

1+
‖x−y‖2

σ

3, σ ∈ R

Chi-Square (CHI) k(x, y) = 1 − Pn
i=1

(xi−yi)
2

1
2 (xi+yi)

2

Histogram (HI) k(x, y) =
Pn

i=1 min (xi, yi) 2

T-Student (T-s) k(x, y) = 1
1+‖x−y‖d 3, σ ∈ R

Add (+) k(x, y) = k1(x, y) + k2(x, y) 2 Kernels
Multiply (∗) k(x, y) = k1(x, y) · k2(x, y) 2 Kernels
Scalar (Sc) k(x, y) = a · k1(x, y) 1 Kernel, a∈R
Exponential (E) k(x, y) = ek1(x,y) 1 Kernel

xi, . . . , xn 0, input
yi, . . . , yn 0, input

ERC-int Integer
ERC Real

cost parameter C. The tree that maintains C consists of only one node, and is
subjected only to the mutation operator. The representation of the kernel tree in
each individual is analogous to the parse trees employed for Lisp expressions. Each
nonterminal node in a kernel tree is either a mathematical operator (add, scalar,
multiply, exponential) or a predefined kernel function. Each terminal node in a ker-
nel tree is either a kernel parameter (e.g. σ, d, θ) or one the input feature vectors
x, y. Table 2 provides a complete lists of the terminal and nonterminal nodes.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 405

The mutation operator is applied to both parameters and kernel functions. A
tree is first picked at random (out of the tree maintaining the kernel function and
the single-node tree maintaining the cost parameter C). A node is than picked at
random from the selected tree. Every parameter located in the subtree rooted at the
selected node is then mutated according to a Gaussian probability distribution over
its preset range. When the selected tree is the kernel tree, mutation is implemented
through the growth method.32 A node picked at random from the kernel tree is
replaced by a randomly-generated subtree, as illustrated in Fig. 4.

The crossover operator applies only to the kernel tree. Parents are selected using
standard tournament selection, and the standard Koza-style crossover mechanism is
employed to generate an offspring kernel function. Compatible parents are sought;
that is, individuals are randomly sampled from a population until two are found
whose kernel trees have the same constraints. A random node is then chosen in each
parent tree such that the two nodes have the same return type. If, by swapping
subtrees at these nodes, the two trees do not violate maximum depth constraints,
the swap is performed. Otherwise, the hunt for random nodes is repeated. Figure 4
provides an illustration of crossover.

Following the lead of Ref. 33, we start with a large initial population (in this
paper, 2,000) and then systematically reduce it by 20% in each generation. This

Fig. 4. Mutation (left) and crossover (right) are illustrated on sample kernel trees.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

406 U. Kamath, A. Shehu & K. A. De Jong

generally makes the best use of a fixed computation budget in GP. Similarly, we
use the standard lexicographic parsimony pressure to help control bloat.34

2.2.3. Putting it all together

The optimal features are evolved separately through the EA proposed in our previ-
ous work and employed here to convert input sequences into feature vectors.11 The
fitness of each individual in the population of our GP algorithm is measured as the
classification accuracy obtained when applying an SVM with the kernel function
and cost parameter C in the individual on the feature vectors.

Input sequences are obtained from noble.gs.washington.edu/proj/hs. They con-
sist of 280 HS sequences and 737 non-HS sequences experimentally obtained from
throughout the human genome. HS and non-HS sequences have similar average
lengths of 242 nucleotides.

The performance of the SVM is tested via 10-fold cross-validation on the total
set of 1,017 HS and non-HS sequences. The set is randomly divided into 10 subsets
of equal size. The SVM is trained on 90% of the subsets and tested on the 10% held
out. This is referred to as 10-fold validation. The area under the receiver operating
characteristic (ROC) curve is reported as an average over the 10-fold validations.

The method is implemented in Java and run on an Intel Core2 Duo
machine with 4GB RAM and 2.66GHz CPU. The EA implementation builds
upon the GP implementation of ECJ software.35 We use the open-source Bio-
java project36 to integrate bioinformatics utilities for genomic sequences and
the libSVM package37 for the SVM implementation. The source code of the
method and various development details are publicly available at http://cs.gmu.
edu/∼ashehu/?q=KernelOptimization.

3. Results

The EA is run 30 different times to obtain 30 different sets of top motifs which
become features in SVM. In each case, the resulting feature vectors are tested with
the SVM cross-validation test, employing a default kernel and default parameters.
The kernel used is the radial basis function (RBF) shown to outperform other
predefined kernels in our recent work.11 The average accuracy obtained with this
kernel over 30 different runs, each of which results in a different set of 200 top-
scoring motifs, is 82.9, with a standard deviation 1.1. The maximum and minimum
accuracies obtained over these runs are 77.1 and 85.15, respectively.

Three sets of feature vectors, the best, average, and worst, features, from 30
runs were then run with SVM tuned with the grid search technique37 that tunes
the cost parameter C and the RBF kernel parameter γ. The same three sets of
features were individually run with evolutionary algorithm, evolving the kernels
and the cost parameter. Since the evolutionary approach is stochastic, we froze
each of the above feature sets and ran the kernel evolution 30 times on each set.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 407

Table 3. Accuracies obtained with default kernel, the tuned RBF kernel and evolved
kernel when employing best, average and worst features.

Feature set Default kernel Grid tuned kernel Evolved kernel µ,σ

Best feature set 85.15 85.39 87.3, 0.1
Average feature set 82.9 83.783 85.9, 0.1
Worst feature set 77.1 79.3 81.57, 0.4

Table 4. Fitness values are shown for some of the top individuals (kernel function and cost
parameter) obtained with our GP algorithm for Best, Average and Worst Feature Sets.

Set Evolved kernel C Accuracy

Best (∗(CY (x)(y)(6.1394E − 4))(S(x)(y)(7.4104004E − 4))) 17.85 87.35
Best (CLR(x)(y)(10.746466)) 1.18 86.85
Best (CY (x)(y)(2.3240509E − 4)) 1.68 86.81
Best (Sc(SPL(x)(y)(56.92857))(48.207794)) 1.00 86.79
Best (∗(CY (x)(y)(30.50425))(SPL(x)(y)(92.285255))) 1.24 86.77

Average (E(E(CLR(x)(y)(21.81946)))) 0.1297 86.19
Average (Sc(E(CLR(x)(y)(10.341912)))(27.86481)) 11.21 85.97
Average (E(∗(CLR(x)(y)(18.004602))(CLR(x)(y)(20.13649)))) 1.23 85.78
Average (∗(S(x)(y)(6.9958554E − 4))(Linear(x)(y))) 14.1 85.74
Average (CLR(x)(y)(13.197769)) 1.1 85.51

Worst (G(x)(y)(8.8855857E − 4)) 19.18246 82.64
Worst ((T − s(x)(y)(26.574564)) 23.206886 81.56
Worst (Sc(S(x)(y)(5.8920565E − 4))(2.1301475)) 41.87304 81.41
Worst (E(G(x)(y)(2.7014833E − 4))) 32.856094 81.39
Worst (∗(S(x)(y)(6.7382515E − 4))(E(CLR(x)(y)(28.763956)))) 22.6613 81.31

Table 3 shows the comparative analysis of accuracies of default RBF kernel, grid
search tuned kernel and evolved kernel.

Table 4 illustrates the top five individuals (kernel and cost parameters C) that
were evolved for each of the three feature sets (Best, Average, and Worst).

To compare the best features and top kernel evolved in SVM with our hybrid
methodology for comparative analysis, we took the same top best features which
gave us 87.35 accuracy with the top evolved kernel, as input for other classifiers. The
classifiers chosen are based on previous research in sequence classifications which
had yielded better results.38 Table 5 summarizes the comparative analysis of our
approach with various traditional classification systems. The Appendix defines the
parameters for each of the methods.

The ROC curves for all the classifiers in comparison with our evolutionary algo-
rithm are also plotted in Fig. 5(a) to show statistically significant difference in
ROC area comparisons. Immediate convergence is seen in the Evolutionary runs,
i.e. population mean and best-so-far mean converge within 20 generations. The plot
in Fig. 5(b) shows the same for Best Feature set to illustrate the convergence and
validate our design decision of having ever-reducing population.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

408 U. Kamath, A. Shehu & K. A. De Jong

Table 5. Ten-Fold Cross Validation accuracy, Precision, Recall and Root Mean Square Error
(RMSE) Comparison with various classifiers using the Best Features from Feature Evolution.

Classification method CV-Accuracy Precision Recall RMSE

SVM (Kernel Evolution) 87.35 87.6 87.8 0.343
SVM (Grid Tuned RBF Kernel) 85.39 85.56 85.58 0.371
Bayesian 84.56 84.3 84.6 0.389
Bayesian Net 83.67 83.8 83.7 0.3979
Logistic Regression 82.3009 81.6 82.3 0.3682
Neural Network 79.8427 79.1 79.8 0.4241
Decision Tree (C4.5) 82.0059 81.2 82.0 0.4035
Rule Induction (Ripper) 82.2026 81.5 82.2 0.3824
AdaBoost (Decision Stumps) 81.9076 81.1 81.9 0.3814
AdaBoost (SVM) 84.6608 84.2 84.7 0.3581
Ensemble Classifier (SVM,C4.5,logistic) 84.1691 83.8 84.2 0.3665

 0.41

 0.42

 0.43

 0.44

 0.45

 0.46

 0.47

 0.48

0 5 10 15 20

K
oz

a
F

itn
es

s

Generations

Population Mean Accuracy
BSF Mean Accuracy

(a) (b)

Fig. 5. (a) ROC curve comparison with different classifiers (a) and (b) fitness versus generation.

4. Conclusion

Our results show that employing an EA algorithm to obtain meaningful features
and a GP algorithm to obtain new better kernel functions and values for the SVM
cost parameter C significantly improve the accuracy of an SVM classification for
the HS recognition problem. Moreover, the employment of evolutionary computing
automates important SVM design decisions, reducing the dependency on a priori
expert knowledge and time-consuming experimentation.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 409

Fig. 6. Distribution of the top 100 kernels in the final population for Best, Average, and Worst
feature sets.

Some of the top kernels obtained by our GP algorithm are a combination of
the exponential, multiplication, or scalar operators over the Gaussian, Sigmoid,
and Linear kernels. The presence of the Cauchy, Circular, Spiral, and Student-T
kernels among top-scoring ones further justifies our employment of an extensive list
of kernel functions in our GP algorithm. Figure 6 shows in detail the distribution
of kernel functions found among the top 100 kernels evolved by our GP algorithm.
Results are shown for each Best, Average, and Worst feature sets. The largest
percentage consists of combined kernels evolved by our GP algorithm. Each of the
predefined kernel functions can be found at lower percentages in this distribution.

We emphasize that our GP algorithm maintains closure and guarantees the opti-
mality of obtained kernels. As a consequence, independent of the feature set used,
the evolved kernels show an improvement in classification accuracy. Our hybrid
approach of combining that with evolved features yields additional improvement.
The result is an SVM that produces statistically significantly better classification
performance than most well known documented classification methods.

While the fitness of an evolved kernel function is estimated in the context of the
SVM classification, the fitness of the motifs sought to associate meaningful feature
vectors with input sequences employs a simpler filter function in the interest of
keeping computational cost low. Since the fitness of a kernel function is intimately
dependent on the feature vectors employed in the SVM classification, our future
work will consider integrated evolutionary schemes that evolve kernels and motifs
in tandem. Co-evolution of features and kernels may further boost classification
accuracies but at an expected computational cost. Distributed implementations
will be sought to manage the computational cost.

Acknowledgments

We are indebted to Sean Luke and Keith Sullivan for insights on GP and Rezarta
Dogan and Sarang Kayande for discussions on this work.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

410 U. Kamath, A. Shehu & K. A. De Jong

Appendix A. Classifier Implementation Details

We will list machine learning classifier as well as list various parameters in evolu-
tionary algorithm used by our methodology. Most of the Classifiers were parameter
tuned by making sure various options suited for these methods are researched, tried
and the best one with changes to default settings are given below.

Table A. Classifier parameters used in our comparative study.

Classifier type Parameter changed

Naive Bayes useSupervisedDiscretization = true
Bayesian Net estimator = BMAEstimator
Logistic Regression ridgeValue= 1E−12
Neural Network LearningRate = 0.1, epoch =700
Decision Tree(C4.5) useLaplace = true
Rule Induction(JRip) folds= 10, optimizations = 3
AdaBoostM1 useResampling = true
Ensemble Classifier algorithm = Forward + Backward, replacement = true

Appendix B. Evolutionary Algorithm Details

B.1. Feature evolution algorithm

Population Size = 5000, Generations = 50, Parent Selection = Uniform Stochastic,
Survival Selection = Truncation, Crossover = one point, Mutation = bit flip, and
probability of mutation =1/genome length.

B.2. Kernel evolution algorithm

Population Size = 2000, Generations = 30, Initialization = Half and Half method,
Crossover = Subtree with probability 0.8, Mutation = Grow with probability of 0.2,
Elites = 10. The entire implementation is available as open source with samples is
available http://cs.gmu. edu/∼ashehu/?q=KernelOptimization.

References

1. Consortium IHGS, Finishing the euchromatic sequence of the human genome, Nature
431(7011):931–945, 2004.

2. Maston GA, Evans SK, Green MR, Transriptional regulatory elements in the human
genome, Annu Rev Genom Human Genet 7:29–59, 2006.

3. Higgs DR, Vernimmen D, Hughes J, Gibbons R, Using genomics to study how chro-
matin influences gene expression, Annu Rev Genom Human Genet 8:299–325, 2007.

4. Wu C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to
DNase I, Nature 286(5776):854–860, 1980.

5. Gross DS, Garrard WT, Nuclear hypersensitive sites in chromatin, Annu Rev Biochem
57:159–197, 1988.

6. Lowrey CH, Bodine DM, Nienhuis AW, Mechanism of DNase I hypersensitive site
formation within the human globin locus control region, Proc Natl Acad Sci USA
89(3):1143–1147, 1992.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 411

7. Burgess-Beusse B, Farrell C, Gaszner M, Litt M, Mutskov V, Recillas F-Targa, Simp-
son M, West A, Felsenfeld G, The insulation of genes from external enhancers and
silencing chromatin, Proc Natl Acad Sci USA 99(S4):16433–16437, 2002.

8. Sabo PJ, Humbert R, Hawrylycz M, Wallace JC, Dorschner MO, McArthur M, Stam-
atoyannopoulos JA, Genome-wide identification of DNase I hypersensitive sites using
active chromatin sequence libraries, Proc Natl Acad Sci USA 101(13):4537–4542,
2004.

9. Dorschner MO, Hawrylycz M, Humbert R, Wallace JC, Shafer A, Kawamoto J, Mack
J, Hall R, Goldy J, Sabo PJ, Kohli A, Li Q, McArthur M, Stamatoyannopoulos
JA, High-throughput localization of functional elements by quantitative chromatin
profiling, Nat Methods 1(3):219–225, 2004.

10. Noble WS, Kuehn S, Thurman R, Yu M, Stamatoyannopoulos JA, Predicting the
in vivo signature of human gene regulatory sequences, Bioinformatics 21(1):i338–
i343, 2005.

11. Kamath U, De Jong KA, Shehu A, Selecting predictive features for recognition of
hypersensitive sites of regulatory genomic sequences with an evolutionary algorithm,
GECCO: Gen Evol Comp Conf, pp. 179–186, New York, NY, USA, 2010. ACM.

12. Vapnik VN, Statistical Learning Theory, Wiley & Sons, New York, NY, 1998.
13. Habib T, Zhang C, Yang JY, Yang MQ, Deng Y, Supervised learning method for the

prediction of subcellular localization of proteins using amino acid and amino acid pair
composition, BMC Genom 9(1):S1–S16, 2008.

14. Zien A, Raetsch G, Mika S, Schölkopf B, Lengauer T, Mueller KR, Engineering sup-
port vector machine kernels that recognize translation initiation sites, Bioinformatics
16(9):799–807, 2000.

15. Zhang XH, Heller KA, Hefter I, Leslie CS, Chasin LA, Sequence information for
the splicing of human pre-mrna identified by support vector machine classification,
Genome Res 13(12):2637–2650, 2003.

16. Islamaj-Dogan R, Getoor L, Wilbur WJ, Mount SM, Features generated for compu-
tational splice-site prediction correspond to functional elements, BMC Bioinformatics
8:410–416, 2007.

17. Islamaj-Dogan R, Getoor L, Wilbur WJ, A feature generation algorithm with applica-
tions to biological sequence classification, in Liu H, Motoda H (eds.), Computational
Methods of Feature Selection, Springer, Berlin, Heidelberg, 2007.

18. Noble WS, Support vector machine applications in computational biology, in
Schölkopf B, Tsuda K, Vert J-P (eds.), Kernel Methods in Computational Biology,
MIT Press, Cambridge, MA, 2004.

19. Leslie C, Kuang R, Bennett K, Fast string kernels using inexact matching for protein
sequences, J Mach Learn Res 5:1435–1455, 2004.

20. Noble WS Leslie CS, Eskin E, The spectrum kernel: A string kernel for SVM protein
classification, Pacific Symposium on Biocomputing, Vol. 7, pp. 564–575, Baoding,
China, 2002.

21. Kamath U, Shehu A, De Jong KA, Using evolutionary computation to improve svm
classification, WCCI: IEEE World Conf Comp Intel IEEE Press, 2010, in press.

22. Boser BE, Guyon IM, Vapnik VN, A training algorithm for optimal margin classifiers,
in Haussler D (ed.), 5th Annual ACM Workshop on COLT, pp. 144–152. ACM Press,
1992.

23. Staelin C, Parameter selection for Support Vector Machines, 2002.
24. de Souza BF, de Carvalho AC, Calvo R, Ishii RP, Multiclass SVM model selection

using particle swarm optimization, Sixth Int Conf Hybrid Intelligent Systems, 2006.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

412 U. Kamath, A. Shehu & K. A. De Jong

25. Huang C-L, Wang C-J, A ga-based feature selection and parameter optimization for
support vector machines, Expert Systems with Applications, pp. 231–240, 2006.

26. Phienthrakul T, Kijsirikul B, Evolutionary strategies for multi-scale radial basis
function kernels in support vector machines, Genetic and Evolutionary Computation
Conference, pp. 905–911, Washington D.C, USA, 2005.

27. Friedrichs F, Igel C, Evolutionary tuning of multiple svm parameters, 12th European
Symposium on Artificial Neural Networks (ESANN 2004, pp. 519–524, 2004.

28. Gagné C, Schoenauer M, Sebag M, Tomassini M, Genetic programming for kernel-
based learning with co-evolving subsets selection, in Parallel Problem Solving From
Nature, Reykjavik, LNCS, pp. 1008–1017, Springer Verlag, Berlin, 2006.

29. Sullivan K, Luke S, Evolving kernels for support vector machine classification, Genetic
and Evolutionary Computation Conference, 2007.

30. Schölkopf B, Smola AJ, Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond, MIT Press, Boston, USA, 2002.

31. Shawe-Taylor J, Cristianini N, Kernel Methods for Pattern Analysis, Cambridge
University Press, Cambridge, UK, 2004.

32. Koza J, On the Programming of Computers by Means of Natural Selection, MIT Press,
Boston, MA, 1992.

33. Luke S, Balan GC, Panait L, Population implosion in genetic programming, in Genetic
and Evolutionary Computation Conference, 2003.

34. Mierswa I, Evolutionary learning with kernels, a generic solution for large margin
problems, in GECCO: Gen Evol Comp Conf pp. 1553–1560, 2006.

35. Luke S, Panait L, Balan G, Paus S, Skolicki Z, Popovici E et al., ECJ: A Java-Based
Evolutionary Computation Research, 2010.

36. Holland RC, Down TA, Pocock M, Prlic A, Huen D, James K et al., BioJava: An
open-source framework for bioinformatics, Bioinformatics 24(18):2096–2097, 2008.

37. Fan R-E, Chen P-H, Lin C-J, Working set selection using the second order information
for training SVM, J Mach Learn Res 6(1532–4435):1889–1918, 2005.

38. Tavares LG, Lopes HS, Erig Lima CR, A comparative study of machine learning
methods for detecting promoters in bacterial DNA sequences, ICIC (2), pp. 959–966,
2008.

Uday Kamath received his B.S. in Electrical Electronics from
Bombay University in 1996 and Masters in Computer Sci-
ence from University of North Carolina at Charlotte in 1999.
He is currently pursuing his Ph.D. in Computer Science at
George Mason University. He also works as Technical Archi-
tect in Analytics and Detection group of Norkom Technologies,
concentrating on using machine learning, evolutionary software
and statistical modeling techniques in various fraud detection

domains. His research interest includes the applications of evolutionary computa-
tion methods to finance and to computational biology and bioinformatics. He is a
member of the IEEE and the ACM.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

June 13, 2011 13:10 WSPC/185-JBCB S0219720011005586

Effective Classification of HS DNA Sequences 413

Amarda Shehu is an Assistant Professor in the Department
of Computer Science at George Mason University. She holds
affiliated appointments in the Department of Bioinformatics
and Computational Biology and the Bioengineering Program at
George Mason University. She earned her Ph.D. in Computer
Science at Rice University in Houston, TX, in 2008, where she
was also an NIH fellow of the Nanobiology Training Program
of the Gulf Coast Consortia. Her research encompasses proba-

bilistic search frameworks, evolutionary algorithms, and machine learning for prob-
lems in computational biology and biophysics. Dr. Shehu is a member of the IEEE
and ACM.

Kenneth A. De Jong is a Professor of Computer Science and
Associate Director of the Krasnow Institute at George Mason
University. Dr. De Jong’s research interests include evolutionary
computation, adaptive systems and machine learning. He is an
active member of the Evolutionary Computation research com-
munity with a variety of papers and presentations in this area.
He is also responsible for many of the workshops and conferences
on Evolutionary Algorithms. He is the founding editor-in-chief

of the Journal Evolutionary Computation (MIT Press), and a member of the board
of ACM SIGEVO. He is the recipient of an IEEE Pioneer award in the field of Evo-
lutionary Computation and a lifetime achievement award from the Evolutionary
Programming Society. Dr. De Jong is a member of IEEE and ACM.

J.
 B

io
in

fo
rm

. C
om

pu
t.

B
io

l.
20

11
.0

9:
39

9-
41

3.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.

	1 Introduction
	1.1 Related work

	2 Methods
	2.1 Finding over-represented motifs in DNA sequences
	2.2 Our kernel evolution algorithm
	2.2.1 Kernel closure
	2.2.2 Genetic programming
	2.2.3 Putting it all together

	3 Results
	4 Conclusion
	B.1 Feature evolution algorithm
	B.2 Kernel evolution algorithm

