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Conformational restriction by fragment assembly and guidance in
molecular dynamics are alternate conformational search strategies in
protein structure prediction. We examine both approaches using a
version of the associative memory Hamiltonian that incorporates the
influence of water-mediated interactions (AMW). For short proteins
(<70 residues), fragment assembly, while searching a restricted space,
compares well to molecular dynamics and is often sufficient to fold
such proteins to near-native conformations (4Å) via simulated an-
nealing. Longer proteins encounter kinetic sampling limitations in
fragment assembly not seen in molecular dynamics which generally
samples more native-like conformations. We also present a fragment
enriched version of the standard AMW energy function, AMW-FME,
which incorporates the local sequence alignment derived fragment
libraries from fragment assembly directly into the energy function.
This energy function, in which fragment information acts as a guide
not a restriction, is found by molecular dynamics to improve on both
previous approaches.

fragment assembly � associative memory Hamiltonian � protein folding �
annealing � molecular dynamics

I t is useful to categorize protein structure prediction schemes into
two classes: template-based modeling and de novo prediction.

Template-based modeling depends on the existence, and identifi-
cation of, at least one experimentally-solved structure with signif-
icant global structural similarity to the target to be predicted,
usually a sequence homolog. The identification can be made either
by a global sequence–sequence alignment or a global sequence–
structure alignment (1). Finding the proper template is a search
problem but unlike folding, a search highly restricted to a relatively
modest number of possibilities. After finding a template, the
homolog structure acts as a global constraint which again severely
restricts the remainder of the relevant conformational space to be
searched. This leads overall to a much simpler optimization prob-
lem to solve. Various energy functions can be used which often lead
to successful predictions defined by significant improvement rela-
tive to input homolog information (2).

However, modeling a protein structure when no experimentally-
determined homologs exist to match the structures globally (or
none are recognized to exist) is quite challenging. Such de novo
structure prediction can employ all-atom molecular mechanics or
hybrid models. Molecular mechanics methods are based on
physico-chemical interactions such as van der Waals, electrostatics,
hydrogen bonding, solvation energy, and basic backbone steric
constraints (covalent bond lengths and angles and torsion angle
preferences). Model parameters are generally inferred from exper-
imental measurements and/or quantum chemical calculations on
small organic molecules (3, 4). Based on such data, one can
generate a transferable energy function (5). The resulting energy
function can be used in a variety of search procedures, including
template-based modeling. Ultimately, a physically robust energy
function alone should be sufficient to carry out molecular dynamics
simulations for de novo prediction. However, this intellectually
straightforward and satisfying approach comes with a high cost—
the complexity of a very detailed energy function leads to very slow
computation and hence, great difficulty in searching the full con-

formation space available to an unconstrained polymer. Except for
short peptides, fully atomistic molecular mechanics methods are
therefore presently limited in carrying out de novo structure
prediction. Hybrid approaches combining bioinformatic informa-
tion with physical energy functions have been designed to overcome
this computational difficulty.

Presently, there are two reasonably successful hybrid approaches:
the fragment assembly (FA) methods (6, 7, 8) and knowledge-based
energy function methods using specific protein database input (9,
10) such as the associative memory Hamiltonians (AMH) (specif-
ically we will study one with water-mediated interactions (AMW)
(11)). Both hybrid approaches use knowledge from the database to
either restrict directly the conformational search space (FA) or to
design a better guided coarse-grained energy function with most of
the physico-chemically relevant features, by using local sequence
matching (AMW). The AMW energy function based on both
physical chemistry and bioinformatics then guides the molecule
toward the native state.

In the FA methods, local sequence homology is used to define
allowed local structure observed in naturally-occurring proteins.
This approach resembles template-based modeling except, cru-
cially, in FA the restriction on search is strictly local.

A large class of knowledge-based energy functions have been
proposed and studied extensively. They are often designed to take
advantage of energy landscape theory to optimize their searchabil-
ity by simulated annealing. One of the earliest hybrid energy
functions incorporating energy landscape optimization is the asso-
ciative memory model (12, 13). The premise of energy landscape
design strategy is to learn the parameters by requiring the potential
to produce a low energy native state while, according to landscape
theory, also creating a gap between the energies of the molten
globule states and the native state. Mathematically, the learning
procedure involves maximizing over the possible energy parameter
values, the energy gap divided by the variance of decoy energies for
training proteins (10, 14, 15). The associative memory (AM) terms
of the potential are obtained from a sequence–structure threading
procedure (1) which, while based on a global alignment, applies only
to interactions relatively close in sequence distance, i.e., 12 residues
or less. Short and intermediate-range interactions are thereby
captured as ‘‘memories’’ from diverse possible global states, much
as fragments are assembled in FA. The local information, however,
does not act as a strong restriction but merely as a gentle guidance.

Ultimately, every structure prediction approach is character-
ized by some unique combination of energy function, confor-
mational space, and search procedure. Despite a lack of ho-
mologs of experimentally-determined structures, FA has proven
in recent years to be successful in de novo structure prediction.
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Recent work has also shown that FA can reliably produce
native-like structures of smaller proteins using even a relatively
simple energy function (7). Although much progress has been
made in improving the FA methods, whether a well-funneled
energy function is necessary for its success has been unclear.
Generally, the key to FA is a strong restriction of the search. FA
makes use of a library of structures constrained uniquely for each
sequence region. While certainly important, the quality of the
fragment library, defined by the average degree of nativeness for
all library members, probably accounts for only part of the
overall predictive performance. The highly reduced conforma-
tional space of FA may by itself lead to a simpler folding problem
to solve, at least up to the best global structure possible from the
given library.

Generally, the importance of both funneled local and tertiary
forces in protein folding (16–18) leading to mostly minimally
frustrated contact energies (11, 19–21) is well captured by the
AMW energy function. However, as previously mentioned, the
threading procedure for the selection of memories is based on a
global sequence–structure alignment. For this reason, it has been
recognized that certain peculiar structural motifs, which occur
somewhat rarely and are interspersed among helical and �-strand
secondary structure elements, would be underrepresented in the
associative memory forces. As we shall see, the inclusion of infor-
mation from fragment library structures, generated from strictly
local alignments, better captures such rarer structures and can
improve the guidance of the search from the usual AMH proce-
dure. Moreover, proteins with many turns and proline rich proteins
with unusual �/� backbone dihedral angles reveal significant im-
provements in local structure when locally chosen memories are
included.

In this article, we first explore the two alternative approaches
of direct conformational restriction (via FA by Monte Carlo
search) and guidance (via local memory choice in molecular
dynamics based search). We examine the predictive power of a
FA method with an already highly funneled protein folding
potential, the AMW energy function (AMW-FA). Then, we
compare the resulting structures to those obtained from our
standard unrestricted molecular dynamics approach using the
same potential (AMW-MD). This comparison reveals the key
role of conformational restriction in FA—the energy found by
FA is higher than that found by MD, but is structurally more
accurate. As it turns out, however, for long proteins FA slows in
performance considerably in competition with MD. We show
that by incorporating fragment guidance directly in the AMW,
we can construct an AMW-fragment memory enriched (AMW-
FME) energy function, that while employing molecular dynam-
ics, performs better than the other two strategies, especially for
longer sequences (�70 residues).

Results and Discussion
AMW Fragment Assembly (FA) and Molecular Dynamics (MD). To
benchmark the performance of the FA method, we chose a set of
proteins which includes four ‘‘canonical’’ ones studied previously at
various levels of development of the AMH approach as well as
sixteen proteins from the CASP7 and CASP8 structure prediction
exercises. The test set encompasses �-helical, �/� and all-� proteins
ranging in length from 56 to 150 residues. For each sequence of the
test proteins, the memory terms required for the AMW energy
function were obtained by threading the target sequence onto a set
of PDB structures. The energies of the threaded sequences were
evaluated with a local contact and burial Hamiltonian (also opti-
mized by energy landscape theory (1)) and the lowest energy
structures, with low (less than 25%) sequence homology were used
as memory terms. The deliberate omission of homologs in the
present study is, of course, useful for testing the procedures but
would not be done in practical applications. Next, the libraries of
fragments chosen strictly locally were created from a nonredundant
set of protein structures (see Methods and SI Appendix for details).
Each library comprised a very diverse set of structures, i.e., for each
possible region for a given sequence there were several different
conformations possible.

For each test protein, Monte Carlo-based (MC) fragment
assembly (AMW-FA) was performed as well as molecular
dynamics simulated annealing (AMW-MD) with the same po-
tential energy function. Since an accepted MC step does not
relate directly to a time step in MD, the temperature annealing
schedule and radius of gyration (Rg) constraint were tuned such
that the MC temperature range, relative to the approximate glass
transition regime, and ease of motion (controlled partly by the
Rg) in MC, were similar to MD. Consistent with previous studies
(7), we find that structures that result directly from FA exhibit
poor � strand–strand alignments and poor associated hydrogen
bond formation. The alignment of the strands is usually im-
proved by short MD runs of the structure predicted by FA.
Therefore, we refer to structures obtained after such MD runs
as postrefinement structures (AMW-FA�MD) in our analysis.

To properly quantify how the restricted conformational space via
FA changes the energy landscape, one is required to calculate free
energies which can be done with the reversible FA approach used
here (see Methods) (7). However, we take a cruder approach by
simply comparing structures sampled during simulated annealing
runs (or low energy structures). This methodology is common
practice in the Critical Assessment of Structure Prediction (CASP).
The results obtained in this way are summarized in Table S1. To
illustrate the performance, we show sampled structures deemed
‘‘best’’ by the order parameter GDT-TS (see SI Appendix for
details) of the canonical protein set (Fig. 1A) and the CASP
proteins (Fig. 1B) during 20 simulated annealing runs. Briefly,
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Fig. 1. Best sampled structures taken from 20 simulated annealing runs of the four canonical proteins (A) and sixteen CASP proteins (B) are compared by the
structure similarity measure GDT-TS (larger values are more native-like; see SI Appendix). For each simulation approach, 4000 snapshots taken along the trajectory
were sampled. *4icb is an AMW training protein.
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GDT-TS is the percentage of total residues which can be super-
imposed (averaged over distances of 1, 2, 4 and 8 Å). For the short
proteins with fewer than 70 residues (including three canonical and
one CASP protein, T0348), AMW-FA performs quite well in
predicting structures with low root mean square deviation (rmsd)
from their respective native PDB structure and high GDT-TS
scores. While the all-� protein 1nmg is poorly predicted by AMW-
FA, the other short proteins are equally well or better predicted by
AMW-FA compared with AMW-MD.

The structures we obtained with the AMW-FA method and
minimized with short MD annealing runs (AMW-FA�MD) com-
pare favorably with those based on (what we believe are) simpler
energy functions by other groups. Generally, structures resulting
from AMW-FA are significantly higher in energy before (Fig. 2,
orange dots) MD-refinement than after (Fig. 2, red dots). However,
compared with AMW-MD, their energies remain high even after
refinement, illustrating the effect of restricting the conformational
search. Importantly, for the �/� protein 2gb1, we find a shift to more
native-like structures after refinement (Fig. 2A, red dots) compared
with standard MD (Fig. 2A, black dots). Since the shift is quite
significant and occurs over a small range of energies, it seems the
AMW-FA ensemble occupies a region of conformational space not
frequently occupied in AMW-MD.

In a few cases, such as the �-helical protein 1uzc, the MD
refinement step results in significantly less native-like structures
than pure FA. Consistently, we find refinement of �-helical proteins
leads to structures of similar quality to those from standard
AMW-MD without FA. This finding is not too surprising as
�-helical structures are able to undergo significant rearrangement
during low temperature refinement more easily than �-sheet con-
taining proteins, where significant energetic barriers to strand
reorientation are hard to overcome at low temperature.

Advantages and Disadvantages of FA-Based Methods. We examine
the roles of the energy function, extent of the conformational
space, and search algorithm in the various methods. The strength
of the FA method lies in the fact that a diminished conforma-
tional space needs to be searched. For short �-helical and �/�
proteins, AMW-FA performs very well (predicting with high
fidelity native-like structures) and often outperforms the plain

AMW-MD simulations which do not restrict the local search
space but merely guide the molecule to presumed better local
conformations (Fig. 1; Table S1). Good predictions are made by
all methods for specific proteins, suggesting the AMW is a
sufficiently funneled energy function. So, the remaining differ-
ences in performance must stem from the search in a reduced
conformational space. However, �-strand containing proteins
are often more poorly predicted with FA.

One example where prediction with FA is poor, in our hands, is
the all-� protein 1nmg (Fig. 2B), mentioned previously. While
AMW-MD simulations for 1nmg lead to quite native-like structures
at the lowest energy sampled (see Table S1), ensembles obtained
with AMW-FA are, on average, shifted toward less native struc-
tures. Inadequate funneling of the energy function as well as overly
slow search and incompleteness of the fragment library derived
conformational space are all potential reasons why specific protein
structures might not be well predicted. In the case of 1nmg, we
conclude that the poor quality predictions are not a consequence of
a poor energy function since plain AMW-MD simulations of 1nmg
produce reasonably native-like structures. In addition, the quality of
the predictions is significantly improved after MD minimization of
the structures obtained with FA with the same Hamiltonian—
primarily resulting in better hydrogen bonded networks of
�-strands. But this is not the whole story. Even after MD refinement
of 1nmg fragment assembled structures, those generated by stan-
dard AMW-MD are still superior. Apparently the conformational
space is overly restricted and seems to be somewhat inconsistent
with the native ensemble structures.

With limited computational resources, success in predicting low
energy, native structures with MC-based FA depends on both chain
topology and length. FA move steps lead to kinetic slowing because
of the increased likelihood of steric clashes when a protein adopts
more compact molten globule conformations, as was encountered
in MC studies decades ago in lattice models (22). There is significant
difficulty in carrying out the subtle rearrangements, in compact
protein conformations, necessary for proper �-strand formation
and corresponding hydrogen bonding. In the cases of 2gb1, 1nmg,
and T0348, only by relaxing the structures by FA�MD are strands
efficiently rearranged to reach a reasonable �-sheet topology. Such
rearrangement is especially important for the central regions of the
protein chain. With the standard FA algorithm, accepted MC
moves are strongly biased to occur near the chain terminal regions.
Clearly, there will be greater sampling difficulty with increasing chain
length as proportionately more of the chain becomes buried during
collapse. The Rg-bias forces can be adjusted to control the collapse of
structures and may need further development.

Since there is favorable rearrangement of �-strands (for most
proteins in our set) upon MD refinement, the search procedure
alone must be partly responsible for the poor performance of the
pure AMW-FA method for 1nmg. However, two other proteins
with similar �-strand content, namely 2gb1 and T0348, show
significant performance improvement of AMW-FA over plain
AMW-MD, even without the final MD refinement (Fig. 1 A and
B), suggesting the poor quality of the prediction could also be
related to the quality of the fragment library for 1nmg. Since the
conformational space searched by FA is entirely determined by
the structures present in the original fragment library, to exam-
ine this point we first defined the quality of the fragment library
as the average fragment nativeness (see SI Appendix) and then
computed the library quality for each protein in our study (sum-
marized in Table S2). Protein 1nmg has the lowest quality fragment
library, while protein 4icb has the highest. While native-like struc-
tures of 1nmg cannot be produced with the AMW-FA method (best
rmsd � 7.39), structures obtained for 4icb are consistently very
similar to the native state (best rmsd � 4.73), confirming a direct
relationship between the nativeness of the local structures in the
original fragment library and the global performance. 1nmg thus
illustrates both possible contributing factors to poor FA perfor-
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Fig. 2. Fragment assembly before (AMW-FA) (orange) and after MD-
refinement (AMW-FA�MD) (red) are compared with standard AMW-MD
(black) for the �/� protein 2gb1 (A) and the all-� protein 1nmg (B). The AMW
energy and degree of nativeness are compared by both Qw (Upper) and
GDT-TS (Lower). In both measures, larger values are more native-like. Each
point is one of 4000 snapshots from either 20 runs (AMW-MD and AMW-FA)
or 100 runs (AMW-FA�MD; the final structure from each AMW-FA run (T �
0.5) was used as a starting structure for 5 refinement MD runs).
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mance—a conformational space overly constrained by a poor
quality finite fragment library and a kinetically slow search algo-
rithm hindered by unphysical FA move steps.

To further explore the advantages and disadvantages of the
FA method, we can compare the nativeness of secondary
structure resulting from AMW-FA and standard AMW-MD
simulations. We plot the difference in nativeness, �Qi,local (see SI
Appendix), of local regions (9 residue length) for all proteins used
in this study. Fig. 3A (red line) clearly shows that the �-strands
for the AMW-FA algorithm are significantly less native-like,
with most �Qi,local values being negative. AMW-MD produced
more native-like structures for the given fragment than AMW-
FA. MD appears to be the method of choice for predicting
�-strands. Not surprisingly, relaxation of MC-generated strands
with MD leads to some improvement of �-strands. In contrast,
pure FA does show advantages in turn regions which are not so
well predicted with standard AMW-MD as shown in Fig. 3A
(cyan line). This result is consistent with the fact that local turn
regions do not align well during the initial global sequence-
structure alignment used for the AMW. Additionally, the �-he-
lical regions (Fig. 3, black lines) are, on average, slightly more
native compared with AMW-MD simulations.

We further probed how the input local fragment library
quality affects local and global structure prediction. For each
local fragment region of 9 residue length from all proteins in the
study set, centered at residue i, we computed the average degree
of nativeness of each of the library structures to the correspond-
ing native structure, Qi,frag

lib (see SI Appendix), and recorded the
minimum and maximum values of nativeness. Plotting these
values against sequence gives an idea of the average quality of the
library as well as the possible range of quality of the input
fragments. For each of the different prediction algorithms we
also plot for the same fragment the degree of nativeness Qi,frag
for the best sampled structure. We find the Qi,frag of the predicted
structure is quite close to, or, on account of hybrid fragments
[composed of parts of multiple library fragments (7)], slightly
better than the best fragment library structure. This means we
are sampling global structures whose local regions have struc-
tures quite similar to the best predictions that could have been

obtained by any of the local sequence alignments used in the
assembly. The results are presented in Fig. 4 for protein T0353.
In Fig. 4A, the results for AMW-FA (orange line) and AMW-
FA�MD (red line) are shown—for comparison the AMW-MD
result (black line) is also plotted. Other than the fragments
located in the N terminus and around residue 60, in all three
methods the predicted local structures are significantly closer to
the native structure than the average fragment library structure,
and often are very near to the best library structure locally.

However, improvement in local structure does not necessarily
mean improvement in global structure, as illustrated by the
global degree of nativeness for each residue i, Qi, shown in the
Lower of Fig. 4 (same color coding). The tertiary nativeness Qi
is calculated over the full length of the protein and measures how
native-like are the interactions of residue i with the remainder of
the protein—a local measure of correct tertiary structure. While
the prediction of local fragments is better for FA, the tertiary
structure as a whole (as measured by Qi) is often worse for FA
than it is for AMW-MD. For example, in protein T0353 the
fragments around residue 50 show improvement compared with
AMW-MD in local structure prediction, but the tertiary struc-
ture at that area becomes less native. Ultimately, the final global
prediction performance seems to be reflected more in Qi, the
global nativeness parameter, which captures tertiary interac-
tions. The significant improvement of Qi from AMW-MD over
AMW-FA around the first 30 residues and residue 50 captures
the superior AMW-MD global prediction performance (Fig.
1B). Since the protein T0353 does not have a particularly poor
fragment library (unlike the case of 1nmg), the poor perfor-
mance likely arises from the kinetic sampling limitations of FA
observed with increasing chain length.

AMW-FME – Fragment Memory Enriched. The results for longer
proteins from the CASP test set are shown in Fig. 1B and Table
S1. Not surprisingly, longer proteins are harder to predict with
FA methods. Indeed, most of the best structures found by FA do
show lower GDT-TS values from the native PDB structure
relative to those found by direct MD. As described previously,
with MC torsion-angle rotation based schemes, cooperative
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AMW-FME (B). The solid gray area represents a local structure similarity to native
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tered at residue i, Qfrag includes all interactions within the fragment while Qi

includes interactions from residue i to the remainder of the protein.
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long-range rearrangements cannot simultaneously compensate
for each other, as in the parallel-search MD procedures. Also,
the number of states of the system increases dramatically with
chain length, leading to even greater difficulties besides those
inherent in the MC motions.

Besides the kinetic problems with the FA sampling procedure,
the restriction of conformational space in the FA method can either
increase or decrease the overall performance depending on the
quality of the underlying fragment library (low for 1nmg and high
for 4icb). This analysis suggests seeking a way to avoid the limita-
tions of the standard AMW energy function while keeping what is
good about FA. The guidance in AMW must deal with the more
unusual structural motifs such as regions near prolines, turns and
coils which are well captured by the FA implementation. Overall,
while using global sequence–structure alignment to choose mem-
ories in the AMW is quite successful in achieving highly native-like
tertiary interactions (as in the long-range �-strands in 1nmg), the
dramatic improvement of AMW-FA�MD over AMW-MD in the
case of 2gb1 supports the notion that some local motifs would have
been better predicted by restricting search to structures constructed
by the purely local sequence alignment procedure used for the
fragment libraries.

To get the best of both worlds, we developed a modified version
of the AMW code, which we call AMW-fragment memory en-
riched (AMW-FME). This approach simply supplements the stan-
dard AM forces (a component of the full AMW energy function)
based on global alignments with additional forces based on local
structures taken directly from the fragment library (see Materials
and Methods for details of the AMW-FME energy function).

The results for AMW-FME on all proteins in our set are
shown in Fig. 1, cyan lines, and Table S1. For most proteins,
AMW-FME shows measurable improvement in prediction re-
sults over the standard AMW. Moreover, the proteins showing
the most significant improvement are those with the highest local
library quality, including the �-helical protein 4icb and the three
�/� proteins T0353, T0354, and 2gb1. We compare the AMW

and AMW-FME simulated annealing snapshots for proteins
2gb1 and T0354 in Fig. 5. In the case of 2gb1, only slightly more
native-like structures are sampled with the Qw order parameter,
while structures with significantly higher values of GDT-TS are
frequently populated. The comparison for the protein T0354
(Fig. 5B) shows a dramatic shift toward more native-like struc-
tures when ordered by either Qw or GDT-TS.

That the improvement in local memories is key is shown by the
fact that when a poor fragment library is used, as in 1nmg, with
AMW-FME, there is no improvement. Pleasantly, while longer
proteins with good fragment library quality, such as T0354 (Fig.
5B), show poor global performance on account of sampling
deficiencies using FA, the AMW-FME method successfully
takes advantage of the local fragment library information and
shows significant performance improvement.

To better understand these effects, we return to the protein
T0353. Comparing the best sampled structures, we see the
AMW-FME method (Fig. 4B) clearly improves local as well as
global structure over standard AMW-MD. The local structure
performance of AMW-FME (Fig. 4B Upper, cyan line) is quite
similar to that obtained with AMW-FA�MD (Fig. 4A Upper,
red line). However, across the first half of the protein chain, the
local structure obtained with AMW-FME is more native-like.
For T0353, better local fragment structures are sampled with
AMW-FME than with the pure FA even followed by MD
refinement. Also, there is secondary structure improvement over
the full study set (Fig. 3B). However, the tertiary structure,
described by Qi (as shown in the Lower of Fig. 4B), is generally
better for AMW-FME than pure AMW-MD. Apparently, the
kinetic limitations of sampling with AMW-FME are small.

The ‘‘chimeric’’ AMW-FME MD approach can take advan-
tage of the existence of high quality fragment libraries for larger
proteins but does not degrade in performance even when the
fragment library is of low quality.

CASP8. The most recent CASP (CASP8) took place in the summer
of 2008. Of 27 targets of length 150 residues or less, only four were
categorized as free model (FM). FM targets are those for which no
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structurally similar template was identified or submitted. For these
proteins, in Table S3, we present the results we submitted using the
standard AMW-MD procedure. We also present postexercise
results based on the AMW-FME method developed here. Typi-
cally, human judgement based on visual inspection, and other
filtering tools, are used in selecting targets for submission. To avoid
bias in this post hoc assessment, we cannot include selection based
on visual inspection. Instead, we selected the five best candidate
structures according to lowest energy structures and a simple
automated filtering strategy based on quantifying the frustration
level of a sampled structure (see SI Appendix). A comparison of the
AMW-MD and AMW-FME performance with all CASP8 partic-
ipating groups is presented in Fig. 6.

Conclusions
The complementary advantages of AMW and FA methods for
structure prediction can be combined to design a better per-
forming method. In particular, we find that the combination of
FA with the AMW potential (AMW-FA) often performs better
than MD simulated annealing using the same potential energy
function (AMW) in relatively short proteins with fewer than 70
residues, when there is a fragment library of reasonable quality.
However, a distinct disruption of �-strand local structure is
clearly observed in FA. Despite this, in shorter proteins, im-
provements in local regions around turns and �-helices usually
drive the system toward better structures. A short MD relaxation
run of the final structures obtained from FA is often sufficient
to produce remarkable improvement in structure prediction,
associated with fine-tuning in �-strand arrangement. For in-
stance, the proteins 2gb1 and T0348 exhibit this behavior in our
study. However, the all-� protein 1nmg, which has the poorest
fragment library quality of the proteins studied, fails to sample
the native structure well. MD relaxation proves insufficient to
lead to structures of similar quality to standard AMW-MD
simulations. In longer proteins, FA suffers from a number of
deficiencies intrinsic to the awkward nonparallel move steps
(MD search procedures are naturally parallel) of the standard
MC-based FA procedures. Alternative procedures might avoid
this. To combine the benefits of these approaches, we propose
the fragment enriched version of the standard AMW energy
function, AMW-FME, that naturally takes advantage of local
alignment derived fragment libraries without paying the price of
the accompanying kinetic difficulties created by the FA method.
The AMW-FME algorithm produces significantly improved
prediction performance (with no advanced postprocessing tech-
niques) of de novo structures of longer proteins.

Materials and Methods
Fragment Assembly with AMW. From library fragments based on sequence
alignments of 9 residue length (see SI Appendix for library details), the torsion
angles between the central three (from i � 1 to i � 1) and six (from i � 3 to i �

2) residues were extracted. For the AMW-FA method, two fragment assembly
procedures were used, differing by the length of the fragments substituted (3
or 6 residues). We took this approach since, during development with a set of
separate proteins, we found each of the methods to produce better results in
different cases. Simulations with 9 residue fragments rarely outperformed
those with shorter fragments and were therefore not studied further. For each
protein, ten simulations were performed each with 3 and 6 residue fragments.
At each MC move step, a random position along the sequence was selected.
Next, the torsion angles were substituted with those from a randomly selected
fragment from the library associated with the region (composed of 20 con-
formations). The reversible version of the fragment assembly method, as
described by Takada (7), was generally found to outperform the irreversible
version. As such, for the 20 proteins included in this study, we ran simulations
only with the reversible algorithm.

AMW-Fragment Memory Enriched (AMW-FME) Energy Function. The enriched
version of our AMW energy function takes the form: HAMW�FME � HAMW �

HAM�frag (see SI Appendix for details of HAMW). HAM�frag is equivalent to HAM

except that we remove the sequence dependence from �frag[�i � j�]:

HAM�frag � �frag�f�i�j�2
�frag��i 	 j�	e

�

rij�rij

f �2


2
ij
2� ,

where f is an index over all fragments and the sum over i and j includes all pairs
of atoms of type (C�-C�, C�-C�, C�-C�, C�-C�) given i � j � 2. The distances rij and
rij
f are between atoms i and j in the current and fragment conformations,

respectively. The Gaussian well widths are given by 
ij � (i � j) 0.15Å. The
weights �frag[�i � j�] depend only on the sequence distance class (short, me-
dium, and long range) but are different in �/� and �-only simulations. They
were chosen such that the balance of energy between the short, medium, and
long range is maintained, to be consistent with the balance of energy in the
standard HAM (10). We chose �frag such that the balance of the total energy
between the standard and fragment enriched AM terms is approximately in
the ratio 2:1. We found that a ratio of 1:1 leads to poor global prediction
performance as the local structure becomes overly constrained.
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