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Structural modeling of molecular assemblies promises to improve our understanding of
molecular interactions and biological function. Even when focusing on modeling structures of

protein dimers from knowledge of monomeric native structure, docking two rigid structures onto

one another entails exploring a large con¯gurational space. This paper presents a novel

approach for docking protein molecules and elucidating native-like con¯gurations of protein
dimers. The approach makes use of geometric hashing to focus the docking of monomeric units

on geometrically complementary regions through rigid-body transformations. This geometry-

based approach improves the feasibility of searching the combined con¯gurational space. The

search space is narrowed even further by focusing the sought rigid-body transformations around
molecular surface regions composed of amino acids with high evolutionary conservation. This

condition is based on recent ¯ndings, where analysis of protein assemblies reveals that many

functional interfaces are signi¯cantly conserved throughout evolution. Di®erent search pro-
cedures are employed in this work to search the resulting narrowed con¯gurational space. A

proof-of-concept energy-guided probabilistic search procedure is also presented. Results are

shown on a broad list of 18 protein dimers and additionally compared with data reported

by other labs. Our analysis shows that focusing the search around evolutionary-conserved
interfaces results in lower lRMSDs.
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1. Introduction

Molecules come together in molecular assemblies in order to achieve their biological

function in the living cell. Modeling structural aspects of these assemblies is

important to improve our understanding of molecular interactions and our ability to

target molecules with drug compounds. Due to the ubiquity and central cellular role

of protein molecules, signi¯cant computational e®orts go toward predicting struc-

tures of protein-based assemblies, a problem known as protein docking.1�5

Protein docking is a challenging problem.6�8 Even when docking only two

protein molecules onto each other, the process involves searching for low-energy

dimeric structures in a space of N �M þ 6 dimensions; N and M are the number

of parameters employed to represent the unbound protein structures, and 6 is the

number of translation and rotation parameters that correspond to the di®erent

placements of one monomer onto another. The large number of parameters results

in a high-dimensional search space. As a result, most methods focus on rigid-body

docking, where the monomeric structures are considered rigid. In this way, the

focus is on ¯nding the placements that result in low-energy dimeric structures.

From now on, we will refer to these placements as rigid-body transformations, and

to the dimeric structures that result after applying such a transformation as

con¯gurations.

The approach proposed here searches the space of rigid-body transformations.

The approach is guided by geometry, as it only considers transformations that match

geometrically complementary regions on the involved molecular surfaces. This

focusing allows narrowing the con¯guration space that one would have to explore in

search of dimeric con¯gurations that reproduce the native structure. Based on

¯ndings that evolutionary-conserved regions are good predictors of functional

interfaces,9 the proposed approach further limits matching regions of interest to

those that are evolutionary conserved. This greatly reduces the number of trans-

formations attempted to obtain dimeric con¯gurations.

The proposed approach searches for bound con¯gurations that match geome-

trically complementary surface regions, essentially matching concave with convex

regions. Geometric features are hashed in order to expedite the search for comp-

lementary regions, a process known as geometric hashing.10,11 The employment of

geometric hashing in this paper is due to its demonstrated success in allowing

docking methods to feasibly compute con¯gurations that through further energetic

re¯nement reproduce known native structural assemblies.12

Instead of geometry, other docking methods are guided by energy and do not

explicitly conduct their search for dimeric con¯gurations over the space of rigid-body

transformations. Classic search frameworks, such as Monte Carlo or Molecular

Dynamics, or other energy minimization protocols are conducted to ¯nd minima of a

designed energy function.13 With a realistic energy function, these minima corre-

spond to native-like structural assemblies.6,8,14 Designing accurate energy functions

to capture molecular interactions is a challenging research area.15
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Several methods as web servers or/and software are now available for protein

docking, such as Zdock,16 Haddock,17 ClusPro,18 PatchDock and SymmDock,19

Combdock,20,21 FiberDock,22 RosettaDock,23 and others.24 Summaries of CAPRI

(Critical Assessment of PRedicted Interactions) results show that, while the accu-

racy of docking methods is improving, no single method is currently su±cient to

successfully predict native-like assemblies in every test case.6 Even top methods

predict only 30%�58% of the correct interface in any given target.25

Detecting the correct interaction interface26 is a fundamental challenge in protein

docking. Some studies show that this interface exhibits a higher degree of evo-

lutionary conservation than other regions on the molecular surface.9,27 However,

conserved residues may form a small part of interaction interfaces for various

reasons.26 Taken together, these ¯ndings suggest that the ranking of amino acids by

the evolutionary conservation is a reasonable approach to locate the interaction

interface, even if partially. Two representative methods are currently available for

ranking amino acids by evolutionary conservation, the original evolutionary trace

(ET) method,28 and the joint evolutionary trace method (JET) based on ET.9

The extent to which interaction interfaces contain evolutionary-conserved amino

acids is being employed as a scoring function to rank computed bound con¯gur-

ations.29 Other methods have started to incorporate knowledge of the location of

conserved residues to guide the search for bound con¯gurations. For instance, the

energy function employed for minimization can include terms that reward matching

of surface regions with high conservation.30

In contrast to work in Ref. 30 that proposes an energy-based approach, this paper

presents a geometry-based one. The JET method is used to rank amino acids of the

protein monomers involved in the assembly by their degree of evolutionary con-

servation. This information is then employed to ¯lter geometrically complementary

surface regions on the monomers. Matching geometrically complementary and evo-

lutionary-conserved regions results in rigid-body transformations that bring one

monomer onto the other. Applying the transformation produces a bound dimeric

con¯guration. Details on this approach and the di®erent search procedures employed

to select transformations are related in Sec. 2.

The proposed approach is applied to a list of 18 dimeric systems with known

native structures. Extensive analysis is conducted in Sec. 3 in order to evaluate the

dimeric con¯gurations obtained for each system. Obtained results are compared to

data reported by other labs in terms of lRMSD values of computed con¯gurations to

the known native dimeric structure (lRMSD refers to least root mean squared

deviation and is a measure of the average distance between corresponding atoms in

aligned con¯gurations). Comparisons are made with a geometry-based method that

does not employ evolutionary conservation29 and the energy-based method in

Ref. 30. On a majority of the systems, lower lRMSDs are reported by our approach.

Our results further demonstrate that evolutionary conservation is a good predictor of

functional interfaces. A detailed analysis is presented in Sec. 3.
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2. Methods

2.1. De¯nition of regions relevant for matching

The JET method, which relies on multiple sequence analysis, is employed to identify

conserved amino acids.9 The JET score calculated for each amino acid can range

from 0.0 (least conserved), to 1.0 (most conserved). We employ the iterative version,

iJET, which repeats the analysis 50 times to obtain an average score for each amino

acid. Amino acids determined to be on the surface (detailed later) that also have a

JET score above a prede¯ned threshold are deemed \active" and assumed to par-

ticipate in the interaction interface. The rest of the amino acids are treated as

\passive." The active/passive designation is inspired by the work in Ref. 17.

Di®erent thresholds of conservation scores are considered. The lower the

threshold, the larger the surface area for docking and the higher the number of rigid-

body transformations considered. The higher the threshold, the smaller the surface

area and the more targeted the docking process. Our experiments (shown in Sec. 3)

suggest that thresholds of 0.25�0.75 do not a®ect the accuracy of the method in

reproducing the native assembly.

2.2. Molecular surface representation and critical points

Two representations are employed for the molecular surface. The Connolly surface is

¯rst employed to represent the solvent accessible surface area, calculated through the

Molecular Surface Package (MSP).32 This representation is dense. For each surface

point, the Connolly representation maintains the 3D coordinate, the normal mode,

and a numerical value to indicate the type of the surface. Types range from convex,

saddle, to concave.

A sparse representation that simpli¯es the Connolly surface is calculated as in

Ref. 11. This representation consists of a series of critical points. A critical point is

de¯ned as the projection of the center of gravity of a Connolly face on the molecular

surface. Critical points are nicknamed caps, pits, or belts to correspond to convex,

concave, or saddle faces. The collection of critical points cover key locations on the

molecular surface to represent the shape of a molecule. In our approach, a critical

point inherits the conservation score of its closest amino acid on the molecular

surface.

2.3. From critical points to active triangles

Critical points are employed to de¯ne active triangles. A critical point p1 with

conservation score above a prede¯ned threshold (we employ 0.5 in the implemen-

tation presented here) is selected ¯rst. Two more critical points, p2 and p3 (not

necessarily conserved) are then selected from the molecular surface. Their selection

satis¯es both angle and distance constraints. The angle constraints ensure that the

points are not collinear. Points p2 and p3 are also selected to lie no closer than 2Å and

no further than 5Å from p1. The minimum distance of 2Å ensures that two points

I. Hashmi et al.
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are not on the same van der Waals (vdw) sphere of an amino acid. The maximum

distance of 5Å ensures that a triangle does not cover a lot of the molecular surface.

The employed angle and distance parameter values are as in Ref. 12.

Our approach employs unique active triangles to limit the number of attempted

transformations. A lexicographic ordering is ¯rst applied over the triangle's vertices.

Given that triangles capture a small surface area, two triangles that share the ¯rst

vertex in the lexicographic ordering essentially represent the same region in the

molecular surface. Therefore, no two triangles are allowed to share their ¯rst vertex

in the lexicographic ordering. Additionally, triangles are hashed by their center of

mass. This reduces the number of unique active triangles even further. Given n

critical points, ensuring satisfaction of the distance, angle, and the two uniqueness

constraints described here results in fewer than n active triangles.

2.4. From active amino acids to rigid-body transformations

The calculation of a rigid-body transformation requires de¯ning a local coordinate

frame for each monomer. Active triangles are employed for this purpose. First, one of

the monomers, let us refer to it as A, is arbitrarily selected as the \base" monomer.

Let the other \moving monomer" be B. For each unique active triangle selected from

A, a matching active triangle is selected from B. The features considered for

matching are only geometric at this point, as in Ref. 10. Other physico-chemical

features can be incorporated in later implementations. The two triangles selected for

matching de¯ne two local coordinate frames. The rigid-body transformation aligns

the frames by superimposing their origins and rotating B on A.

2.5. Searching con¯gurational space

The main results shown in Sec. 3 are obtained with a simple exhaustive search

procedure that essentially matches unique active triangles. Two settings are

employed, as described in Sec. 3, in order to determine the e®ect of the number of

triangles on the ability of this approach to obtain dimeric con¯gurations with low

lRMSDs to the known native structure. The obtained results show that each setting

allows reproducing the known native structure within a few angstroms.

2.5.1. Energy-guided probabilistic search

When the number of unique active triangles is small, an enumeration-based pro-

cedure like the one described above, which essentially iterates over all the possible or

a carefully selected subset of transformations, is feasible. However, as the size of the

molecular assemblies grows and potentially the number of monomeric units as well

(a direction we will explore in future work), enumeration-based search is infeasible.

Probabilistic search procedures are needed instead. Here we present our ¯rst steps

toward such a procedure that guides its search through energy.

Guided Probabilistic Docking for Protein Molecules
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A simple energy function is employed that models only Lennard-Jones (LJ)

interactions between the involved monomers. The functional formula is that of the

LJ potential in CHARMM22.33 Only interactions among backbone atoms are

modeled, since a re¯nement procedure like the one in Ref. 34 can then place side

chains in favorable con¯gurations. The LJ potential is employed to evaluate the

feasibility of a generated con¯guration at a coarse-grained level of detail.

The search procedure generates con¯gurations through a sampling-based process.

It essentially samples the con¯gurational space one rigid-body transformation at a

time. An active critical point is selected uniformly at random from the molecular

surface of one of the monomers, and an active triangle is then constructed as

described earlier. A second active critical point is then sampled uniformly at random

from the molecular surface of the second monomer and another active triangle is

constructed. This process may be repeated until a geometrically complementary

active triangle is obtained from the molecular surface of the second monomer.

Matching of the sampled triangles results in a rigid-body transformation as detailed

above, and the resulting transformation is applied to obtain a random dimeric

con¯guration.

The LJ energy is employed to guide this probabilistic process similar to how the

Metropolis criterion guides a Monte Carlo trajectory toward low-energy con¯gur-

ations.35 It is important to point out that, while the current con¯guration in a Monte

Carlo trajectory is the result of a perturbation of the previously obtained con¯gur-

ation, the con¯gurations obtained by our search procedure are not guaranteed to

reside in nearby regions on the con¯gurational space. They are not consecutive points

in a trajectory. In the classic employment of the Metropolis criterion, a perturbation

is proposed to obtain a new con¯guration. The perturbation is evaluated according

to the �E energetic di®erence after the perturbation. The perturbation is accepted

(and the resulting con¯guration is added to the Monte Carlo trajectory) with

probability e��E=ðKbT Þ. The KbT term is a temperature scaling factor, where T is the

e®ective chosen temperature of the simulation. The e®ective temperature determines

the extent to which high-energy perturbations are allowed in the trajectory. Lower

temperatures drive the search greedily toward low-energy con¯gurations, but they

may cause the trajectory to get stuck in a local minimum.

The success of a Metropolis Monte Carlo search in sampling low-energy con-

¯gurations depends to a great extent on the fact that consecutive con¯gurations in

the trajectory are also near in con¯gurational space. That is, a low-energy con-

¯guration will probably result in another low-energy con¯guration after a pertur-

bation. In the probabilistic search procedure employed in this work, the rigid-body

transformation may match di®erent regions over the molecular surfaces. Hence, there

is no dependence between consecutive conformations sampled by the search pro-

cedure. However, the Metropolis criterion is still useful, and it is employed here in

order to bias the search toward conformations within an energetic range of the

current energy. Rather than determine an arbitrary energetic cuto® for what are

considered low-energy con¯gurations (a value that depends on the speci¯c system

I. Hashmi et al.
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under investigation), the Metropolis criterion allows the search procedure a natural

way to bias toward low-energy con¯gurations.

The selection of the e®ective temperature is important because it determines the

extent to which the search will allow energetic increases. The results shown in Sec. 3

showcase two di®erent temperatures (from high temperatures down to room tem-

perature), selected from a proportional cooling schedule we have employed in pre-

vious work for Simulated Annealing search.34 The selected temperatures showcase

that medium-range e®ective temperatures allow balancing the search toward low-

energy but diverse con¯gurations. Other modi¯cations that can be made to this

proof-of-concept search procedure for a more e®ective exploration of the con¯gura-

tional space are discussed in Sec. 4.

3. Results

Our experiments are carried out on a 2.66GHz Opteron processor with 8GB of

memory. We select 18 di®erent dimers with known native structures as our systems

of study. These systems are selected because they cover di®erent functional classes

and have been investigated by other computational groups, as well. Results obtained

after the experiments summarized below make the case that on all selected systems of

study the approach presented in this paper is able to reproduce the native structure

within a few angstroms in a feasible amount of time.

We present ¯ve sets of results. First, we present detailed results on two systems

selected from our set of 18 to showcase the e®ect of di®erent conservation thresholds

on the number of active triangles and proximity of computed con¯gurations from the

known native structures. These results justify our employment of a 0.5 conservation

threshold on the rest of the dimers. The second set of results shows the lowest lRMSD

obtained for each system from the corresponding native structure. These results are

compared to those published by two other labs. The lowest lRMSD con¯gurations

obtained by the method are also shown on select systems. In the third set of results,

nine dimers are selected to showcase the e®ect of di®erent schemes for construction of

active triangles on the number of triangles and computational time. These results

make the case that the method is able to achieve low lRMSD values while improving

computational cost. In the fourth set of results, energetic re¯nement is carried out on

two selected systems to analyze resulting energy values and rank on a subset of

con¯gurations selected from those computed by the exhaustive procedure. Finally,

con¯gurations obtained with our energy-guided probabilistic search procedure are

presented and analyzed in the ¯fth set of results.

3.1. Detailed analysis of representative systems

Two signaling proteins are selected to measure the e®ect of the conservation

threshold on the lowest lRMSDs obtained. The ¯rst system consists of the vascular

endothelial growth factor and FMS-like tyrosine kinase-1. The native structure has

Guided Probabilistic Docking for Protein Molecules
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PDB ID 1FLT. The second system, the Nerve Growth Factor/TRKA receptor, is

responsible for the development and maintenance of the sympathetic and sensory

nervous systems. Its native structure can be found under PDB entry 1WWW.

The following experiment is performed on each system. Three conservation

thresholds, 0.25, 0.5, and 0.75 are employed to de¯ne three sets of active triangles.

The exhaustive procedure is employed to obtain dimeric con¯gurations with each

threshold, essentially resulting in three sets of con¯gurations. The lowest lRMSD is

recorded for each setting, and these are reported for each system in Table 1. The ¯rst

column shows the PDB ID of each dimer and their chains in brackets. The second

column shows the varying conservation threshold. The third column shows the

number of active triangles de¯ned on the reference chain under each conservation

threshold. The last column shows the lowest lRMSDs obtained in each setting.

Table 1 shows that the number of active triangles goes down as the conservation

threshold increases, as expected, with no signi¯cant changes to the lowest lRMSD.

The detailed distribution of lRMSDs from the native structure for con¯gurations

computed with a threshold of 0.5 is shown for each of the two selected systems in

Figs. 1(a1)�1(b1). The distributions show that the method produces many con-

¯gurations with less than 5Å of the native structure. Given these results, the

threshold of 0.5 is employed to obtain con¯gurations for all other systems in the rest

of the results.

3.2. Comparison of proximity to known native structures

with results obtained by other methods

In this set of results, con¯gurations computed with the exhaustive search procedure

for each of the 18 dimers are compared to the respective native structures in terms of

lRMSD. lRMSDs are calculated over C� atoms. The lowest lRMSD con¯guration is

shown for selected systems in Fig. 4. The amino-acids with conservation scores above

0.5 that are part of the contact interface are also shown. Two amino acids are

considered in contact if their Euclidean distance is no larger than 4.0Å. Figure 4

illustrates that the lowest lRMSD structures are those where the contact interface

overlaps well with the predicted interaction interface.

The lowest lRMSD value obtained on each system is compared with those

reported by two other methods, BUDDA,31 and the method in Ref. 30. BUDDA is a

geometric method that relies on geometric hashing, whereas the method in Ref. 30 is

Table 1. E®ect of varying the conservation threshold.

PDB ID Threshold No. of triangles lRMSD (Å)

1FLT (V,Y) 0.25 2417 2.06

0.50 2338 1.12
0.75 2080 1.03

1WWW (W,Y) 0.25 2900 2.29

0.50 2911 2.24

0.75 2854 2.60

I. Hashmi et al.
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an energy-based method that incorporates ET conservation scores in the energy

function. The comparison is shown in Table 2.

When di®erences in lowest lRMSDs achieved by di®erent docking methods are

within 2Å these results are considered equivalent, since energetic re¯nement can

potentially reduce these di®erences. On about 13 of the 18 dimers, the approach

presented here achieves similar low lRMSDs to BUDDA and the method in Ref. 30.

On the remaining systems, the approach outperforms these other two methods. This

result is encouraging, as it shows that better or equivalent results can be obtained.

While the energy-based method in Ref. 30 relies on long energy minimizations, the

BUDDA method in Ref. 31 exhaustively matches all geometrically complementary

triangles without making use of putative interaction interfaces. The next set of results

shows how the number of triangles employed for matching a®ects computation time.

The results in Table 3 measure the e®ect of the number of active triangles on both

time and accuracy. Nine systems are selected for this purpose. Two di®erent settings

are employed. In the ¯rst setting, all unique active triangles from the base monomer

are employed to de¯ne transformations, resulting in the data shown in Table 2. In the

second setting, the number of unique active triangles is reduced by roughly one-third

by essentially ensuring that no critical point is used more than once in the con-

struction of active triangles over the molecular surface.

Table 3 shows the savings in the number of triangles and computation time over

the setting in Table 2. Column 2 in Table 3 shows for each of the monomers the ratio

of the number of triangles in this setting over the number in Table 2. Column 3 shows

the ratio of the time requirements here over the time requirements in Table 2.

Finally, column 4 shows the di®erence in lRMSD of this setting from that shown in

(a) (b)

Fig. 1. (a1) and (b1) Histograms (for system with PDB ID 1FLT left and 1WWW right) show distri-
butions of lRMSDs from the native structures for dimeric con¯gurations computed with our exhaustive

protocol and a conservation threshold of 0.5.
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Table 2. The results in Table 3 make the case that this construction of active tri-

angles achieves similar low lRMSDs while improving feasibility.

3.3. Energetic re¯nement of select con¯gurations

Computed con¯gurations for two representative systems with PDB IDs 1FLT and

1WWW are now selected for re¯nement. Out of all dimeric con¯gurations computed

for each system with our exhaustive procedure, the 500 con¯gurations with lowest

lRMSDs from the known respective native structures are re¯ned with Firedock.13

Firedock is chosen due to its fast interaction re¯nement protocol, as a ¯rst step

toward detailed re¯nement of computed structures.

Figures 2(a)�2(b) plots for each system the Firedock-reported binding energy

values for the re¯ned con¯gurations versus the lRMSDs of these con¯gurations from

Table 3. E®ect of number of active triangles on time and lowest lRMSDs.

PDB ID (Chains) No. of triangles ratio Time ratio lRMSD Di®. (Å)

1C1Y (A, B) 1:2.80, 1:2.86 1:6.57 1.02

1G4U (R, S) 1:2.89, 1:2.88 1:6.44 �0.72
1DS6 (A, B) 1:2.86, 1:2.88 1:7.16 1.42

1TX4 (A, B) 1:2.88, 1:2.91 1:6.44 0.30

1WWW (W, Y) 1:2.94, 1:2.94 1:9.57 �0.05
1FLT (V, Y) 1:3.23, 1:2.56 1:10.5 1.69

1IKN (A, C) 1:2.90, 1:2.89 1:7.93 �0.89

1IKN (C, D) 1:2.89, 1:2.90 1:7.26 0.99

1T6G (A, C) 1:2.90, 1:2.86 1:6.82 �0.27

Table 2. Lowest lRMSDs by our method, reported in column 5, are compared to
those published by Polak et al. and Kanamori et al. reported in columns 3, and 4,

respectively. Size in column 2 refers to the number of atoms in each chain.

PDB ID (Chains) Size Ref. 31 (Å) Ref. 30 (Å) Here (Å)

1C1Y (A, B) 1376, 658 1.2 NA 1.29

1G4U (R, S) 1398, 2790 1.03 NA 2.20

1DS6 (A, B) 1413, 1426 1.18 NA 1.87

1TX4 (A, B) 1579, 1378 1.37 NA 2.42
1WWW (W, Y) 862, 782 11.4 NA 2.24

1FLT (V, Y) 770, 758 1.55 NA 1.12

1IKN (A, C) 2262, 916 1.19 NA 2.04

1IKN (C, D) 916, 1589 2.05 NA 2.01
1VCB (A, B) 755, 692 0.75 NA 2.06

1VCB (B, C) 692, 1154 13.1 NA 1.27

1OHZ (A, B) 1027, 416 1.77 0.66 1.70
1T6G (A, C) 2628, 1394 1.64 3.8 2.55

1ZHI (A, B) 1597, 1036 25.3 3.4 1.75

2HQS (A, C) 3127, 856 29.1 2.55 2.19

1QAV (A,B) 663, 840 1.44 N/A 1.04
1G4Y (B,R) 682, 1156 0.83 N/A 2.31

1BDJ (A, B) 979, 919 15.4 N/A 2.65

1CSE (E,I) 1920, 522 0.73 N/A 1.49
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the known native structure. Only negative energy values are shown. The results in

Fig. 2 show that many of the lowest-energy structures are also low in lRMSD from

the corresponding native structure. This suggests that short re¯nements may allow

detecting low-lRMSD con¯gurations by selecting a few con¯gurations with lowest

re¯nement energies for prediction. These in turn may be re¯ned in further detail in

order to recover the native structure among the lowest-energy ones.

(a) (b)

Fig. 2. Firedock energies of re¯ned structures are plotted against lRMSDs from the native structure.

Results for 1FLT are shown in (a) and 1WWW in (b).

(a) (b)

Fig. 3. The LJ potential energies of conformations sampled by the energy-guided search are plotted

against lRMSD values from the known native structure. Two di®erent con¯gurational ensembles are

shown, corresponding to two di®erent values of temperatures shown in the legend. The results obtained
with the di®erent temperatures are superimposed over one another. Results in (a) are for the system with

PDB ID 1FLT, whereas those in (b) are for the system with PDB ID 1WWW.
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3.4. Analysis of con¯gurations obtained with energy-guided

probabilistic search

We present here results obtained by our proof-of-concept probabilistic search pro-

cedure that employs the Metropolis criterion to bias its exploration toward low-

energy con¯gurations. Results are presented for the two selected systems with PDB

Fig. 4. Lowest-lRMSD structures and the actual lRMSD achieved are shown for 12 selected systems.
Chains are drawn in di®erent shades of gray in transparent. Conserved amino acids in contact with one

another are drawn in opaque.

I. Hashmi et al.

1242008-12

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

12
.1

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
O

R
G

E
 M

A
SO

N
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/0
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



IDs 1FLT and 1WWW in terms of LJ energies vs. lRMSDs from the known native

structure for sampled con¯gurations. The results are shown in Fig. 3.

Figure 3 superimposes the analysis of two di®erent con¯gurational ensembles

obtained with the e®ective temperatures shown in Fig. 3. The superimposition

illustrates that high temperatures result in a broader ensemble of con¯gurations in

terms of energy values. However, lowering the temperature allows focusing the

search to low-energy con¯gurations. These results suggest that medium-range tem-

peratures may provide a good compromise and focus the search toward low-energy

con¯gurations while allowing to obtain low lRMSDs to the native structure. It is

worth noting that the size of the con¯gurational ensemble that can be obtained at

higher temperatures is larger than that obtained at lower temperatures, as it

becomes harder to satisfy the Metropolis criterion at lower temperatures. While the

number of attempts is kept ¯xed at around 100,000, the actual number of con-

¯gurations accepted depends on the Metropolis criterion.

At this degree of resolution, where the only term modeled in the binding energy is

the LJ potential, no signi¯cant correlation is expected between low energies and low

lRMSD values. However, even at this resolution, the energetic bias in the search

allows avoiding con¯gurations with unfavorable interactions. As our discussion in

Sec. 4 points out, more sophisticated coarse-grained energy functions that incor-

porate additional interactions will be considered in future work.

4. Discussion

We have presented a geometry- and evolutionary-guided approach to protein

docking that focuses the search for bound con¯gurations through rigid-body trans-

formations that match surface regions deemed to be both geometrically comp-

lementary and evolutionary conserved. Our results show that this focusing narrows

the con¯gurational search space and allows obtaining low-lRMSD con¯gurations for

many protein systems. The di®erent search procedures employed here illustrate both

the relative ease at obtaining low-lRMSD con¯gurations with little computational

cost and the promise of the approach in tackling larger systems with probabilistic

search.

Like Zdock, the proposed approach can be employed as the ¯rst stage in

docking software. The obtained con¯gurations can be clustered and ranked in a

second stage. Low-scoring con¯gurations of selected clusters can then be further

re¯ned in a third stage. The re¯nement can be carried out with protocols like

the one used in Ref. 13 or with more detailed and powerful protocols like the one

in Ref. 34.

Our ongoing work focuses in combining the approach presented here with the

re¯nement procedure presented in Ref. 34. In future work we will consider di®erent

established procedures for predicting interaction interfaces. We will additionally

investigate more powerful probabilistic search procedures and their applications

beyond dimers to multimeric assemblies.
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