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ABSTRACT

Evidence is emerging that many proteins involved in proteinopathies are dynamic molecules
switching between stable and semi-stable structures to modulate their function. A detailed
understanding of the relationship between structure and and function in such molecules
demands a comprehensive characterization of their conformation space. Currently, only
stochastic optimization methods are capable of exploring conformation spaces to obtain sample-
based representations of associated energy surfaces. These methods have to address the fun-
damental but challenging issue of balancing computational resources between exploration
(obtaining a broad view of the space) and exploitation (going deep in the energy surface).
We propose a novel algorithm that strikes an effective balance by employing concepts from
evolutionary computation. The algorithm leverages deposited crystal structures of wildtype
and variant sequences of a protein to define a reduced, low-dimensional search space from
where to rapidly draw samples. A multiscale technique maps samples to local minima of the
all-atom energy surface of a protein under investigation. Several novel algorithmic strate-

gies are employed to avoid premature convergence to particular minima and obtain a broad
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view of a possibly multi-basin energy surface. Analysis of applications on different proteins
demonstrates the broad utility of the algorithm to map multi-basin energy landscapes and
advance modeling of multi-basin proteins. In particular, applications on wildtype and vari-
ant sequences of proteins involved in proteinopathies demonstrate that the algorithm makes
an important first step towards understanding the impact of sequence mutations on misfunc-
tion by providing the energy landscape as the intermediate explanatory link between protein

sequence and function.

Key words: Protein structure modeling, multi-basin energy landscape, evolutionary algorithm,

dimensionality reduction, multiscale modeling.



1. INTRODUCTION

Increasingly, the accepted view of proteins is that of inherently dynamic molecules populating
diverse thermodynamically-stable and semi-stable structures to modulate biological function and
participate in various processes in the cell (Jenzler-Wildman and Kern, 2007; Boehr et al., 2009).
Motions connecting functional structures of a protein can be fast and small or slow and large. For
instance, fast motions in the angstrom or sub-angstrom range are often observed to be employed
by enzymes (Eisenmesser et al., 2005; Vendruscolo and Dobson, 2006; Tousignant and Pelletier,
2004). Other motions allow proteins to switch between functional structures several angstroms
away (Kern and Zuiderweg, 2003; Lu and Wang, 2008; Beckstein et al., 2009). The employment
of structural diversity for function modulation is a phenomenon observed particularly in higher-
order organisms to enrich the relationship between structure and function. However, this same
enrichment challenges our ability to model and understand this relationship, particularly as it con-

cerns elucidating the detailed role of protein sequence mutations in proteinopathies.

In dynamic proteins, it is much more difficult to understand how mutations result in misfunction
or loss of function. In some proteinopathies, loss of protein function can be explained by loss
of a crucial stable structure (Soto, 2003, 2008). However, proteins involved in some of the most
complex human diseases, such as cancer, Amyotrophic lateral sclerosis (ALS), and others, switch
between different functional structures in their wildtype (WT) form (Fernandez-Medarde and San-
tos, 2011). How do variants cause misfunction? Answering this question requires obtaining a
detailed structural characterization that goes beyond the single-structure view of a protein (Shehu,

2013).



Mapping out the menu of different functional structures that a protein has at its disposal for biolog-
ical activity demands obtaining a comprehensive view of the conformation space and underlying
energy surface. Computing the energy surface of a protein and then projecting it on few dimensions
to visualize the energy landscape was introduced by Dill, Wolynes, and colleagues (Dill and Chan,
1997; Onuchic et al., 1997). By organizing structures via energetic states, the energy landscape
provides a rationale for why certain structures may be thermodynamically-favored over others, and
how this changes upon perturbations, such as presence of a ligand, cellular stress, environmental
changes, or sequence mutations (Okazaki et al., 2006). The energy landscape view is, therefore,
not only important to understand dynamic, multi-basin proteins, but it is also essential to eluci-
date the impact of mutations on function. Comparisons between energy landscapes reconstructed
for WT and variant sequences of a protein may reveal the structural and energetic reasons behind

misfunction in variants.

One of the challenges computational methods experience in obtaining a comprehensive view of the
conformation space and underlying energy surface is that the conformation space is continuous,
high-dimensional, and therefore not enumerable. As such, the conformation space can only be
probed through a sample-based approach, where essentially a conformation is sampled at a time.
The result is a sample-based representation of the protein energy surface that often comes at great
computational cost. While a review of Molecular Dynamics (MD) and Monte Carlo (MC) meth-
ods for obtaining such representations is beyond the scope of this work, it is worth mentioning
that all such methods are greatly affected by the structures used to initialize them. While many
strategies exist to enhance their exploration capability beyond a small neighborhood around the

initial structure in conformation space, the computational cost can well exceed a few weeks on a

CPU (Adcock and McCammon, 2006).



Instead of the usual MD or MC methods, other stochastic optimization algorithms are devised
specifically to address the issue of how to balance computational cost between obtaining a broad
view of a vast, continuous, and high-dimensional conformation space while having the time to
go deep down a non-linear and multi-basin (or multimodal) energy surface. This issue is also
known as exploration versus exploitation, and addressing it is crucial to capturing many stable or

semi-stable structural states of a protein and not converging prematurely to any particular state.

The exploration versus exploitation issue is the subject of much algorithmic research in stochastic
optimization under the umbrella of evolutionary computation (EC) (De Jong, 2006). Evolution-
ary algorithms (EAs) originating in the EC community have been shown powerful for challeng-
ing problems, such as loop modeling, protein-ligand binding, and even de novo structure predic-
tion (Shehu, 2013). While they are often designed to serve as black-box optimization tools for
NP-hard problems, equipping EAs with domain-specific expertise, such as state-of-the-art protein
representations and energy functions, has resulted in performance that rivals that of MC-based
methods (Li et al., 2010; Olson and Shehu, 2012a,b; Li and Yaseen, 2013; Olson and Shehu, 2013,

2014).

Inspired by the recent performance of EAs for de novo structure prediction, in this paper we pro-
pose a novel EA to extend the in silico characterization of protein functional structures to multi-
basin proteins. It is well-known that de novo structure prediction is a challenging problem even
for small-to-medium size proteins with a single well-defined basin. Therefore, in this paper, the
proposed EA is applied to a given protein sequence but exploits experimentally-available struc-
tures for the WT and other variant sequences of the protein under investigation. The key idea is

that such structures, while reported on perhaps a different variant from the sequence under inves-



tigation, may serve as yet-to-be-discovered stable or semi-stable structures in the energy surface
of the sequence under investigation. In particular, the proposed EA extracts from such structures

information on the true dimensionality of the conformation space, its shape, and bounds.

We refer to the proposed algorithm as PCA-EA, as it uses a particular dimensionality reduction
technique, Principal Component Analysis (PCA), to extract and so define a reduced search space
from a collected set of experimentally-available structures for a protein under investigation. The
input to PCA-EA is a particular protein sequence as well as a collection of structures found in the
Protein Data Bank (PDB) (Berman et al., 2003) for that sequence and other variants of the protein.
The output is an ensemble of conformations that are local minima in the all-atom energy surface

of the input sequence.

The reduced search space allows PCA-EA to be computationally-efficient, as the algorithm draws
samples from a space of few collective variables as opposed to hundreds or thousands of variables
when using cartesian- or angular-based representations of protein chains. However, PCA-EA im-
plements multiscale modeling, as it lifts drawn samples from the reduced space to the all-atom con-
formation space, where all-atom conformations are mapped to nearby local minima in the all-atom
energy landscape. Other novel algorithmic components in PCA-EA allow it to delay convergence

to a particular basin and instead explore the breadth of the energy surface.

From an application point of view, this paper demonstrates the utility of an EA to advance modeling
and understanding of multi-basin proteins that exploit small or large structural displacements to
carry out complex biological functions. Three proteins are selected that exhibit motions as small
as 1.5A and as large as 13A. We demonstrate the ability of PCA-EA to advance knowledge on the

human Superoxide dismutase 1 (SOD1) enzyme, whose sequence mutations have been linked to



familial ALS (Conwit, 2006). Additional testing on multi-basin proteins exhibiting larger structural
displacements (of several angstroms), such as HIV-1 Protease and Calmodulin (CaM), suggests
PCA-EA is scalable and can map known structural states onto the energy landscape, even revealing

new ones.

The results presented here support the argument that the proposed algorithm extends the appli-
cability of EAs to more challenging but also more powerful molecular modeling settings beyond
de novo structure prediction that are of direct relevance to understanding disease. In particular,
PCA-EA makes the first steps towards answering the question of how sequence mutations affect
function in proteins involved in proteinopathies by providing the protein energy landscape as the

intermediate explanatory link in the relationship between protein sequence and function.



2. METHODS

As an EA, PCA-EA implements the key idea of evolving a population of samples or individual over
generations towards individuals of high fitness. In each generation, a subset or all of the individuals
are selected to serve as parents and subjected to reproductive operators. The resulting offspring
either replace parents or compete with all or a subset of them for survival. Survival is based on
a measure of fitness of each individual. Surviving individuals comprise the initial population for
the next generation. Typically, this process is repeated for a fixed number of generations or until
another stopping criterion is satisfied. The only population that is constructed through some other

mechanism is the first population that initializes the algorithm.

Several important algorithmic components need to be defined. First, a mechanism is needed
to construct the initial population. PCA-EA builds the initial population over a collection of
experimentally-available structures. Second, a determination needs to be made on how to represent
an individual. The choice of representation is directly related to the size and dimensionality of the
search space. Rather than employing variables based on cartesian coordinates or dihedral angles
of protein chains, PCA-EA employs collective variables that define a low-dimensional, reduced
search space. Namely, collected experimental structures are subjected to a linear dimensionality
reduction technique, PCA, to reveal the underlying axes of the search space. PCA-EA draws sam-
ples in this reduced space. Individuals are not structures but rather points in this reduced space
revealed by the PCA. Third, once the representation and search space are defined, reproductive
operators need to be specified to modify parents. PCA-EA makes use of asexual reproduction; that

is, the operator modifies one parent in the reduced space to obtain an offspring. Fourth, a selection



mechanism is needed to obtain a set of individuals from the parents and their offspring to define
the population for the next generation. The selection mechanism here is an overlapping one, where
offspring compete with parents. Competition is based on fitness, and all-atom energy is used here
to measure fitness. However, since individuals are not structures but points in the reduced space,
a multiscale procedure is defined to map an individual to an all-atom conformation. Moreover,
the procedure also improves the individual by mapping it to a conformation that is a nearby local
minimum in the all-atom energy surface. Finally, once fitness values are obtained for parent and
offspring, the selection mechanism ensures that offspring only compete with structurally-similar
parents so as to preserve offspring longer and avoid take-over of the population by a few fittest
parents; hence, retain structural diversity and avoid premature convergence. All these algorithmic

components of PCA-EA are shown in a diagram in Fig. 1.

We now describe each algorithmic component, starting with the reduced representation in sec-
tion 2.1, then the reproductive operator in section 2.2, the local improvement operator in sec-
tion 2.3, the selection operator in section 2.4, and the specification of the initial population in

section 2.5.

2.1. Representation of an Individual

Wildtype and variant structures of a protein of interest are extracted from the PDB. A consensus
length is defined (possibly by excising few termini amino acids); structures whose chains miss
internal amino acids are removed, and only variants with no more than a maximum number of
mutations are considered. Structures that pass these selection criteria are simplified to their CA
traces, discarding all other backbone and side-chain atoms. The CA traces are aligned to a refer-
ence trace (arbitrarily selected to be the first trace in the set) through an optimal superimposition

9



procedure typically employed to calculate least root-mean-square-deviation (IRMSD) McLachlan
(1972). The so-modified CA traces are then converted into atomic displacements by subtracting
from them the average CA trace over the aligned set. The purpose for this data preparation is to
capture internal structural fluctuations rather than differences due to rigid-body motions (transla-
tions and rotations in three-dimensional space). This data is stored in a matrix As;.,, where k is the
number of CA atoms (corresponding also to the number of amino acids in the protein sequence),

and #n is the number of structures collected.

A singular value decomposition of 1/ Vi =1- A is conducted to obtain 1 / Vn-1-A=U-X-VT.
The procedure employed to conduct this decomposition is the dgesvd routine in lapack Anderson
et al. (1990). The entire process described here, also referred to as PCA, essentially rotates the
data to reveal principal axes in order of the variance they preserve (projecting data onto an axis
reveals the variance captured by that axis). These axes, also referred to as principal components
(PCs), are 3k-dimensional vectors found in the columns of the U matrix. The X matrix contains
in its diagonal the singular value o; for each corresponding PC;. The dgesvd routine provides
the PCs in the order of largest to smallest singular value. The singular values o; are square roots
of eigenvalues e;, which measure the variance of the data when projected onto PC;. Analysis of
the eigenvalues allows selecting a subset of the PCs in the eigenvalue-sorted ordering to capture
a given accumulated variance. Namely, by sorting PCs from largest to smallest eigenvalue, one
represented as j-dimensional vectors of entries that are projections over PCy, ..., PC;. Typically,
PCA is considered effective if the top two PCs capture cumulatively more than 50% of the total
variance. PCA-EA employs a cutoff of 90% cumulative variance to determine the set of m PCs
that can be used as new search axes. That is, each individual in PCA-EA is an m-dimensional

10



point, with each element denoting the coordinate of the (CA trace) structure represented by that

individual on the m axes of the PC map/space.

This reduced representation improves the computational efficiency of the reproductive operator, as
typically m is much less than the number of variables that would have to be specified if cartesian
coordinates or dihedral angles were to be used. While PCA is not guaranteed to be an effective
reduction technique on all structure data, the reductions it provides are measurable over other vari-
ables that can be defined without specific insight onto a particular protein system at hand. While
PCA-EA uses PCA to find general collective variables for any protein with functional structures in
the PDB, other reduction techniques can be used. The algorithm can be used as a roadmap on how

to integrate such information in an evolutionary algorithm.

2.2. Reproductive Operator

Each of the N parents in a population are subjected to the reproductive operator to obtain N off-
spring. This operator perturbs a parent in a randomly drawn vector in the PC space, resulting in
an offspring. Specifically, the coordinates of an individual selected to serve as parent are perturbed
to obtain an offspring as follows. A maximum step size A, is defined. For each of the m coor-
dinates of the parent, a step size A; is sampled at uniform in [—Ayax, +Amax].- This is then scaled
Yar(PCj)

) Given that the

according to the variance captured by the axes/PCs, as in: Ajscaled = 4; - Var(PC)"

PCs are ordered from the highest to the lowest variance, the idea is to carry out larger perturba-
tions in the axes that capture more of the variance of the original structure data, thus preserving
the scaling (the shape of the search space). Given the step size obtained this way for each coordi-
nate of a parent individual, the corresponding coordinate PC; fspring Of its offspring is obtained as:
PCi oftspring = PCiparent + Aiscaled-

11



2.3. Fitness Evaluation and Local Improvement Operator

Once offspring are obtained, the objective of the local improvement operator is both to improve
their energetic profile and evaluate their fitness. Since the reproductive operator operates in a
reduced space, the offspring it obtains may correspond to an invalid, high-energy conformation. So,
first offspring are mapped to conformations and then energetic refinement of these conformations
is carried out. Since an offspring needs to first be mapped to a CA trace, then to a backbone, and
then to an all-atom conformation, the mapping operates over various scales. First, the CA trace
corresponding to an offspring o can be easily obtained as o - U + {trace), where the (trace) vector
contains the average CA trace (the latter is calculated as part of centering the data for PCA, as

described in section 2.1).

Once the CA trace corresponding to an offspring is obtained, a backbone can be easily recon-
structed. PCA-EA uses one of the top backbone reconstruction protocols, BBQ Gront et al. (2007).
Side chains then need to be packed onto a backbone conformation. Various side-chain packing pro-
tocols exist but many use simplistic energy functions. One of the top current protocols that uses
a state-of-the-art energy function is implemented as part of an energetic refinement in the relax
procedure in the Rosetta structure prediction package Kaufmann et al. (2010). Because this pack-
age is open-source and written in C/C++, the relax procedure easily interfaces with PCA-EA. The
procedure conducts a short Monte Carlo simulated annealing to obtain a local minimum confor-
mation in the all-atom energy surface. Moreover, it allows restricting motions of the backbone,
which we employ here in order to ensure that the resulting all-atom conformation corresponds to
the offspring that was subjected to the local improvement operator. The result of this process is not

only a local minimum all-atom conformation that is added to the PCA-EA recorded all-atom con-
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formation ensemble €, but also a fitness value for the ofsspring, measured as the scorel2 all-atom

energy of its corresponding all-atom conformation.

It is worth noting that while the reduced search space is the same for all variant sequences of a
protein under investigation, the local improvement operator associates a sequence-specific energy
surface with obtained all-atom conformations. Hence, the Q2 ensemble and associated scorel2
energies are different from different application of PCA-EA on variant sequences of a protein. It
is this feature that allows employing PCA-EA to compare energy surfaces of different variants of

a protein.

2.4. Local Selection Operator

PCA-EA employs an overlapping evolutionary model, where offspring compete with parents for
survival. However, instead of implementing a global/centralized selection operator, where off-
spring compete with all parents, PCA-EA employs a local/decentralized selection operator. The
objective of this operator is to limit competition so as to increase the likelihood that suboptimal
offspring will survive longer. In other words, the operator slows down take-over of a population
by a few fittest individuals, thus delaying convergence in the interest of obtaining a broad view of

the energy surface.

Competition is limited by allowing an offspring to compete only against structurally-similar par-
ents. Instead of employing expensive structure comparison techniques, such as IRMSD, a coarse
measure of structural similarity is estimated. Namely, all individuals, parent and offspring are pro-
jected onto the top two PCs. A grid is then laid over this map (also referred to as structurization

of the search space), and cells of a given size are then defined over the grid. Individuals can be

13



considered structurally-similar or neighbors if they fall in the same cell or if they fall within a
neighborhood of cells. An offspring is thus compared only to parents that fall in the same neigh-
borhood. In the event that no parents are in a given neighborhood, the offspring is compared to all

parents in the population.

Neighborhoods can be defined over the structurization through the use of a neighborhood size
parameter, C. The local selection operator compares an offspring only to parents in a given Cx
neighborhood, where x is a parameter. Part of our analysis in section 3 focuses on determining
an effective value for this parameter in a trade-off between preserving structural diversity (explo-
ration/breadth in search) and reaching regions of low energies (exploitation/depth in search). This
particular approach that PCA-EA employs to prevent premature convergence is also referred to as

the crowding approach to niching in EAs Mengshoel and Goldberg (2008).

2.5. Initial Population

CA traces of the collected experimentally-available structures are projected onto the top m PCs to
yield individuals that constitute the initial population. However, the number of obtained individuals
may be less than the desired size of a population. Therefore, more individuals need to be generated
to populate the initial population. Additional CA traces are “threaded” onto the sequence of interest
(this is the reason for a consensus length in the collection of structures from the PDB), projected
onto the top m PCs, and then subjected to the local improvement operator. The latter two steps
are repeated on randomly-drawn individuals (the Rosetta relax protocol is a stochastic simulated
annealing protocol, so different results are obtained) until the initial population reaches the desired
size N. Analysis in section 3 investigates the effect of various population sizes to determine an

effective one.
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3. RESULTS

3.1. Experimental Setup

3.1.1. Systems of Study. We investigate here 3 proteins, SOD1, HIV-I Protease, and CaM. On
SODI1 we investigate its WT sequence and three variants found in US and Asian populations.
On HIV1-Protease and CaM we study the WT sequence. We choose these proteins due to their
different sizes, from 99 to 150 amino acids and the availability of diverse structures in the PDB
(from slightly over 1A to 10A away in structure space). On each of these proteins we analyze
various aspects of the energy landscape reconstructed by PCA-EA, such as the location of known

and novel structures, as well as implications for function in disease-involved variants.

3.1.2. Data Collection. Only X-ray structures are collected from the PDB for HIV-I Protease.
For SOD1 and CaM, NMR solution structures are allowed to further enrich the collected set. The
WT sequence of each of these proteins is obtained from the UniProt Magrane and the UniProt
consortium (2011), and this sequence is used as reference to both define the sequence length and
limit the number of mutations among available variants (and thus structures collected) to no more
than 3. Any structures with missing internal amino acids are discarded. These criteria allow
collecting 254 structures for HIV1-Protease, 697 structures for CaM, and 186 structures for SODI.
All SOD1 structures are subjected to the PCA. For HIV-I Protease and CaM, a randomly-drawn
subset is removed prior to running PCA, reserving these structures for an analysis on whether
PCA-EA could reproduce them in its computed ensemble. So, 54 of the 254 collected structures of

HIV-I Protease and 197 of the 697 collected structures of CaM are removed and reserved for this
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analysis.

3.1.3. Implementation Details. PCA-EA is implemented in C/C++ and run on a 16 core red hat
linux box with 3.2GhZ HT Xeon CPU and 8GB RAM. Run time ranges from 35 to 67 hours for
protein chains ranging from 99 to 150 amino acids. Analysis below shows the effective population
size, and neighborhood parameter C. The algorithm is run for 100 generations, but convergence is
reached earlier on all systems. The parameter settings for each of the three protein systems studied

here are listed in Table 1.

The rest of this section is organized as follows. In the first part of our analysis, we focus on various
aspects of the algorithm, such as the effectiveness of the PCA, the impact of population size on
performance, and the impact of the neighborhood size on retaining structural diversity and avoiding
premature convergence. This analysis allows determining the effective values for the population
size and neighborhood size parameters reported in Table 1. The second part of the analysis focuses
on the results obtained by the algorithm on each of the three proteins selected here in their WT and
disease-variant forms. A detailed investigation is conducted of features of energy landscapes and

structural states obtained by PCA-EA.

3.2. Detailed Analysis of Parameter Value Selections in PCA-EA

3.2.1. Analysis of Variance to Determine Reduced Space. PCA is an effective dimensionality
reduction technique for each of the proteins considered here. Fig.2 draws the accumulation of
variance and shows that the top two PCs capture between 40% and 50% of the variance in the
original structure data. This is important, as the first two PCs are used to define the structurization
for the local selection operator. These two PCs are also used to project the PCA-EA ensemble on
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two dimensions and visualize the energy landscape reconstructed by PCA on each system. The
accumulation of variance analysis in Fig. 2 is also used to determine the number m of PCs for
the reduced search space over which the proposed EA operates. A cumulative variance of 90% is

reached at 25, 25, and 10 PCs for SOD1, HIV-I Protease, and CaM, respectively.

3.2.2. Analysis of Population Size in PCA-EA. A detailed analysis is conducted to determine
an effective population size for each system. Typically, in EAs for structure modeling of small-to-
medium size proteins, a population size in the hundreds is suggested Shehu (2013). Here we run
the algorithm with three different population sizes, 300, 400, and 500. We measure two quantities
to summarize the diversity (breadth) and energetic quality (depth) across generations. First, the
Euclidean distance in the m-dimensional space of PCs is measured between any two individuals in
a generation, and the average value is associated with a generation and plotted across generations.
Second, the average scorel2 value over all individuals in a generation is also recorded and plotted

across generations.

The progression of this Euclidean-based measure of structural diversity is shown in Fig. 3(al) for
one of the systems here, SODI, up to generation 50 (convergence is reached around generation
70 for this system). The progression of the energetic quality is shown in Fig. 3(b1) for the same
system. Fig. 3(al) shows that larger population sizes preserve structural diversity longer. This
observation aligns with the expected behavior of EAs, where a larger population affords a broader
view of the search space. Fig. 3(bl) also shows that larger population sizes reach lower-energy
values in the energy surface. Thus, a larger population size provide better breadth/exploration and
better depth/exploitation. Taken together, these results suggest that a population size of 500 is

advantageous, and this analysis justifies our selection of population size of 500 for the rest of the
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experiments and analysis in this paper.

3.2.3. Analysis of Neighborhood Size in Local Selection Operator. A detailed analysis has
been conducted to determine the neighborhood size, C, for the local selection operator (keeping
population size at 500). As before, the diversity and energetic quality of a generation are measured.
The progression of these two quantities over generations is shown in Fig. 3(a2)-(b2) on one of the
systems here that converges at generation 50. For comparison, in addition to the C9, C25, and
C49 neighborhoods, a run of PCA-EA with a global selection operator is also analyzed (in this
operator, an offspring competes with all parents, effectively having Ceo). Fig. 3(a2)-(b2) shows that
the global selection operator results in rapid drop in diversity. Out of the different neighborhoods
considered for the selection operator, in this particular system, either C25 or C49 are effective.
It is worth noting that more rapid loss in diversity of C9 in the later generations is due to the
lack of parents in particular neighborhoods. As PCA-EA starts converging, cells of the PC1-PC2
structurization become empty. In such cases, the local selection operator pitches an offspring
against all parents. This analysis on the effect of the neighborhood size is conducted on each of
the systems here (data not shown) to determine an effective value for the C parameter. The values

yielded by this analysis on each of these systems are shown in Table 1.

3.3. Analysis of Applications of PCA-EA on Protein Systems

We now proceed with a detailed analysis of the results of PCA-EA on each of the protein systems

considered here, starting with SOD1 WT and its variants.
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3.3.1. Analysis of PCA-EA on WT and Variant SOD1. Fig. 4(a) shows all collected SOD1
structures superimposed on the top two PCs. The projections are color-coded based on the se-
quence variants they represent. The PC map in Fig. 4(a) shows that PC1 separates the structures
into two clusters. On the right one finds structures reported for the WT and variant sequences, such
as H46R and A4V . On the left, one finds structures reported for the WT and variant sequences,
such as C1118S, L38YV, G37R, and I113T. Excluding the points labeled “Other” (mutations not an-
notated), the WT and G37R are two sequences for which structures are found in both clusters. In

particular, G37R seems to also occupy the middle of the plot.

The above observation on the organization of SOD1 functional structures is further supported by
the results drawn in Fig. 4(b), which shows a bimodal distribution of pairwise CA IRMSDs between
all collected structures. These results are in full agreement with experimental studies, where SOD1
is shown to switch between an apo and holo structural state Strange et al. (2003), which we refer

to here as A and B from now on.

The PC1-PC2 projection of experimentally-available functional structures for SOD1 in Fig. 4(a)
suggests that only the WT has been captured to access both structural states richly in the wet
laboratory. However, other variants may have access to more structures than what is documented
in the PDB. Energy landscapes need to be reconstructed. Therefore, PCA-EA is applied to the WT
and then to three other variants. These variants include A4V (an alanine in position 4 in the WT
is replaced with valine in this variant), which is the US-dominant ALS-causing variant, and two
other variants, G37R and H46R, that are predominantly reported in Asia but are less understood

with regards to pathogeneicity.

PCA-EA is applied to each of these four sequences to obtain four different conformation ensem-
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bles. Conformations in each ensemble are analyzed in terms of their scorel2 energy values. Only
conformations with scorel2 values no higher than —200 units are retained as functional conforma-
tions. This threshold is set by observing the variance of scorel2 values of SOD1 experimentally-
available structures that are threaded onto the WT sequence and are subjected to the relax pro-
cedure. The maximum obtained scorel2 value is around —200 kcal/mol. Therefore, this value is

considered the maximum at which a conformation can be determined functional/relevant.

An energy landscape is obtained with each subset of retained/functional conformations as follows.
The landscape for each sequence is a projection of the energy surface (only of functional con-
formations) obtained by PCA-EA over the top two PCs for the purpose of visualization. This
two-dimensional projection of the space of functional conformations is color-coded as follows. A
grid is overlaid with cells of size 1. A cell is colored by the median scorel2 value of the confor-
mations that project to it. The bilinear interpolation in the imshow python utility is employed for
this purpose. The color bar shows not the range of absolute scorel2 energy values but instead the

difference from the highest-energy value.

Fig. 5 shows the four energy landscapes thus constructed for each of the SOD1 sequences.

The Sodl WT energy landscape shows two well-defined energy basins, labeled A and B (which
correspond to the organization of experimentally-available structures in Fig. 4(a)), with a signif-
icant energy barrier in between. Some lower-energy regions break the barrier, suggesting that
lower-energy paths can connect the two structural states A and B. The presence of these paths
through the barrier, coupled with the slow gradient between the bottom of each of the basins and
the energy barrier, may aid in a carefully-timed transition of SOD1 WT from one structural state

to the other.
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In comparison, the Sod1 A4V landscape has lost the well-defined energy basins observed in the WT
but also has a lower-energy barrier between the two states. Compared to the WT, this barrier is not
only lower in energy but also less substantial. This indicates that Sod1 A4V is able to switch more
rapidly between the two structural states A and B through more low-energy structures, essentially
being more unstable than the WT and so exhibiting a toxic gain of function. This conclusion seems
to provide the structural basis for observations made in the wet laboratory, where the A4V variant
has been found to have a higher tendency to engage in aggregation DiDonato et al. (2003); Hough

et al. (2004); Ratovitski et al. (1999).

The two other variants, G37R and H46R, have rather similar landscapes; both show a rise of the A
and B basins and a widening of the energy barrier. This makes it difficult to understand what the
effects of these mutations are on the stability of SOD1. On the one had, the rise of the basins would
cause the transition rate to increase. However, a denser and higher energy barrier would cause a
decrease in the transition rate. Taken all together, the variants may have similar transition rates to
the WT. This is in agreement with what is found in the current literature, where H46R is reported
to maintain about 80% of its activity as in the WT (http://www.uniprot.org/uniprot/P00441). These
two variants, while reported in the Asian population, are not found to cause ALS in the US popula-
tion. Further research that goes beyond the single-chain analysis here may be needed to understand

the possible cause of toxicity in these two variants in the Asian population.

3.3.2. Analysis of PCA-EA on HIV-I Protease. Out of the 254 structures collected from the
PDB for HIV-I Protease, 54 drawn at random are withheld from the PCA. Regions on structure
that are most affected and undergo large structural displacements along each of the top two PCs are

illustrated on a selected structure and shown in Fig. 6(a)-(b). The displacements along PC1 affect

21



largely the same regions as the displacements along PC2. Displacement along PC1 corresponds to
the vertical (open-close) motion of the top flaps that surround the active site. Displacement along
PC2 corresponds to the orthogonal, horizontal movement of the flaps surrounding the active site
(data not shown). This is in agreement with other PCA-based analysis in Teodoro and Kavraki

(2003) (of structures obtained via MD) of the structural flexibility of HIV-I Protease.

Fig. 7(a) shows all 254 structures collected for HIV-1 Protease from the PDB projected on the top
two PCs. The projections are color-coded, with orange indicating the 200 structures subjected to
PCA and blue indicating the 54 structures withheld from the PCA. The distribution of structures

in the reduced PC-based space in Fig. 7(a) shows no distinct organization of structural states.

The distribution of pairwise CA IRMSDs between all collected structures of HIV-I Protease in
Fig. 7(b) shows a unimodal distribution with a maximum pairwise CA IRMSD of 1.4A. Taken
together, these results suggest that HIV-1 Protease has a wide basin, with a range of a structures

that are thermodynamically-available to the WT sequence.

PCA-EA is applied to the HIV-I Protease WT sequence, and a subset of functional conformations is
selected based on an energy threshold observed as the maximum energy value of experimentally-
available functional structures after being subjected to the relax protocol. As described above
for SOD1, an energy landscape can be associated with such conformations and visualized. The
landscape is shown in Fig. 8. A broad region is associated with low energies, which reflects the
fact that PCA-EA has obtained a wide range of functional conformations of comparable energies.
Given that HIV-I Protease has a fast mutation rate and yet forms stable monomers (decoupled
from its dimerization in the enzyme active state), these findings point to the conclusion that the

landscape has indeed a wide basin. It is worth noting that these observations are only relevant
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for the monomeric unit of the naturally-occurring dimer, to which PCA-EA is limited. The PDB
structures for HIV-I Protease are projected over the landscape. The structures withheld from the
PCA are drawn as gray triangles, whereas those used by the PCA are drawn as black circles. The
locations of these structures are on the landscape, including those not used by the PCA, which
suggests PCA-EA captures the functional structures not used to define its reduced search space.
Many of the functional structures deposited in the PDB are on the broad basin reported by PCA-
EA for HIV-I Protease, but there are structures (including those documented for the WT in the
PDB) in regions associated with higher energies by PCA-EA. This suggests that either PCA-EA
has not fully explored these regions or that it has indeed found lower-energy functional structures

in regions of the structure space not yet probed in the wet laboratory.

3.3.3. Analysis of PCA-EA on CaM. CaM demonstrates the ability of PCA-EA to reconstruct
landscapes of proteins with multiple structural states more than 13A apart (pairwise CA IRMSD
between structures with PDB ids 1CLL and 2F3Y is 13.441&). As shown in the accumulation of
variance analysis above, due to these large concerted structural changes, only 10 PCs are needed
to capture *x90% of the variance for CaM. The structural displacements along PC1 and PC2 are
shown in Fig. 9(a)-(b), respectively. The largest displacements along PC1 include the long a-helix
connecting the two structurally-similar domains in CaM; motions along PC1 capture folding and
unfolding of this helix that brings the two N- and C-termini domains close to or far away from
each-other. Motions along PC2 do not include the helix and capture primarily motions of the N-
and C-terminal domains. These findings are in agreement with other studies, which show that
the structural variability in CaM is localized to folding and unfolding of the connecting helix that

regulates concerted motions between the N- and C-termini domains Shehu et al. (2009).
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Fig. 10(a) shows all collected CaM structures superimposed on the top two PCs. The projections
are color-coded, with blue indicating the structures subjected to PCA and green indicating the
structures withheld from the PCA. The distribution of structures in the reduced space in Fig. 10(a)
shows the existence of several distinct structural states. In particular, two regions of the space seem
well-probed in the wet laboratory, those that correspond to the structural states captured under PDB

id 2F3Y and INWD.

The distribution of pairwise CA IRMSDs between all collected structures of CaM, shown in
Fig. 10(b), supports the existence of multiple well-defined structural states, showing a multimodal
distribution with a maximum pairwise CA IRMSD of over 20A. This analysis suggests that multi-

ple basins are expected to be found in the CaM energy landscape.

Fig. 11(a) summarizes the CaM WT energy landscape reconstructed by PCA-EA by projecting the
subset of functional conformations obtained by PCA-EA on the top two PCs. Projections of all
PDB-collected structures used by the PCA and those withheld from it are shown on the landscape.
The structures used by PCA-EA are drawn as black circles, whereas those withheld are drawn as

gray triangles.

Fig. 11(a) shows a complex landscape with multiple low-energy regions. In particular, two broad
basins are found. One, the deepest corresponds well to the ligand-bound state of CaM (PDB id
2F3Y). The other broad, but not as deep basin corresponds to the protein-bound state (the structure
reported under PDB id INWD, which is found bound to the a dimer of glutamate decarboxylase C-
termini Yap et al. (2003)). The CaM WT landscape shows a third group of higher-energy structures
not in a well-defined basin. These include the two structures that represent the calcium-bound

and calcium-free (apo) states of CaM, labeled in Fig. 11(b1)-(b2) by PDB ids 1CLL and 1CFD,
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respectively. This suggests a bias in Rosetta towards compact conformations.

The CaM WT landscape obtained by PCA-EA allows drawing several more conclusions. The
superimposition of the withheld structures shows that the ligand-bound structures of CaM are ac-
tually shifted in the structure space by about 7A. Fig. 11(b1) renders functional conformations
found by PCA-EA that are in this basin and superimposes them over the wet-lab structure under
PDB id 2F3Y. The conformations are of the same topology as the structure under PDB id 2F3Y,
which confirms that the Rosetta energy landscape retains the overall topology of the ligand-bound
state, and the shift is due to structural fluctuations in loops and termini. The functional conforma-
tions obtained by PCA-EA that are in the next broad basin are also shown, superimposed on the
wet-lab structure with PDB id INWD in Fig. 11(b2). There is higher structural variability in this
basin, but the overall topology is closed. Inspection of all collected wet-lab structures that map
to the location of this second-deepest basin (data not shown) reveals that this basin captures all

protein-bound structures of CaM, including that with PDB id INWD.
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4. DISCUSSION

This paper has proposed a novel stochastic optimization algorithm, PCA-EA, to explore the confor-
mation space of dynamic proteins with complex energy surfaces. The algorithm reveals stable and
semi-stable structural states of a given protein sequence by reconstruction of the energy landscape.
Computational cost is controlled by leveraging information contained in experimentally-available
structures of WT and variant forms of a protein. In particular, dimensionality reduction is em-
ployed to extract from such structures collective variables to define a reduced search space. The
algorithm contains several novel components, including a local selection operator to avoid prema-

ture convergence to any particular region in the conformation space.

The analysis of applications of PCA-EA in this paper indicates that the algorithm is able to pro-
vide a link between sequence mutations and changes in function through the energy landscape, as
demonstrated by comparison of the energy landscapes it reconstructs on the WT and three disease-
involved variants of SOD1. PCA-EA is also scalable and able to explain relationships between
known structural states of proteins, such as CaM, where experimentally-probed functional struc-

tures can be more than 10A away from one another.

The results presented here are promising and suggest that further algorithmic research in EA-based
exploration of protein conformation spaces is well warranted. Several directions of future work can
be considered. An interesting direction concerns employing PCA-EA as a roadmap on how to in-
tegrate dimensionality reduction in search but considering different techniques that do not suffer
the linearity limitation of PCA. Such techniques may reveal even lower-dimensional search spaces,

but they must allow directly sampling in the reduced space. The latter is a key feature for any con-
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formational search algorithm. Finally, as some of the results on CaM have suggested, there may be
distinct biases in specific energy functions. It is possible, for instance, that the differences between
the two deepest basins revealed by PCA-EA on CaM may be less striking when another energy
function is employed, or that the other known states are indeed in basins of their own. Considering
different energy functions is important, but this also increases computational demands, particularly
when considering that some of the most popular physics-based force fields implemented as part of
MD simulation software packages are not yet easily integrateable in conformational search algo-
rithms written by researchers. It is expected that improvements in these packages to this end will
facilitate comprehensive analysis and strengthen the applicability of powerful stochastic optimiza-

tion methods for protein structure modeling.
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Table 1: PARAMETER VALUES in our EA

System Amax Cell Size C Pop Size
SOD1 2 2x72 49 500
HIV-1 Protease 1 Ix1 49 500
CaM 10 10 x 10 25 500
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DIAGRAM OF ALGORITHM
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Fig. 1: Diagram shows all algorithmic components in PCA-EA.
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2.

ACCUMULATION OF VARIANCE ANALYSIS
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Fig. 2: The accumulation of variance is shown here. The red horizontal line shows the 90% cutoft.
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3.

POPULATION AND NEIGHBORHOOD SIZE ANALYSIS
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Fig. 3: Left panel: The average pairwise Euclidean distance in the m-dimensional PC space is

computed over individuals in a generation and tracked across generations. Right panel: The aver-

age fitness is computed over individuals in a generation and tracked across generations. (al)-(bl)

Three settings are compared, varying the population size from 300 to 400 to 500. (a2)-(b2) Fixing

population size to 500, neighborhood size is varied from C9, C25, C49, and Cco (global).
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4.
ANALYSIS OF SOD1 CRYSTAL STRUCTURES
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Fig. 4: (a) A projection is shown of all structures collected from the PDB for HIV-I Protease on the
top two PCs. Projections of structures available for WT and selected variants are drawn in different
colors. The PC1-PC2 map of SOD1 experimentally-available structures shows two distinct clusters
separated by PC1. (b) The distribution of pairwise CA IRMSDs among all structures collected from
the PDB for SOD1 is bimodal. Kernel density estimation is employed to estimate the probability

density function of pairwise IRMSD.
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5. ENERGY LANDSCAPES OF SOD1 VARIANTS
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highest-energy value.
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6.

DISPLACEMENTS OF HIV-I ALONG PC1 AND PC2

Fig. 6: (a)-(b) Regions undergoing displacements along PC1 in (a) and along PC2 in (b) are shown
on a selected structure for HIV-I Protease. The coordinates in each PC are used to indicate dis-
placements. A red-to-blue color scheme is used to indicate large-to-small displacements. Chain

thickness is also used to indicate larger displacements.
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7.
ANALYSIS OF HIV-I CRYSTAL STRUCTURES
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Fig. 7: (a) A projection is shown of all structures collected from the PDB for HIV-1 Protease
on the top two PCs. Projections of structures used to obtain the PCs through PCA are drawn in
blue. Projections of structures withheld from the PCA are drawn in orange. (b) The distribution of
pairwise CA IRMSDs among all structures collected for HIV-I Protease from the PDB is unimodal.

Kernel density estimation is employed to estimate the probability density function of pairwise

IRMSD.
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8.
HIV-I ENERGY LANDSCAPE
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Fig. 8: Obtained energy landscape for HIV-I Protease WT. The color bar shows not the range
of absolute scorel2 energy values but instead the difference from the highest-energy value. The
structures withheld from PCA are projected on the top two PCs and color-coded as gray triangles.

The structures used by PCA are color-coded as black circles.
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9.
DISPLACEMENTS OF CAM ALONG PC1 AND PC2

Fig. 9: (a)-(b) Regions undergoing structural displacements along PC1 in (a) and along PC2 in (b)
are illustrated on a selected CaM structure (PDB id 1CFD). The coordinates in each PC are used
to indicate displacements. A red-to-blue color scheme is used to indicate large-to-small displace-

ments. Chain thickness is also used to indicate larger displacements.
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10.
ANALYSIS OF CAM CRYSTAL STRUCTURES
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Fig. 10: (a) A projection is shown of all structures collected from the PDB for CaM on the top two
PCs. Projections of structures used to obtain the PCs through PCA are drawn in blue. Projections
of structures withheld from the PCA are drawn in orange. Four well-studied functional states of
CaM, represented by structures with PDB ids 1CLL, 1CFD, 2F3Y, and INWD are annotated on
the PC1-PC2 map. (b) The distribution of pairwise CA IRMSDs between structures collected from
the PDB for CaM is multimodal. Kernel density estimation is employed to estimate the probability

density function of pairwise IRMSD.
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11.
CAM ENERGY LANDSCAPE AND SELECTED STATES
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Fig. 11: (a) The population of functional conformations generated by PCA-EA for CaM WT is
shown projected on the top two PCs and color-coded by Rosetta scorel12 energy values. The color
bar shows the difference from the highest-energy value. The 197 structures withheld from PCA
are projected on the top two PCs and color-coded as gray triangles. The structures used by PCA
are color-coded as black circles. (bl) Structures in the deepest basin revealed by the EA and
corresponding to the closed ligand-bound state are superimposed (drawn in gray and transparent)
over the representative closed ligand-bound structure of CaM (PDB id 2F3Y, drawn in opaque red).
(b2) Structures in the next deepest basin revealed by the EA and corresponding to another closed
state of CaM (drawn in gray and transparent) are superimposed (drawn in gray and transparent)

over a protein-bound state of CaM (PDB id INWD, drawn in opaque red).
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