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Physical Agents are Inherently 
Uncertain

 Uncertainty arises from four major 
factors:
 Environment stochastic, unpredictable
 Robot stochastic
 Sensor limited, noisy
 Models inaccurate



Example: Museum Tour-Guide 
Robots

Rhino, 1997 Minerva, 1998



Technical Challenges
 Navigation

 Environment crowded, unpredictable
 Environment unmodified
 “Invisible” hazards
 Walking speed or faster
 High failure costs

 Interaction
 Individuals and crowds
 Museum visitors’ first encounter
 Age 2 through 99
 Spend less than 15 minutes



Nature of Sensor Data

Odometry Data Range Data



Nature of Sensor Data

Odometry Data Range Data



Probabilistic Techniques for 
Physical Agents

Key idea: Explicit representation of 
uncertainty using the calculus of 
probability theory

Perception = state estimation
Action = utility optimization



Advantages of Probabilistic 
Paradigm

 Can accommodate inaccurate models
 Can accommodate imperfect sensors
 Robust in real-world applications
 Best known approach to many hard 

robotics problems



Pitfalls

 Computationally demanding
 False assumptions
 Approximate



Outline

 Introduction
 Probabilistic State Estimation
 Robot Localization
 Probabilistic Decision Making

 Planning
 Between MDPs and POMDPs
 Exploration

 Conclusions



Pr(A) denotes probability that proposition A is true.

  



 
  

Axioms of Probability Theory
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A Closer Look at Axiom 3
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Using the Axioms
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Discrete Random Variables

 X denotes a random variable.

 X can take on a finite number of values in 
{x1, x2, …, xn}.

 P(X=xi), or P(xi), is the probability that the 
random variable X takes on value xi. 



Continuous Random Variables

 X takes on values in the continuum.

 p(X=x), or p(x), is a probability density 
function.

 E.g.
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Joint and Conditional Probability

 P(X=x and Y=y) = P(x,y)

 If X and Y are independent then 
P(x,y) = P(x) P(y)

 P(x | y) is the probability of x given y
P(x | y) = P(x,y) / P(y)
P(x,y)   = P(x | y) P(y)

 If X and Y are independent then
P(x | y) = P(x)



Law of Total Probability, Marginals
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Bayes Formula

evidence

prior likelihood
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Normalization
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Conditioning

 Total probability:

 Bayes rule and background knowledge:
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Simple Example of State Estimation

 Suppose a robot obtains measurement z
 What is P(open|z)?



Causal vs. Diagnostic Reasoning

 P(open|z) is diagnostic.
 P(z|open) is causal.
 Often causal knowledge is easier to 

obtain.
 Bayes rule allows us to use causal 

knowledge:
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Causal vs. Diagnostic Reasoning

 P(open|z) is diagnostic.
 P(z|open) is causal.
 Often causal knowledge is easier to 

obtain.
 Bayes rule allows us to use causal 

knowledge:
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count frequencies!



Example

 P(z|open) = 0.6 P(z|¬open) = 0.3
 P(open) = P(¬open) = 0.5

P(open | z) = ?



Example

 P(z|open) = 0.6 P(z|¬open) = 0.3
 P(open) = P(¬open) = 0.5

67.0
3

2

5.03.05.06.0

5.06.0
)|(

)()|()()|(

)()|(
)|(

==
⋅+⋅

⋅=

¬¬+
=

zopenP

openpopenzPopenpopenzP

openPopenzP
zopenP

• z raises the probability that the door is open.



Combining Evidence

 Suppose our robot obtains another 
observation z2.

 How can we integrate this new 
information?

 More generally, how can we estimate
P(x| z1...zn )?



Recursive Bayesian Updating
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Recursive Bayesian Updating
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Markov assumption: zn is independent of z1,...,zn-1 if 
we know x.



Recursive Bayesian Updating
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Example: Second Measurement 

 P(z2|open) = 0.5 P(z2|¬open) = 0.6

 P(open|z1)=2/3

P(open | z2, z1) = ?



Example: Second Measurement 

 P(z2|open) = 0.5 P(z2|¬open) = 0.6

 P(open|z1)=2/3
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• z2 lowers the probability that the door is open.



Actions

 Often the world is dynamic since
 actions carried out by the robot,
 actions carried out by other agents,
 or just the time passing by

change the world.

 How can we incorporate such 
actions?



Typical Actions

 The robot turns its wheels to move
 The robot uses its manipulator to grasp 

an object
 Plants grow over time…

 Actions are never carried out with 
absolute certainty.

 In contrast to measurements, actions 
generally increase the uncertainty. 



Modeling Actions

 To incorporate the outcome of an 
action u into the current “belief”, we 
use the conditional pdf 

P(x|u,x’)

 This term specifies the pdf that 
executing u changes the state 
from x’ to x.



Example: Closing the door



State Transitions

P(x|u,x’) for u = “close door”:

If the door is open, the action “close 
door” succeeds in 90% of all cases.

open closed0.1 1

0.9

0



Integrating the Outcome of Actions

P( x∣u )=∫P ( x∣u,x' ) P( x' )dx'

P( x∣u )=∑ P ( x∣u,x' )P ( x' )

Continuous case:

Discrete case:



Example: The Resulting Belief

P(closed∣u )=∑ P(closed∣u,x' )P ( x' )
=P(closed∣u,open )P (open )
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Bayes Filters: Framework

 Given:
 Stream of observations z and action data u:

 Sensor model P(z|x).
 Action model P(x|u,x’).
 Prior probability of the system state P(x).

 Wanted: 
 Estimate of the state X of a dynamical system.
 The posterior of the state is also called Belief:
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Markov Assumption

Underlying Assumptions
 Static world
 Independent noise
 Perfect model, no approximation errors
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Bayes Filters
z  = observation
u  = action
x  = state
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Bayes Filters
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z  = observation
u  = action
x  = state
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Bayes Filters
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Bayes Filters

),,,|(),,,,|( 121121 −−= ttttt uzuxPuzuxzP ηBayes

z  = observation
u  = action
x  = state

Markov ),,,|()|( 121 −= tttt uzuxPxzP η

11211

1121

),,,|(

),,,,|()|(

−−−

−−∫=

ttt

ttttt

dxuzuxP

xuzuxPxzP



ηTotal prob.



),,,|()( 121 tttt zuzuxPxBel −= 

Bayes Filters

),,,|(),,,,|( 121121 −−= ttttt uzuxPuzuxzP ηBayes

z  = observation
u  = action
x  = state

Markov ),,,|()|( 121 −= tttt uzuxPxzP η

Markov
1121111 ),,,|(),|()|( −−−−−∫= tttttttt dxuzuxPxuxPxzP η

11211

1121

),,,|(

),,,,|()|(

−−−

−−∫=

ttt

ttttt

dxuzuxP

xuzuxPxzP



ηTotal prob.



1111 )(),|()|( −−−−∫= ttttttt dxxBelxuxPxzPη

),,,|()( 121 tttt zuzuxPxBel −= 

Bayes Filters
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Bayes Filters
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z  = observation
u  = action
x  = state
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Bayes Filter Algorithm 

•  Algorithm Bayes_filter( Bel(x),d ):
•  η=0

•  if d is a perceptual data item z then
•      For all x do
•  
•  
•      For all x do
•  

•  else if d is an action data item u then
•      For all x do
•  

•  return Bel’(x)      

)()|()(' xBelxzPxBel =
)(' xBel+=ηη

)(')(' 1 xBelxBel −=η
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Bayes Filters are Familiar!

 Kalman filters
 Particle filters
 Hidden Markov models
 Dynamic Bayes networks
 Partially Observable Markov Decision 

Processes (POMDPs)

1111 )(),|()|()( −−−−∫= tttttttt dxxBelxuxPxzPxBel η



Application to Door State 
Estimation

 Estimate the opening angle of a door
 and the state of other dynamic objects
 using a laser-range finder
 from a moving mobile robot and
 based on Bayes filters.



Result



Lessons Learned

 Bayes rule allows us to compute 
probabilities that are hard to assess 
otherwise.

 Under the Markov assumption, 
recursive Bayesian updating can be 
used to efficiently combine evidence.

 Bayes filters are a probabilistic tool for 
estimating the state of dynamic 
systems.



Tutorial Outline

 Introduction
 Probabilistic State Estimation
 Localization



The Localization Problem

 Given 
 Map of the environment.
 Sequence of sensor measurements.

 Wanted
 Estimate of the robot’s position.

 Problem classes
 Position tracking
 Global localization
 Kidnapped robot problem (recovery)

“Using sensory information to locate the robot 
in its environment is the most fundamental 
problem to providing a mobile robot with 
autonomous capabilities.”                 [Cox ’91]



Representations for Bayesian 
Robot Localization

Discrete approaches (’95)
• Topological representation (’95)

• uncertainty handling (POMDPs)
• occas. global localization, recovery

• Grid-based, metric representation (’96)
• global localization, recovery

Multi-hypothesis (’00)
• multiple Kalman filters
• global localization, recovery

Particle filters (’99)
• sample-based representation
• global localization, recovery

Kalman filters (late-80s?)
• Gaussians
• approximately linear models
• position tracking

AI

Robotics



Localization with Bayes Filters
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Localization with Bayes Filters
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Localization with Bayes Filters
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Localization with Bayes Filters
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Localization with Bayes Filters
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Localization with Bayes Filters
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Motion: 

Perception:

… is optimal under the Markov assumption
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What is the Right Representation?

 Kalman filters

 Multi-hypothesis tracking

 Grid-based representations

 Topological approaches

 Particle filters



Gaussians
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Kalman Filters

Estimate the state of processes that are 
governed by the following linear 
stochastic difference equation.

The random variables vt and wt represent 
the process measurement noise and are 
assumed to be independent, white and 
with normal probability distributions. 

x t+1 =Ax t +But +v t

zt =Cx t +w t



[Schiele et al. 94], [Weiß et al. 94], 
[Borenstein 96], 

[Gutmann et al. 96, 98], [Arras 98]

Kalman Filters



[Schiele et al. 94], [Weiß et al. 94], 
[Borenstein 96], 

[Gutmann et al. 96, 98], [Arras 98]

Kalman Filters



[Schiele et al. 94], [Weiß et al. 94], 
[Borenstein 96], 

[Gutmann et al. 96, 98], [Arras 98]

Kalman Filters



[Schiele et al. 94], [Weiß et al. 94], 
[Borenstein 96], 

[Gutmann et al. 96, 98], [Arras 98]

Kalman Filters



Kalman Filter Algorithm 

•  Algorithm Kalman_filter( <µ,Σ>, d ):

•  If d is a perceptual data item z then
•       
•      
•  

•  Else if d is an action data item u then
•      
•  

•  Return <µ,Σ>     

Σ−=Σ )( KCI

( ) 1−Σ+ΣΣ= obs
TT CCCK
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Non-linear Systems

 Very strong assumptions:
 Linear state dynamics
 Observations linear in state

 What can we do if system is not linear?
 Linearize it: EKF
 Compute the Jacobians of the dynamics 

and observations at the current state.
 Extended Kalman filter works surprisingly 

well even for highly non-linear systems.



 [Gutmann et al. 96, 98]:

 Match LRF scans against map

 Highly successful in RoboCup mid-size league 

Kalman Filter-based Systems (1)

Courtesy of S. Gutmann



Kalman Filter-based Systems (2)

Courtesy of S. Gutmann



 [Arras et al. 98]: 

 Laser range-finder and vision

 High precision (<1cm  accuracy)

Kalman Filter-based Systems (3)

Courtesy of K. Arras



Localization Algorithms - Comparison

Kalman 
filter

Sensors Gaussian

Posterior Gaussian

Efficiency (memory) ++

Efficiency (time) ++

Implementation +

Accuracy ++

Robustness -

Global 
localization

No



[Cox 92], [Jensfelt, Kristensen 99]

Multi-
hypothesis
Tracking



 Belief is represented by multiple hypotheses

 Each hypothesis is tracked by a Kalman filter

 Additional problems:

 Data association: Which observation 

corresponds to which hypothesis?

 Hypothesis management: When to add / delete 

hypotheses?

 Huge body of literature on target tracking, motion 

correspondence etc. 

Localization With MHT

See e.g. [Cox 93]



 [Jensfelt and Kristensen 99,01]

 Hypotheses are extracted from LRF scans
 Each hypothesis has probability of being the 

correct one: 

 Hypothesis probability is computed using Bayes’ 
rule

 Hypotheses with low probability are deleted 

 New candidates are extracted from LRF scans

MHT: Implemented System (1)
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MHT: Implemented System (2)

Courtesy of P. Jensfelt and S. Kristensen



MHT: Implemented System (3)
Example run

Map and trajectory

# hypotheses

Hypotheses vs. time

P(Hbest)

Courtesy of P. Jensfelt and S. Kristensen



Localization Algorithms - Comparison

Kalman 
filter

Multi-hypot
hesis 

tracking

Sensors Gaussian Gaussian

Posterior Gaussian Multi-modal

Efficiency (memory) ++ ++

Efficiency (time) ++ ++

Implementation + o

Accuracy ++ ++

Robustness - +

Global 
localization

No Yes



[Burgard et al. 96,98], [Fox et al. 99], 
[Konolige et al. 99]

Piecewise 
Constant



Piecewise Constant 
Representation

),,( >=< θyxxbel t



Grid-based Localization



Tree-based Representations (1)

Idea: Represent density using a variant of Octrees



Tree-based Representations (2)

 Efficient in space and time
 Multi-resolution



Localization Algorithms - Comparison

Kalman 
filter

Multi-hypot
hesis 

tracking

Grid-based
(fixed/variable)

Sensors Gaussian Gaussian Non-Gaussian

Posterior Gaussian Multi-modal Piecewise 
constant

Efficiency (memory) ++ ++ -/+

Efficiency (time) ++ ++ o/+

Implementation + o +/o

Accuracy ++ ++ +/++

Robustness - + ++

Global 
localization

No Yes Yes



Localization Algorithms - Comparison

Kalman 
filter

Multi-hypot
hesis 

tracking

Grid-based
(fixed/variable)

Topological
maps

Sensors Gaussian Gaussian Non-Gaussian Features

Posterior Gaussian Multi-modal Piecewise 
constant

Piecewise 
constant

Efficiency (memory) ++ ++ -/+ ++

Efficiency (time) ++ ++ o/+ ++

Implementation + o +/o +/o

Accuracy ++ ++ +/++ -

Robustness - + ++ +

Global 
localization

No Yes Yes Yes



 Represent density by random samples

 Estimation of non-Gaussian, nonlinear processes

 Monte Carlo filter, Survival of the fittest, 
Condensation, Bootstrap filter, Particle filter

 Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]

 Computer vision: [Isard and Blake 96, 98] 

 Dynamic Bayesian Networks: [Kanazawa et al., 95]

Particle Filters



Monte Carlo Localization (MCL) 
Represent Density Through Samples



Weight samples: 
g

f
w =

Importance Sampling



MCL: Global Localization



MCL: Sensor Update
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 MCL: Robot Motion
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MCL: Robot Motion
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1.  Algorithm particle_filter( St-1, ut-1 zt):

2.  

3.  For                                                Generate new samples

 Sample index j(i) from the discrete distribution given by wt-1

1.  Sample     from                         using          and

2.             Compute importance weight

3.             Update normalization factor

4.              Insert

5.  For 

6.  Normalize weights

Particle Filter Algorithm
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draw xi
t−1 from Bel(xt−1)

draw xi
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Importance factor for xi
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Particle Filter Algorithm



Resampling

 Given: Set S of weighted samples.

 Wanted : Random sample, where the 
probability of drawing xi is given by wi.

 Typically done n times with replacement to 
generate new sample set S’.



1.  Algorithm systematic_resampling(S,n):

1.  

2.  For     Generate cdf
3.   
4.           Initialize threshold

1.  For    Draw samples …
2.                  Advance threshold
3.  While (            ) Skip until next threshold reached
4.       
5.                Insert

1.  Return S’

Resampling Algorithm

1
1,' wcS =∅=
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Also called stochastic universal sampling



Motion Model  p(xt | at-1, xt-1)

Model odometry error as Gaussian noise on  α, β, and δ



Start

Motion Model  p(xt | at-1, xt-1)



Model for Proximity Sensors 

The sensor is reflected either by a known or by an
unknown obstacle:

Laser sensor Sonar sensor









































Recovery from Failure

 Problem: 
 Samples are highly concentrated during tracking
 True location is not covered by samples if 

position gets lost

 Solutions:
 Add uniformly distributed samples [Fox et al., 99]

 Draw samples according to observation density 
[Lenser et al.,00; Thrun et al., 00]

          



MCL: Recovery from Failure

[Fox et al. 99]



The RoboCup 
Challenge

 Dynamic, adversarial environments

 Limited computational power

 Multi-robot collaboration

 Particle filters allow efficient localization
[Lenser et al. 00]



Using Ceiling Maps for 
Localization

[Dellaert et al. 99]



Vision-based Localization

P(s|x)

h(x)
s



Under a Light

Measurement: Resulting density:



Next to a Light

Measurement: Resulting density:



Elsewhere

Measurement: Resulting density:



MCL: Global Localization Using Vision



Vision-based Localization

Odometry only:

Vision: Laser:



Localization for AIBO robots



Adaptive Sampling



MCL: Adaptive Sampling (Sonar)



MCL: Adaptive Sampling (Laser)



Performance Comparison

Monte Carlo localizationGrid-based localization



Particle Filters for Robot  
Localization (Summary)

 Approximate Bayes Estimation/Filtering
 Full posterior estimation
 Converges in O(1/√#samples) [Tanner’93]
 Robust: multiple hypotheses with degree of 

belief
 Efficient in low-dimensional spaces: focuses 

computation where needed
 Any-time: by varying number of samples
 Easy to implement           



Localization Algorithms - Comparison

Kalman 
filter

Multi-hypot
hesis 

tracking

Topological
maps

Grid-based
(fixed/variable)

Particle 
filter

Sensors Gaussian G
a
u
s
s
i
a
n

Features Non-Gaussian Non-Gaus
sian

Posterior Gaussian Multi-modal Piecewise 
constant

Piecewise 
constant

Samples

Efficiency (memory) ++ ++ ++ -/+ +/++

Efficiency (time) ++ ++ ++ o/+ +/++

Implementation + o + +/o ++

Accuracy ++ ++ - +/++ ++

Robustness - + + ++ +/++

Global 
localization

No Y
e
s

Yes Yes Yes



Bayes Filtering: Lessons 
Learned

 General algorithm for recursively 
estimating the state of dynamic 
systems.

 Variants:
 Hidden Markov Models
 (Extended) Kalman Filters
 Discrete Filters
 Particle Filters
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