Recursive Bayes Filtering

CS689 Robot Motion Planning Amarda Shehu

Physical Agents are Inherently Uncertain

- Uncertainty arises from four major factors:
 - Environment stochastic, unpredictable
 - Robot stochastic
 - Sensor limited, noisy
 - Models inaccurate

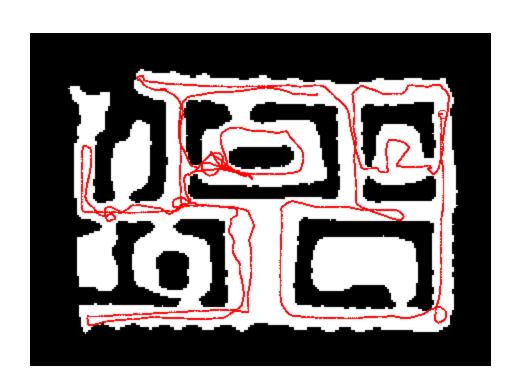
Example: Museum Tour-Guide Robots

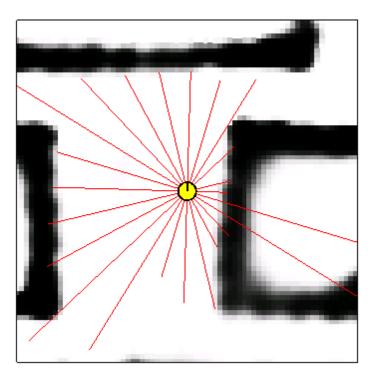
Minerva, 1998

Technical Challenges

- Navigation
 - Environment crowded, unpredictable
 - Environment unmodified
 - "Invisible" hazards
 - Walking speed or faster
 - High failure costs
- Interaction
 - Individuals and crowds
 - Museum visitors' first encounter
 - Age 2 through 99
 - Spend less than 15 minutes

Nature of Sensor Data

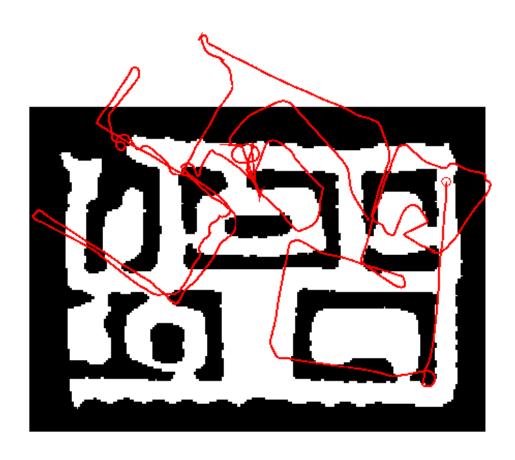


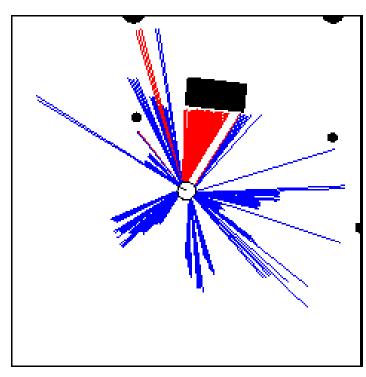


Odometry Data

Range Data

Nature of Sensor Data





Odometry Data

Range Data

Probabilistic Techniques for Physical Agents

Key idea: Explicit representation of uncertainty using the calculus of probability theory

Perception = state estimation Action = utility optimization

Advantages of Probabilistic Paradigm

- Can accommodate inaccurate models
- Can accommodate imperfect sensors
- Robust in real-world applications
- Best known approach to many hard robotics problems

Pitfalls

- Computationally demanding
- False assumptions
- Approximate

Outline

- Introduction
- Probabilistic State Estimation
- Robot Localization
- Probabilistic Decision Making
 - Planning
 - Between MDPs and POMDPs
 - Exploration
- Conclusions

Axioms of Probability Theory

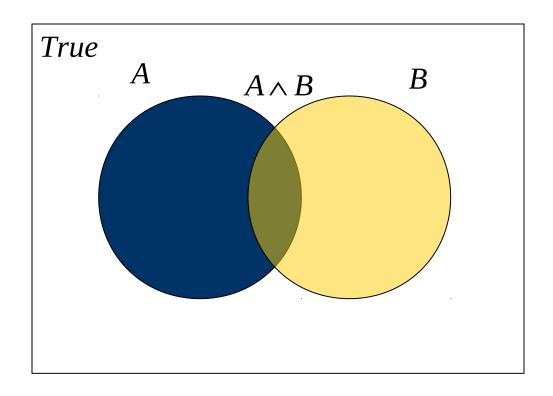
Pr(A) denotes probability that proposition A is true.

$$0 \le \Pr(A) \le 1$$

- Pr(True) = 1 Pr(False) = 0
- $Pr(A \lor B) = Pr(A) + Pr(B) Pr(A \land B)$

A Closer Look at Axiom 3

$$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$$



Using the Axioms

$$Pr(A \lor \neg A) = Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$$

$$Pr(True) = Pr(A) + Pr(\neg A) - Pr(False)$$

$$1 = Pr(A) + Pr(\neg A) - 0$$

$$Pr(\neg A) = 1 - Pr(A)$$

Discrete Random Variables

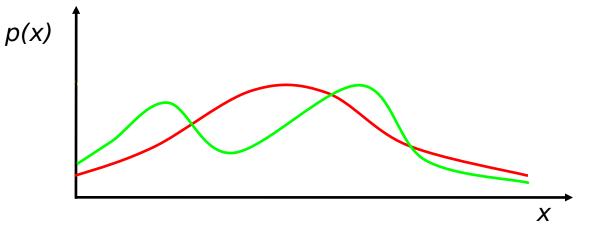
- X denotes a random variable.
- **X** can take on a finite number of values in $\{x_1, x_2, ..., x_n\}$.
- $P(X=x_i)$, or $P(x_i)$, is the probability that the random variable X takes on value x_i .

Continuous Random Variables

- X takes on values in the continuum.
- p(X=x), or p(x), is a probability density function.

$$\Pr(x \in [a,b]) = \int_{a}^{b} p(x)dx$$

E.g.



Joint and Conditional Probability

- P(X=x and Y=y) = P(x,y)
- If X and Y are independent then P(x,y) = P(x) P(y)
- P(x | y) is the probability of x given y P(x | y) = P(x,y) / P(y) P(x,y) = P(x | y) P(y)
- If X and Y are independent then $P(x \mid y) = P(x)$

Law of Total Probability, Marginals

Discrete case

Continuous case

$$\sum_{x} P(x) = 1$$

$$\int p(x) \, dx = 1$$

$$P(x) = \sum_{v} P(x, y)$$

$$p(x) = \int p(x, y) \, dy$$

$$P(x) = \sum_{y} P(x \mid y) P(y)$$

$$p(x) = \int p(x \mid y) p(y) dy$$

Bayes Formula

$$P(x, y) = P(x | y)P(y) = P(y | x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Normalization

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \eta P(y|x) P(x)$$

$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y|x) P(x)}$$

Algorithm:

$$\forall x : aux_{x|y} = P(y \mid x) P(x)$$

$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$

$$\forall x : P(x \mid y) = \eta \text{ aux}_{x \mid y}$$

Conditioning

Total probability:

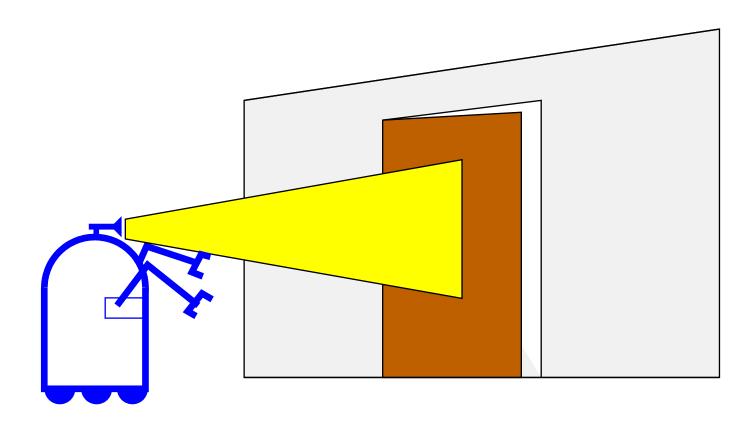
$$P(x|y) = \int P(x|y,z) P(z|y) dz$$

Bayes rule and background knowledge:

$$P(x | y, z) = \frac{P(y | x, z) P(x | z)}{P(y | z)}$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P(open|z)?



Causal vs. Diagnostic Reasoning

- \blacksquare P(open|z) is diagnostic.
- $\blacksquare P(z|open)$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Causal vs. Diagnostic Reasoning

- \blacksquare P(open|z) is diagnostic.
- $\blacksquare P(z|open)$ is causal.
- Often causal knowledge is easier to obtain.
 count frequencies!
- Bayes rule allows us to usé causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

- P(z|open) = 0.6 $P(z|\neg open) = 0.3$
- $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = ?$$

Example

- P(z|open) = 0.6 $P(z|\neg open) = 0.3$
- $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$

$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

z raises the probability that the door is open.

Combining Evidence

- Suppose our robot obtains another observation z_2 .
- How can we integrate this new information?
- More generally, how can we estimate $P(x|z_1...z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of $z_1, ..., z_{n-1}$ if we know x.

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of $z_1, ..., z_{n-1}$ if we know x.

$$P(x \mid z_{1},...,z_{n}) = \frac{P(z_{n} \mid x) P(x \mid z_{1},...,z_{n-1})}{P(z_{n} \mid z_{1},...,z_{n-1})}$$

$$= \eta P(z_{n} \mid x) P(x \mid z_{1},...,z_{n-1})$$

$$= \eta_{1...n} \prod_{i=1...n} P(z_{i} \mid x) P(x)$$

Example: Second Measurement

■
$$P(z_1|open) = 0.5$$

$$P(z_1 | \neg open) = 0.6$$

 $P(open|z_1) = 2/3$

P(open | z2, z1) = ?

Example: Second Measurement

■
$$P(z_1|open) = 0.5$$
 $P(z_1|\neg open) = 0.6$

 $P(open|z_1) = 2/3$

$$P(open | z_{2}, z_{1}) = \frac{P(z_{2} | open) P(open | z_{1})}{P(z_{2} | open) P(open | z_{1}) + P(z_{2} | \neg open) P(\neg open | z_{1})}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$$

• z_2 lowers the probability that the door is open.

Actions

- Often the world is dynamic since
 - actions carried out by the robot,
 - actions carried out by other agents,
 - or just the time passing by change the world.

How can we incorporate such actions?

Typical Actions

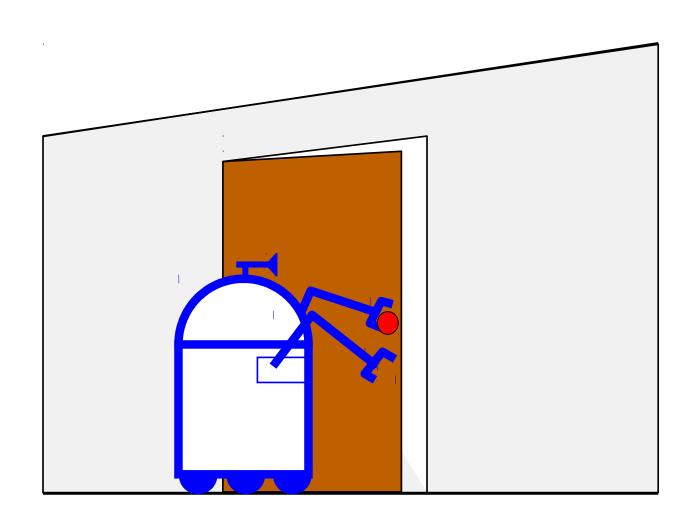
- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

Modeling Actions

To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

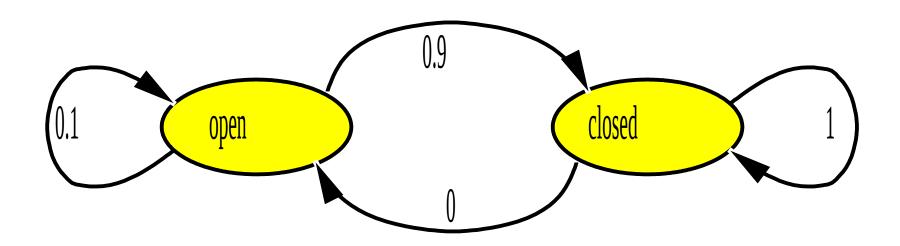
This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door



State Transitions

P(x|u,x') for u = "close door":



If the door is open, the action "close door" succeeds in 90% of all cases.

Integrating the Outcome of Actions

Continuous case:

$$P(x|u) = \int P(x|u,x') P(x') dx'$$

Discrete case:

$$P(x|u) = \sum P(x|u,x')P(x')$$

Example: The Resulting Belief

$$P(closed | u) = \sum P(closed | u,x')P(x')$$

$$=P(closed | u,open)P(open)$$

$$+P(closed | u,closed)P(closed)$$

$$=\frac{9}{10}*\frac{5}{8}*\frac{1}{1}*\frac{3}{8}=\frac{15}{16}$$

$$P(open | u) = \sum P(open | u,x')P(x')$$

$$=P(open | u,open)P(open)$$

$$+P(open | u,closed)P(closed)$$

$$=\frac{1}{10}*\frac{5}{8}*\frac{1}{1}*\frac{3}{8}=\frac{1}{16}$$

$$=1-P(closed | u)$$

Bayes Filters: Framework

Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_2, \dots, u_{t-1}, z_t\}$$

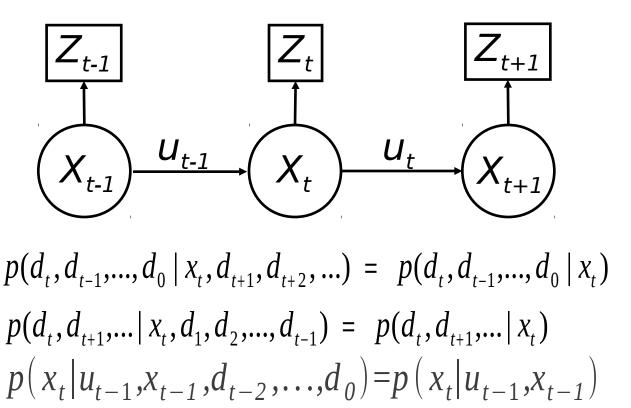
- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

Markov Assumption



Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

Bayes Filters

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

z = observation

u = action

x = state

Bayes Filters

z = observation u = action x = state

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

$$= \eta P(z_t | x_t, u_1, z_2, ..., u_{t-1}) P(x_t | u_1, z_2, ..., u_{t-1})$$
Bayes

z = observationu = action

x = state

$$Bel(x_t) = P(x_t \mid u_1, z_2 \dots, u_{t-1}, z_t)$$

$$= \eta \ P(z_t \mid x_t, u_1, z_2, \dots, u_{t-1}) \ P(x_t \mid u_1, z_2, \dots, u_{t-1})$$

$$= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_2, \dots, u_{t-1})$$
Markov
$$= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_2, \dots, u_{t-1})$$

x = state

$$\begin{split} Bel(x_t) &= P(x_t \mid u_1, z_2 \dots, u_{t-1}, z_t) \\ \text{Bayes} &= \eta \ P(z_t \mid x_t, u_1, z_2, \dots, u_{t-1}) \ P(x_t \mid u_1, z_2, \dots, u_{t-1}) \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_2, \dots, u_{t-1}) \\ \text{Total prob.} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_2, \dots, u_{t-1}, x_{t-1}) \\ &\qquad \qquad P(x_{t-1} \mid u_1, z_2, \dots, u_{t-1}) \ dx_{t-1} \end{split}$$

$$\begin{split} Bel(x_t) &= P(x_t \,|\, u_1, z_2 \, ..., u_{t-1}, z_t) \\ \text{Bayes} &= \eta \,\, P(z_t \,|\, x_t, u_1, z_2, ..., u_{t-1}) \, P(x_t \,|\, u_1, z_2, ..., u_{t-1}) \\ \text{Markov} &= \eta \,\, P(z_t \,|\, x_t) \, P(x_t \,|\, u_1, z_2, ..., u_{t-1}) \\ \text{Total prob.} &= \eta \,\, P(z_t \,|\, x_t) \, \int \! P(x_t \,|\, u_1, z_2, ..., u_{t-1}, x_{t-1}) \\ &\qquad \qquad P(x_{t-1} \,|\, u_1, z_2, ..., u_{t-1}) \,\, dx_{t-1} \end{split}$$

Markov =
$$\eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) P(x_{t-1} | u_1, z_2, ..., u_{t-1}) dx_{t-1}$$

u = actionx = state

$$\begin{split} Bel(x_t) &= P(x_t \mid u_1, z_2 \dots, u_{t-1}, z_t) \\ \text{Bayes} &= \eta \ P(z_t \mid x_t, u_1, z_2, \dots, u_{t-1}) \ P(x_t \mid u_1, z_2, \dots, u_{t-1}) \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_2, \dots, u_{t-1}) \\ \text{Total prob.} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_2, \dots, u_{t-1}, x_{t-1}) \\ & \qquad \qquad P(x_{t-1} \mid u_1, z_2, \dots, u_{t-1}) \ dx_{t-1} \\ \text{Markov} &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ P(x_{t-1} \mid u_1, z_2, \dots, u_{t-1}) \ dx_{t-1} \\ &= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \end{split}$$

x = state

Bayes Filters

$$\begin{aligned} &\textit{Bel}(x_t) = P(x_t \mid u_1, z_2 \dots, u_{t-1}, z_t) \\ &\texttt{Bayes} &= \eta \; P(z_t \mid x_t, u_1, z_2, \dots, u_{t-1}) \; P(x_t \mid u_1, z_2, \dots, u_{t-1}) \\ &\texttt{Markov} &= \eta \; P(z_t \mid x_t) \; P(x_t \mid u_1, z_2, \dots, u_{t-1}) \\ &\texttt{Total prob.} &= \eta \; P(z_t \mid x_t) \int P(x_t \mid u_1, z_2, \dots, u_{t-1}, x_{t-1}) \end{aligned}$$

Markov
$$= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ P(x_{t-1} \mid u_1, z_2, \dots, u_{t-1}) \ dx_{t-1}$$

 $P(x_{t-1} | u_1, z_2, ..., u_{t-1}) dx_{t-1}$

$$= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Bayes Filter Algorithm

```
Algorithm Bayes_filter( Bel(x),d ):
  \eta=0
  if d is a perceptual data item z then
      For all x do
           Bel'(x) = P(z \mid x)Bel(x)
           \eta = \eta + Bel'(x)
     For all x do
           Bel'(x) = \eta^{-1}Bel'(x)
  else if d is an action data item u then
     For all x do
           Bel'(x) = \int P(x \mid u, x') Bel(x') dx'
  return Bel'(x)
Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}
```

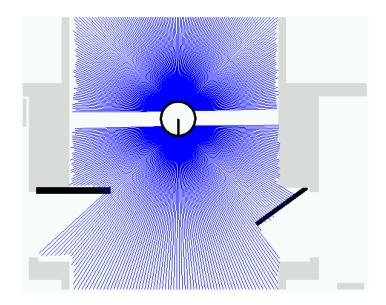
Bayes Filters are Familiar!

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_{t-1}, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

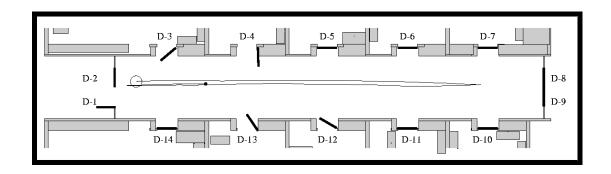
- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayes networks
- Partially Observable Markov Decision Processes (POMDPs)

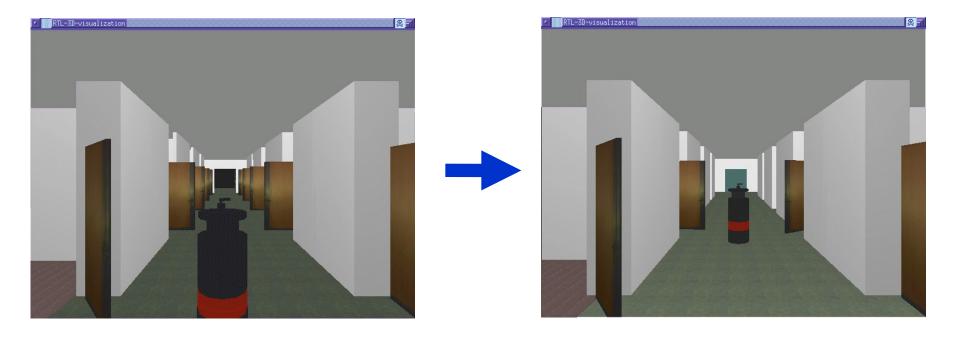
Application to Door State Estimation

- Estimate the opening angle of a door
- and the state of other dynamic objects
- using a laser-range finder
- from a moving mobile robot and
- based on Bayes filters.



Result





Lessons Learned

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

Tutorial Outline

- Introduction
- Probabilistic State Estimation
- Localization

The Localization Problem

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a mobile robot with autonomous capabilities." [Cox '91]

Given

- Map of the environment.
- Sequence of sensor measurements.

Wanted

Estimate of the robot's position.

Problem classes

- Position tracking
- Global localization
- Kidnapped robot problem (recovery)

Representations for Bayesian Robot Localization

Αl

Discrete approaches ('95)

- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Particle filters ('99)

- sample-based representation
- global localization, recovery

Kalman filters (late-80s?)

- Gaussians
- approximately linear models
- position tracking

Robotics

Multi-hypothesis ('00)

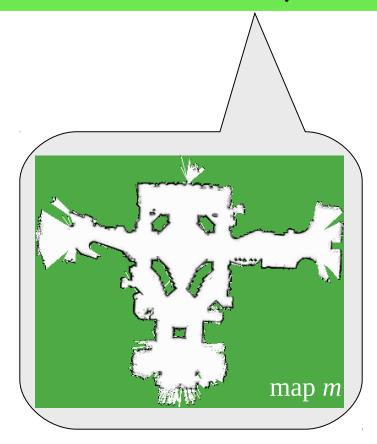
- multiple Kalman filters
- global localization, recovery

$$bel(x_t) = \eta \ p(s_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\Rightarrow bel(x_{t}|m) = \eta p(s_{t}|x_{t},m) \int p(x_{t}|x_{t-1},a_{t-1},m) bel(x_{t-1}|m) dx_{t-1}$$

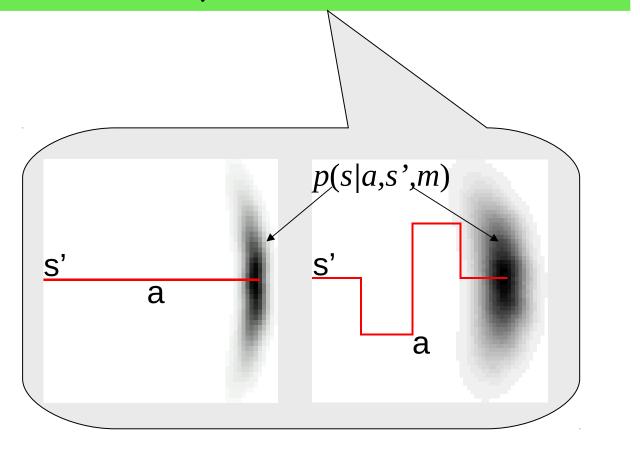
$$bel(x_t) = \eta \ p(s_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\Rightarrow bel(x_{t}|m) = \eta p(s_{t}|x_{t},m) \int p(x_{t}|x_{t-1},a_{t-1},m) bel(x_{t-1}|m) dx_{t-1}$$



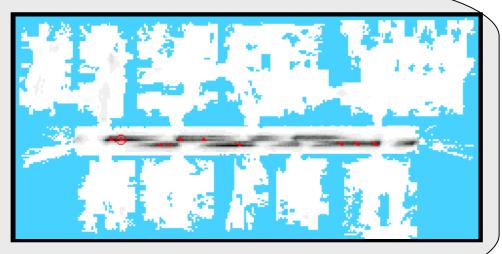
$$bel(x_t) = \eta \ p(s_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\Rightarrow bel(x_{t}|m) = \eta p(s_{t}|x_{t},m) \int p(x_{t}|x_{t-1},a_{t-1},m) bel(x_{t-1}|m) dx_{t-1}$$



$$bel(x_t) = \eta \ p(s_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\Rightarrow bel(x_t | m) = \eta p(s_t | x_t, m) \int p(x_t | x_{t-1}, a_{t-1}, m) bel(x_{t-1} | m) dx_{t-1}$$

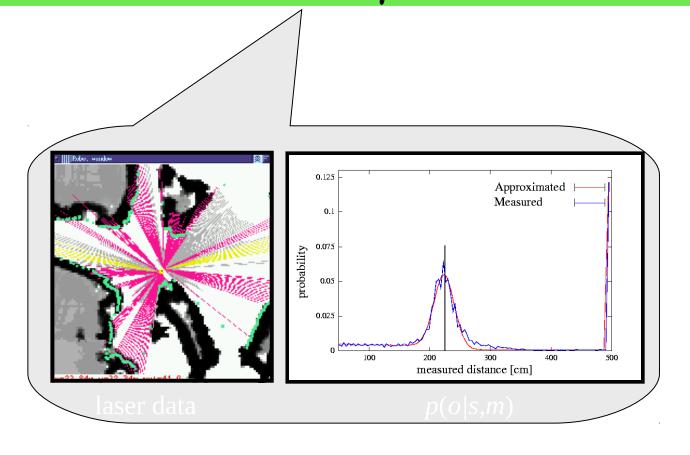


observation o

p(o|s,m)

bel
$$(x_t) = \eta \ p(s_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ bel (x_{t-1}) \ dx_{t-1}$$

$$\Rightarrow bel(x_t | m) = \eta p(s_t | x_t, m) \int p(x_t | x_{t-1}, a_{t-1}, m) bel(x_{t-1} | m) dx_{t-1}$$



$$bel(x_t) = \eta \ p(s_t \mid x_t) \int p(x_t \mid x_{t-1}, a_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

$$\Rightarrow bel(x_{t}|m) = \eta p(s_{t}|x_{t},m) \int p(x_{t}|x_{t-1},a_{t-1},m) bel(x_{t-1}|m) dx_{t-1}$$

bel
$$(x_t) = \int p(x_t | x_{t-1}, a_{t-1}) bel(x_{t-1}) dx_{t-1}$$

$$bel(x_t) = \eta p(s_t | x_t) bel^{-}(x_t)$$

... is optimal under the Markov assumption

What is the Right Representation?

- Kalman filters
- Multi-hypothesis tracking
- Grid-based representations
- Topological approaches
- Particle filters

Gaussians

$$p(x) \sim N(\mu, \sigma^2)$$
:

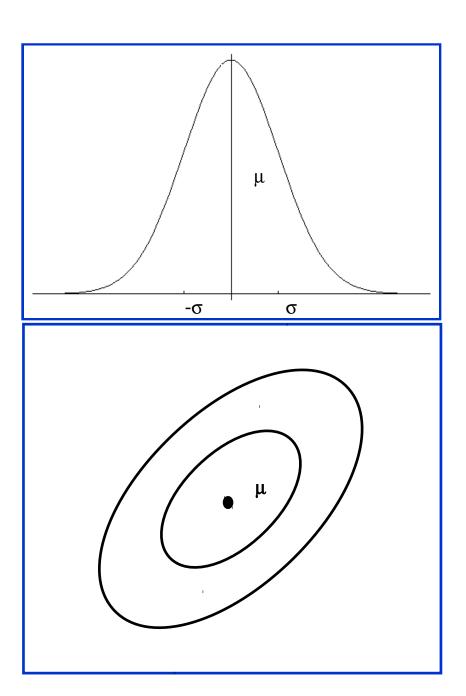
$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})}$$

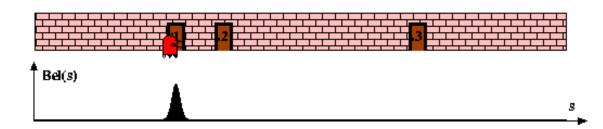
Multivariate

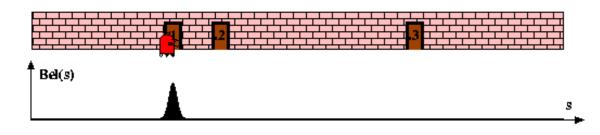


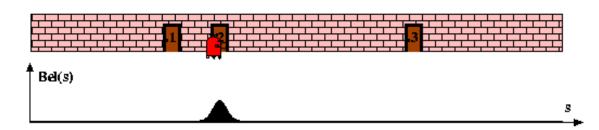
Estimate the state of processes that are governed by the following linear stochastic difference equation.

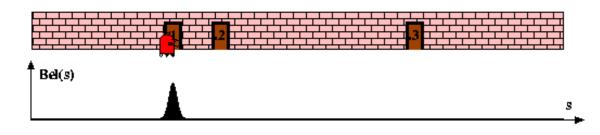
$$x_{t+1} = Ax_t + Bu_t + v_t$$
$$z_t = Cx_t + w_t$$

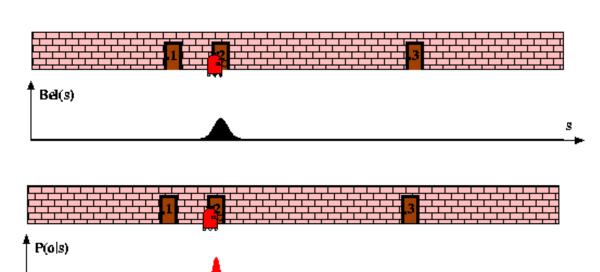
The random variables v_t and w_t represent the process measurement noise and are assumed to be independent, white and with normal probability distributions.



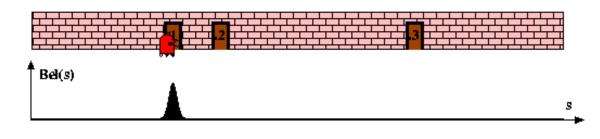


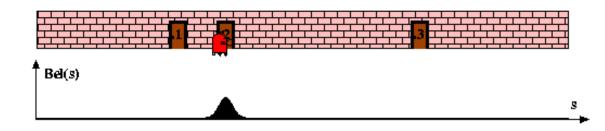


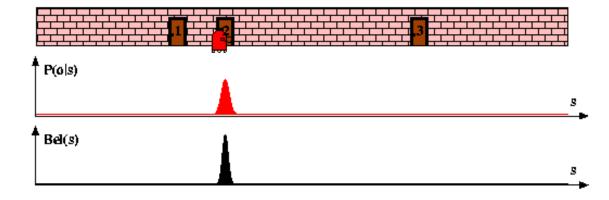


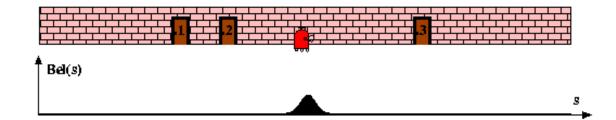


Bel(s)









Kalman Filter Algorithm

- Algorithm **Kalman_filter**($<\mu,\Sigma>$, d):
- If d is a perceptual data item z then

•
$$K = \Sigma C^{T} \left(C \Sigma C^{T} + \Sigma_{obs} \right)^{-1}$$

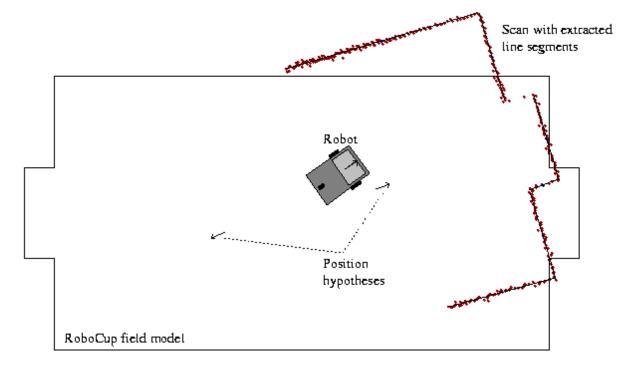
- $\mu = \mu + K(z C\mu)$
- $\Sigma = (I KC)\Sigma$
- Else if d is an action data item u then
- $\mu = A\mu + Bu$
- $\Sigma = A\Sigma A^T + \Sigma_{act}$
- Return < μ,Σ>

Non-linear Systems

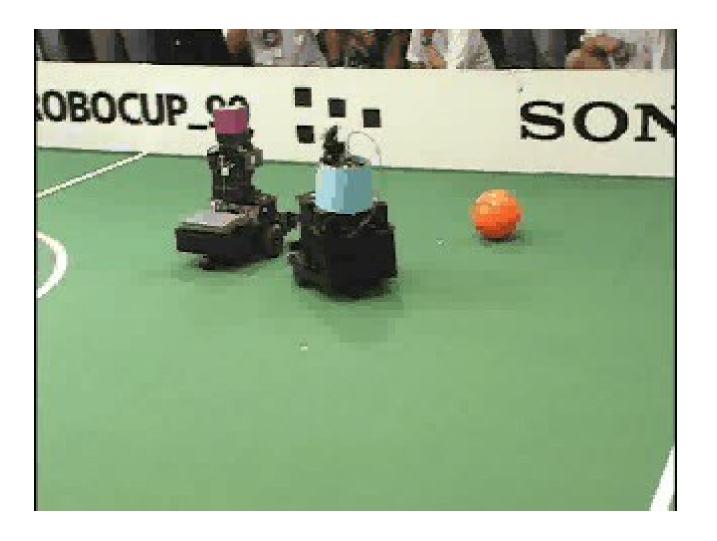
- Very strong assumptions:
 - Linear state dynamics
 - Observations linear in state
- What can we do if system is not linear?
 - Linearize it: EKF
 - Compute the Jacobians of the dynamics and observations at the current state.
 - Extended Kalman filter works surprisingly well even for highly non-linear systems.

Kalman Filter-based Systems (1)

- [Gutmann et al. 96, 98]:
 - Match LRF scans against map
 - Highly successful in RoboCup mid-size league

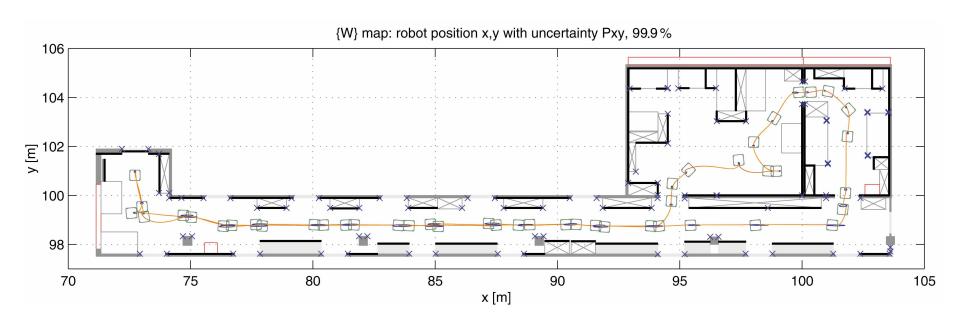


Kalman Filter-based Systems (2)



Kalman Filter-based Systems (3)

- [Arras et al. 98]:
 - Laser range-finder and vision
 - High precision (<1cm accuracy)</p>



Localization Algorithms - Comparison

Kalman filter

Sensors Gaussian

Posterior Gaussian

Efficiency (memory) ++

Efficiency (time) ++

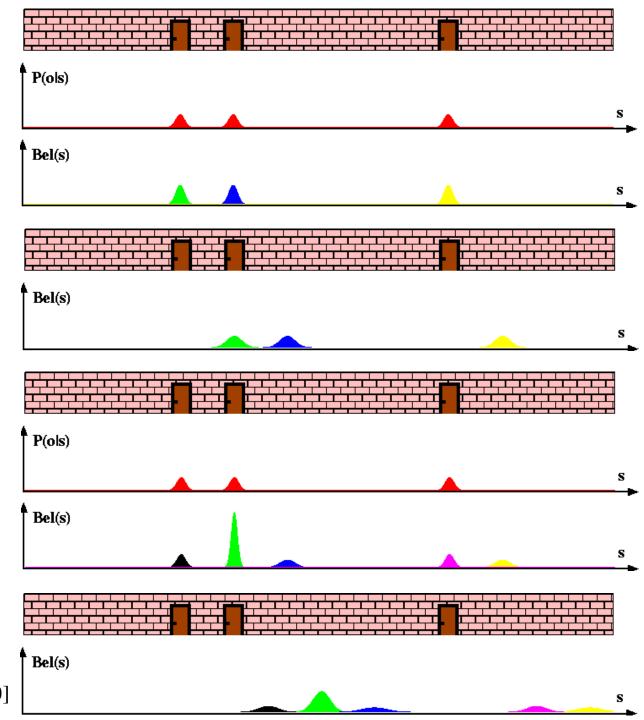
Implementation +

Accuracy ++

Robustness -

Global No localization

Multihypothesis Tracking



Localization With MHT

- Belief is represented by multiple hypotheses
- Each hypothesis is tracked by a Kalman filter

Additional problems:

- Data association: Which observation corresponds to which hypothesis?
- Hypothesis management: When to add / delete hypotheses?
- Huge body of literature on target tracking, motion correspondence etc.

MHT: Implemented System (1)

- [Jensfelt and Kristensen 99,01]
 - Hypotheses are extracted from LRF scans
 - Each hypothesis has probability of being the correct one:

$$H_i = \{\hat{x}_i, \Sigma_i, P(H_i)\}\$$

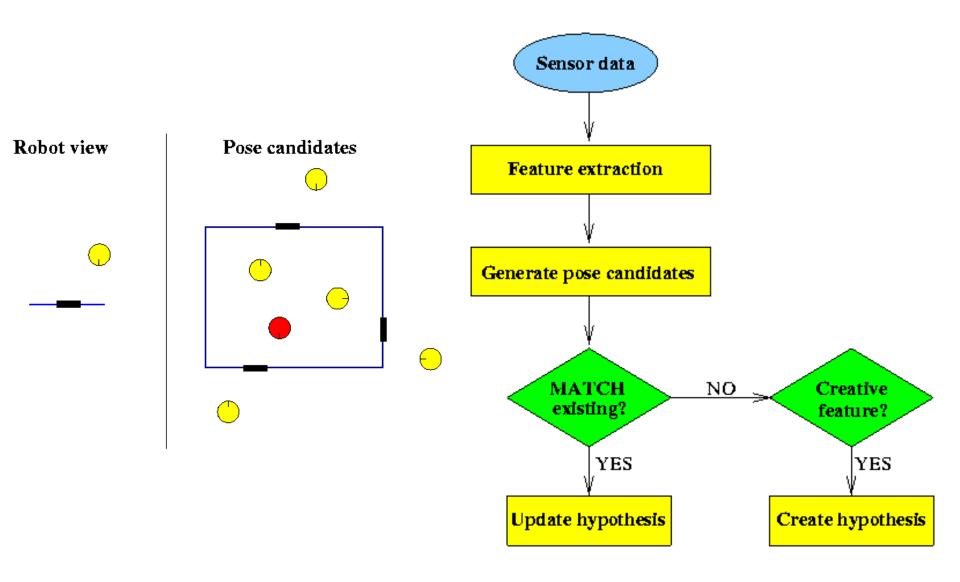
■ Hypothesis probability is computed using Bayes' rule $P(s|H_i)P(H_i)$

 $P(H_i | s) = \frac{P(s | H_i)P(H_i)}{P(s)}$

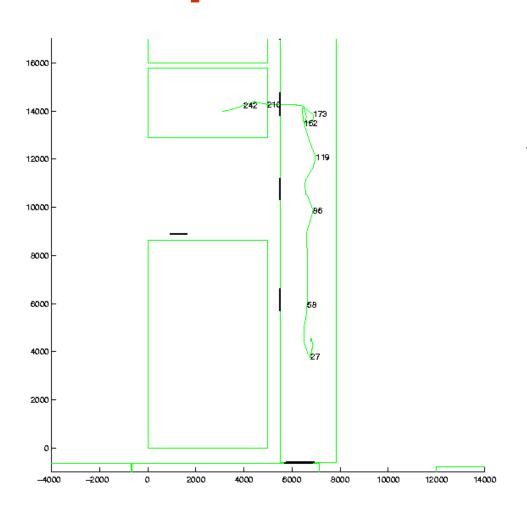
- Hypotheses with low probability are deleted
- New candidates are extracted from LRF scans

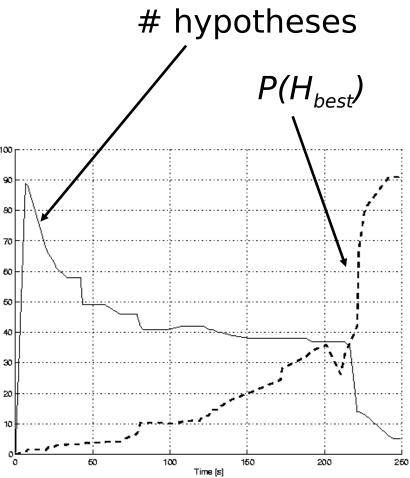
$$C_j = \{z_j, R_j\}$$

MHT: Implemented System (2)



MHT: Implemented System (3) Example run





Map and trajectory

Hypotheses vs. time

Courtesy of P. Jensfelt and S. Kristensen

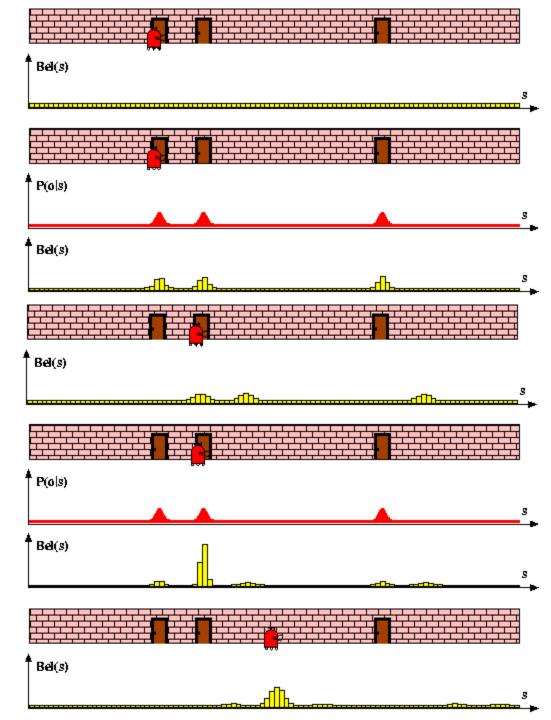
Localization Algorithms - Comparison

Kalman Multi bynat

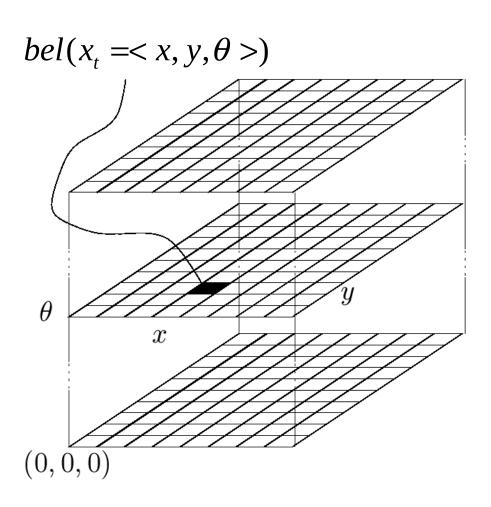
	Kalman filter	Multi-hypot hesis tracking
Sensors	Gaussian	Gaussian
Posterior	Gaussian	Multi-modal
Efficiency (memory)	++	++
Efficiency (time)	++	++
Implementation	+	O
Accuracy	++	++
Robustness	-	+
Global localization	No	Yes

Piecewise Constant

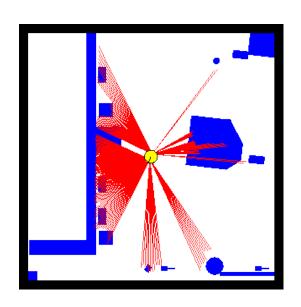
[Burgard et al. 96,98], [Fox et al. 99], [Konolige et al. 99]

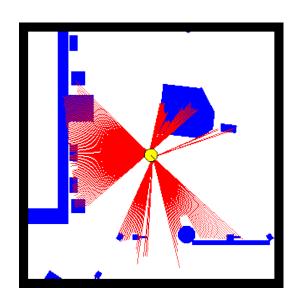


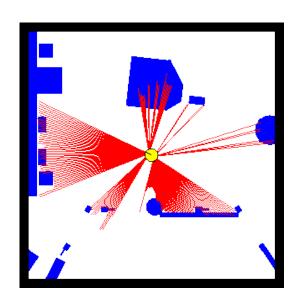
Piecewise Constant Representation

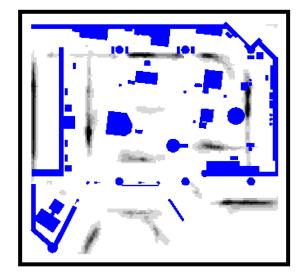


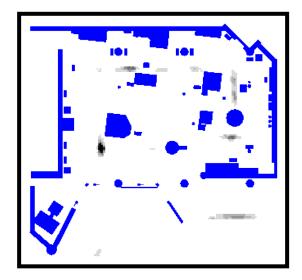
Grid-based Localization

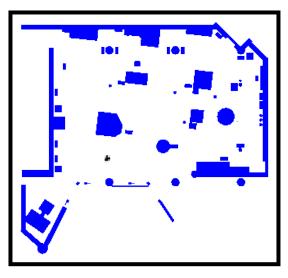






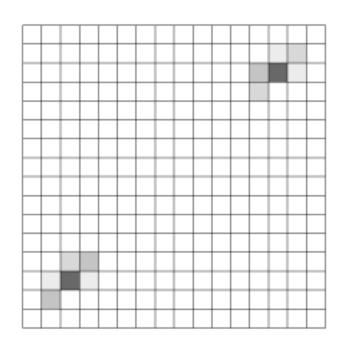


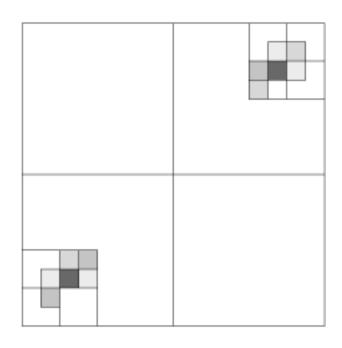




Tree-based Representations (1)

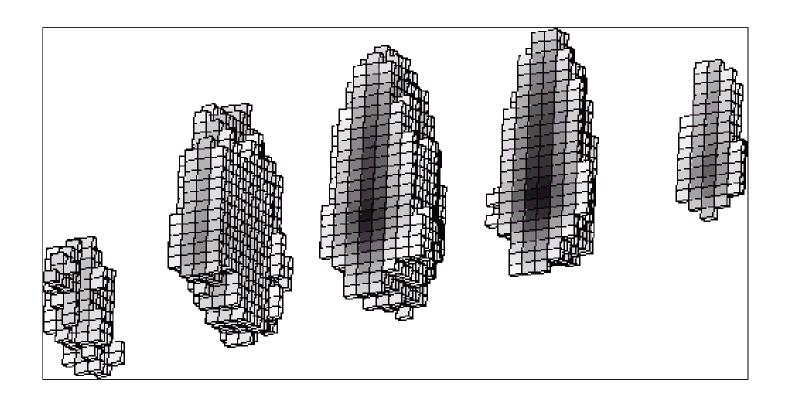
Idea: Represent density using a variant of Octrees





Tree-based Representations (2)

- Efficient in space and time
- Multi-resolution



Localization Algorithms - Comparison

	Kalman filter	Multi-hypot hesis tracking	Grid-based (fixed/variable)
Sensors	Gaussian	Gaussian	Non-Gaussian
Posterior	Gaussian	Multi-modal	Piecewise constant
Efficiency (memory)	++	++	-/+
Efficiency (time)	++	++	0/+
Implementation	+	0	+/0
Accuracy	++	++	+/++
Robustness	-	+	++
Global localization	No	Yes	Yes

Localization Algorithms - Comparison

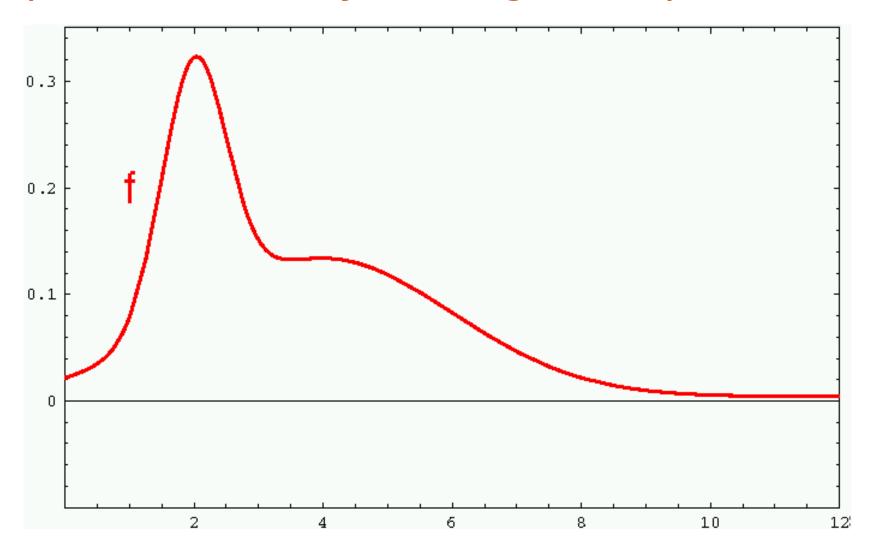
	Kalman filter	Multi-hypot hesis tracking	Grid-based (fixed/variable)	Topological maps
Sensors	Gaussian	Gaussian	Non-Gaussian	Features
Posterior	Gaussian	Multi-modal	Piecewise constant	Piecewise constant
Efficiency (memory)	++	++	-/+	++
Efficiency (time)	++	++	0/+	++
Implementation	+	0	+/0	+/0
Accuracy	++	++	+/++	-
Robustness	-	+	++	+
Global localization	No	Yes	Yes	Yes

Particle Filters

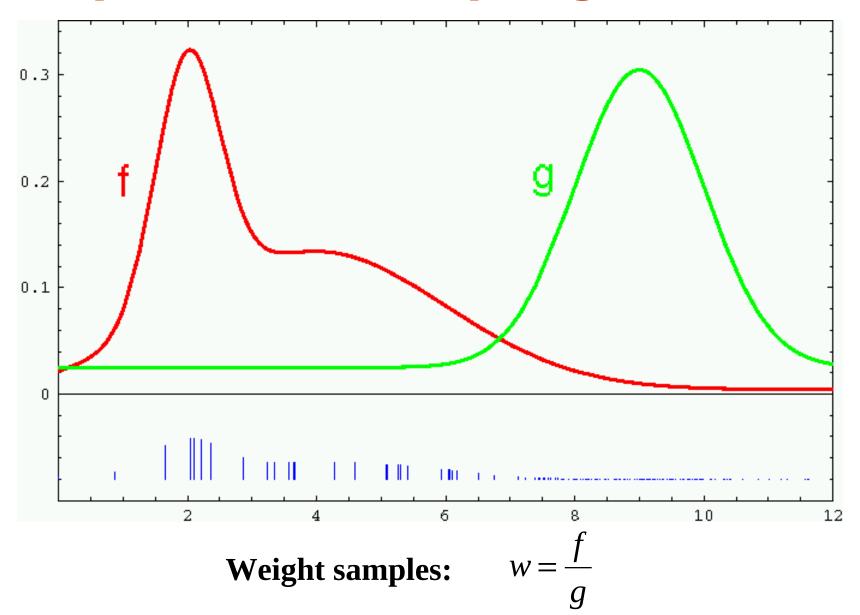
- Represent density by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest,
 Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]

Monte Carlo Localization (MCL)

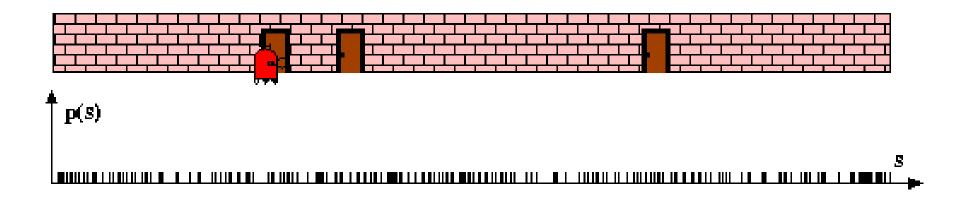
Represent Density Through Samples



Importance Sampling



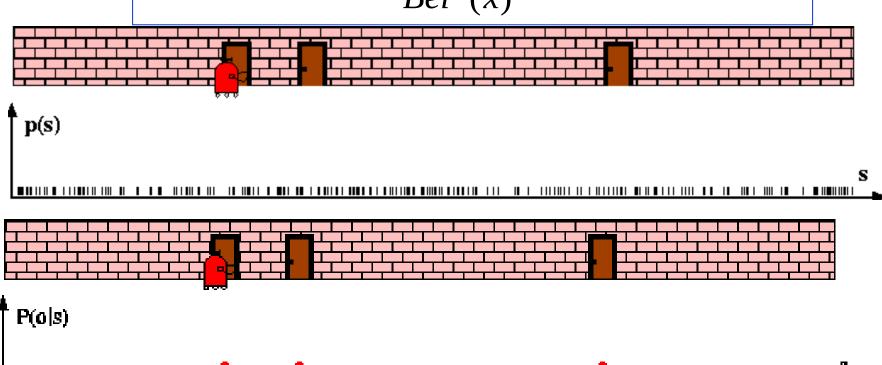
MCL: Global Localization



MCL: Sensor Update

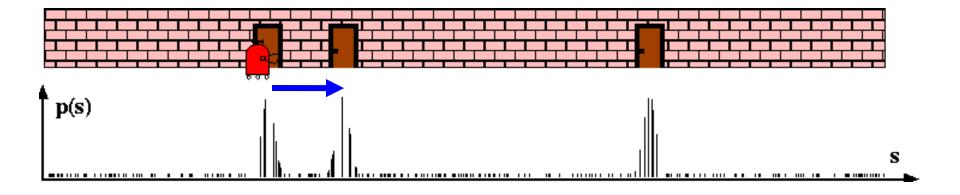
$$Bel(x) \leftarrow \alpha p(z|x) Bel^{-}(x)$$

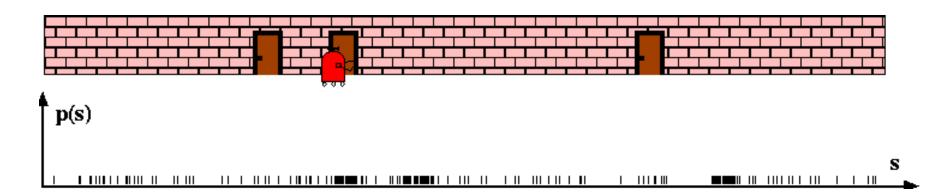
$$w \leftarrow \frac{\alpha p(z|x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z|x)$$



MCL: Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

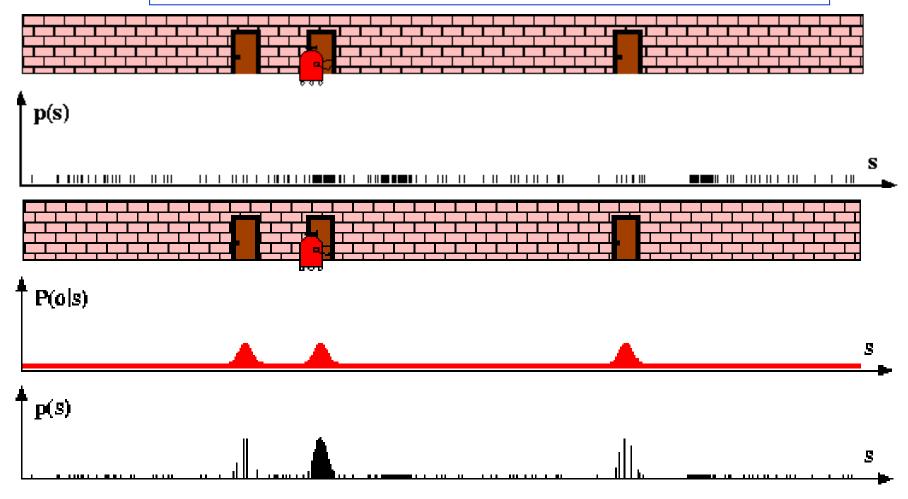




MCL: Sensor Update

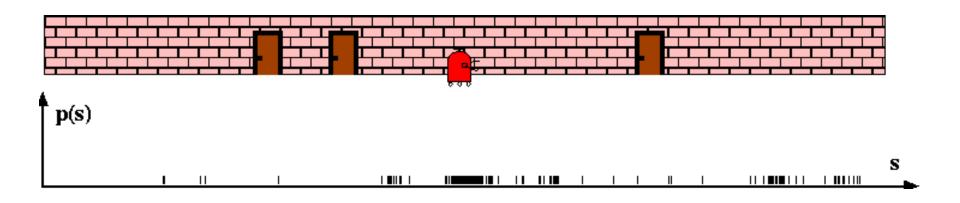
$$Bel(x) \leftarrow \alpha p(z \mid x) Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha p(z \mid x) Bel^{-}(x)}{Bel^{-}(x)} = \alpha p(z \mid x)$$



MCL: Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$
 $p(s)$



Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- $S_t = \emptyset, \quad \eta = 0$
- 3. **For** i = 1...n

Generate new samples

Sample index j(i) from the discrete distribution given by w_{t-1}

- 1. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- 2. $w_t^i = p(z_t | x_t^i)$ Compute importance weight
- 3. $\eta = \eta + w_t^i$ Update normalization factor
- 4. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$ **Insert**
- 5. **For** i = 1...n
- 6. $w_t^i = w_t^i / \eta$ Normalize weights

Particle Filter Algorithm

Bel
$$(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1}) \ dx_{t-1}$$

$$\rightarrow \ draw \ x^i_{t-1} \ from \ Bel(x_{t-1})$$

$$\rightarrow \ draw \ x^i_t \ from \ p(x_t \mid x^i_{t-1}, u_{t-1})$$

$$\rightarrow \ lmportance \ factor \ for \ x^i_t:$$

$$w^i_t = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}$$

$$\approx \ p(z_t \mid x_t)$$

Resampling

Given: Set S of weighted samples.

• Wanted: Random sample, where the probability of drawing x_i is given by w_i .

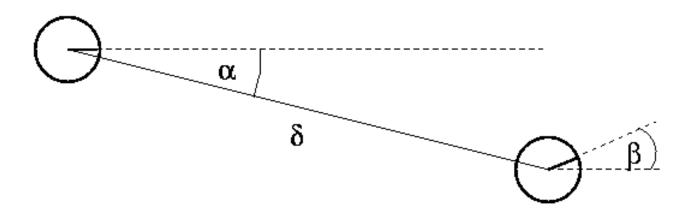
Typically done n times with replacement to generate new sample set S'.

Resampling Algorithm

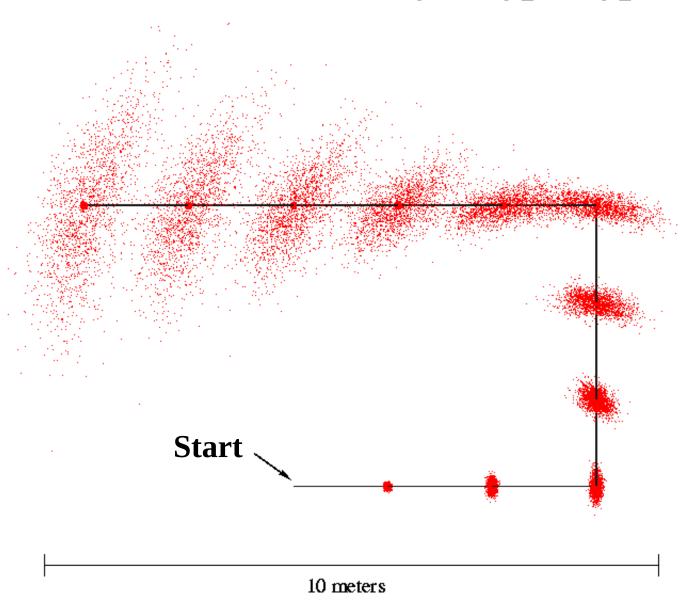
- 1. Algorithm **systematic_resampling**(*S*,*n*):
- 1. $S' = \emptyset, c_1 = w^1$
- 2. For i = 2...n Generate cdf
- 3. $C_i = C_{i-1} + w^i$
- 4. $u_1 \sim U[0, n^{-1}], i = 1$ Initialize threshold
- 1. For j = 1...n Draw samples ...
- 2. $u_j = u_1 + n^{-1} \cdot (j-1)$ Advance threshold
- 3. While ($u_i > c_i$) Skip until next threshold reached
- 4. i = i + 1
- 5. $S' = S' \cup \{ \langle x^i, n^{-1} \rangle \}$ **Insert**
- **1. Return** *S* '

Motion Model $p(x_t \mid a_{t-1}, x_{t-1})$

Model odometry error as Gaussian noise on α , β , and δ



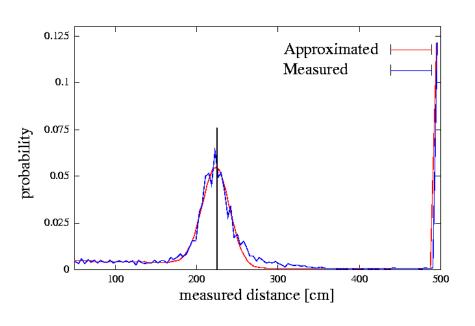
Motion Model $p(x_t \mid a_{t-1}, x_{t-1})$

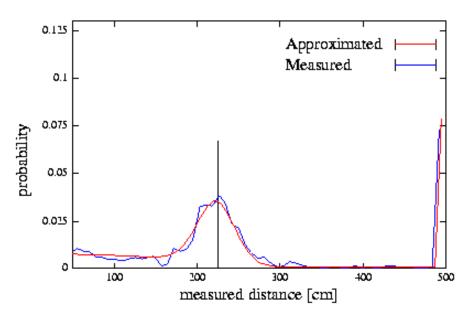


Model for Proximity Sensors

The sensor is reflected either by a known or by an unknown obstacle:

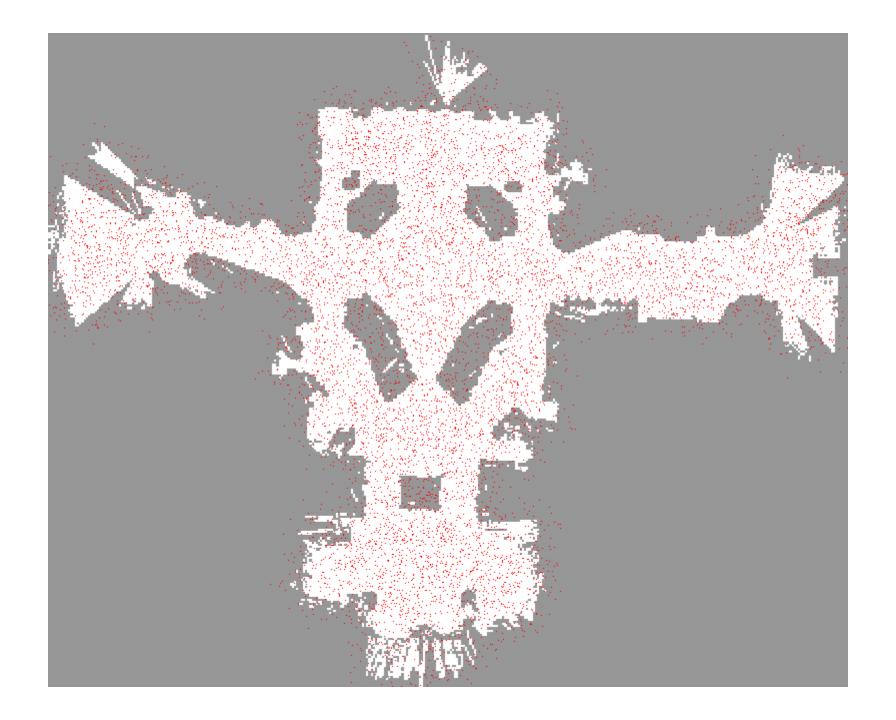
$$P(d_i | l) = 1 - (1 - (1 - \sum_{j < i} P_u(d_j)) c_d P_m(d_i | l)) \cdot (1 - (1 - \sum_{j < i} P(d_j)) c_r)$$

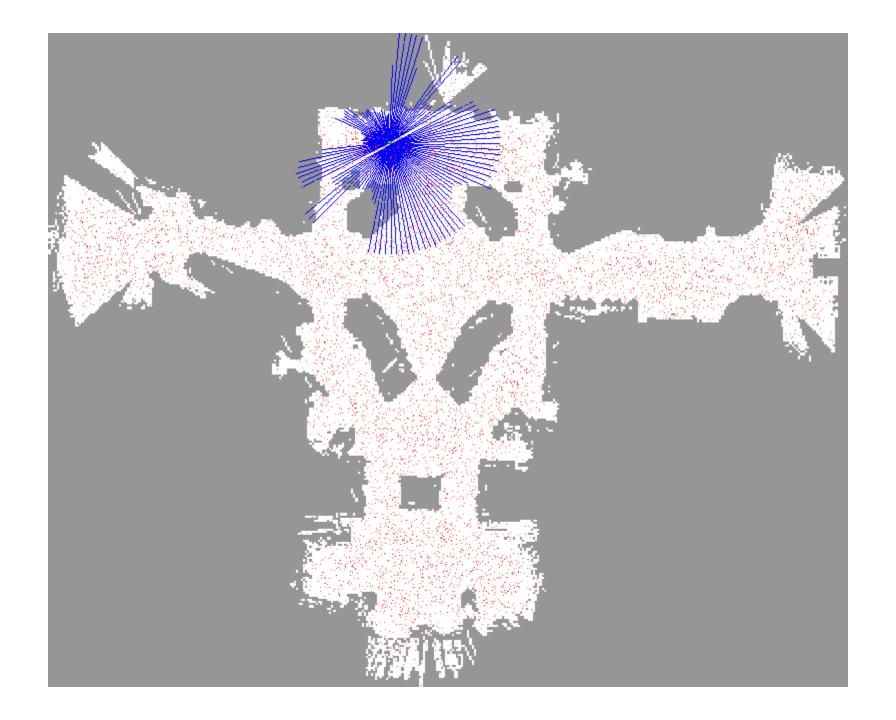


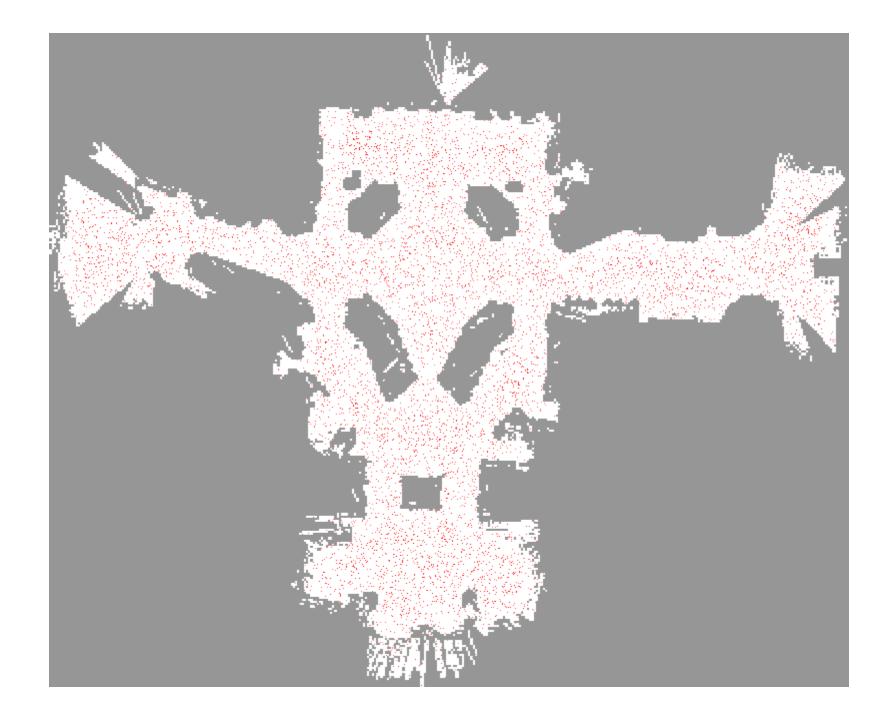


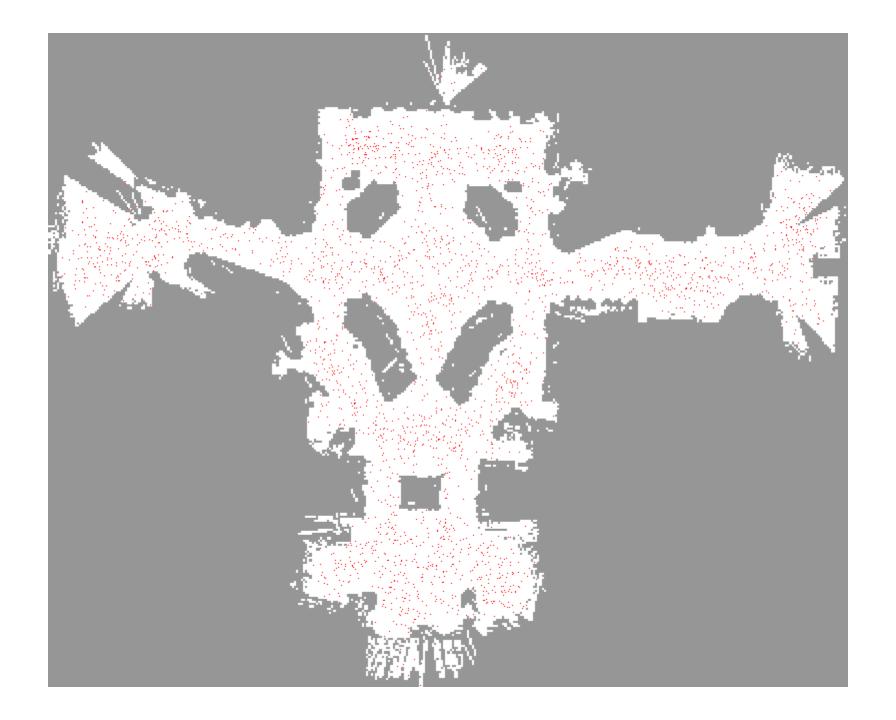
Laser sensor

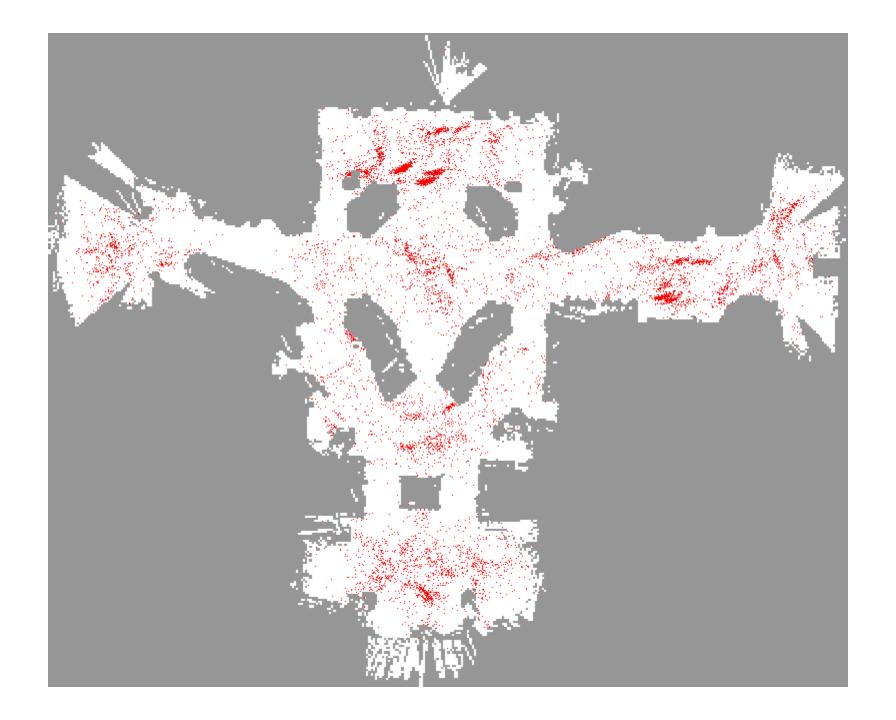
Sonar sensor

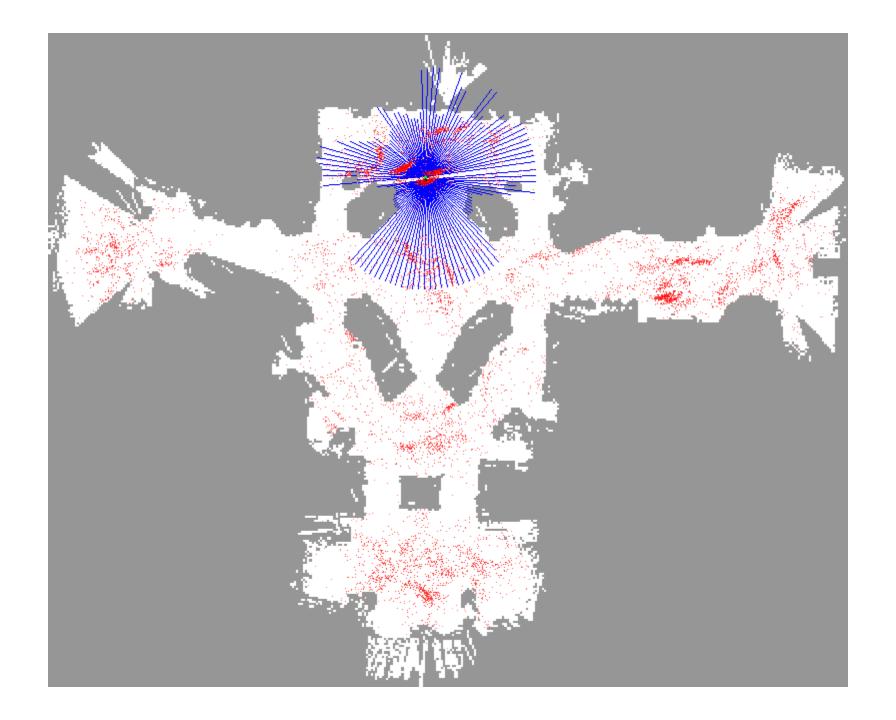




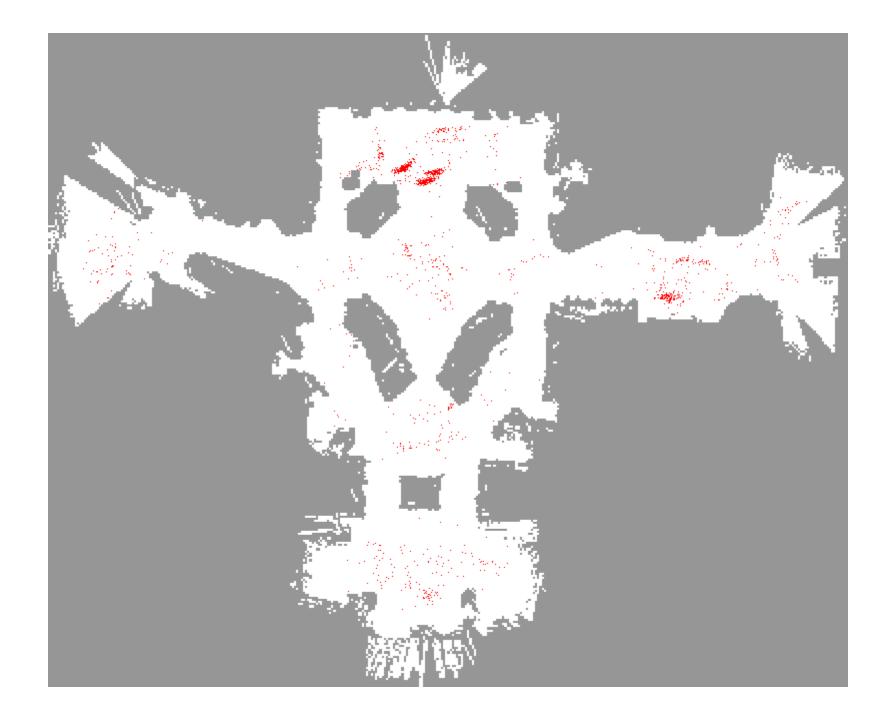


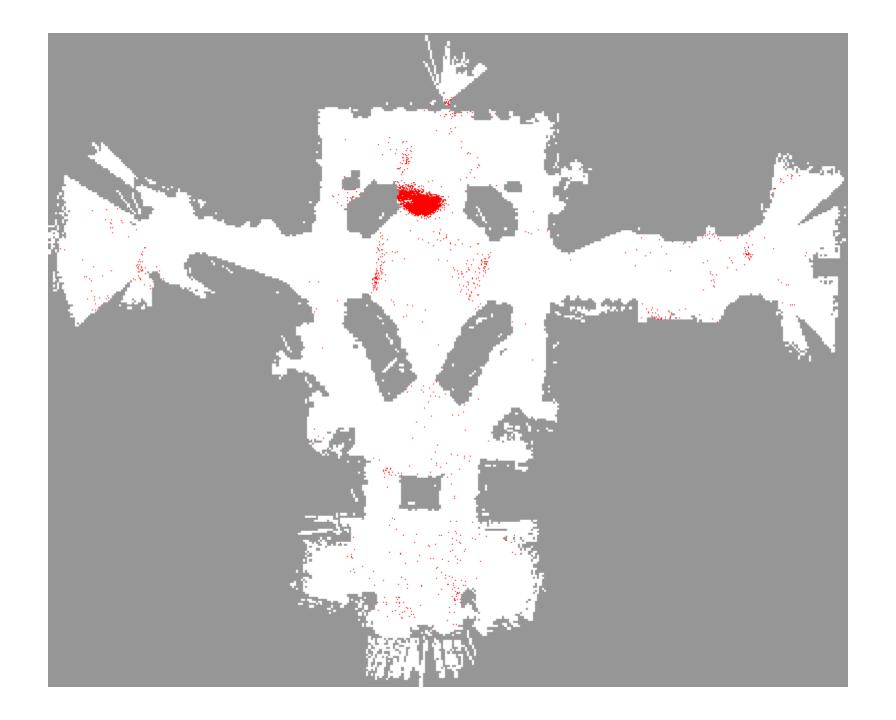


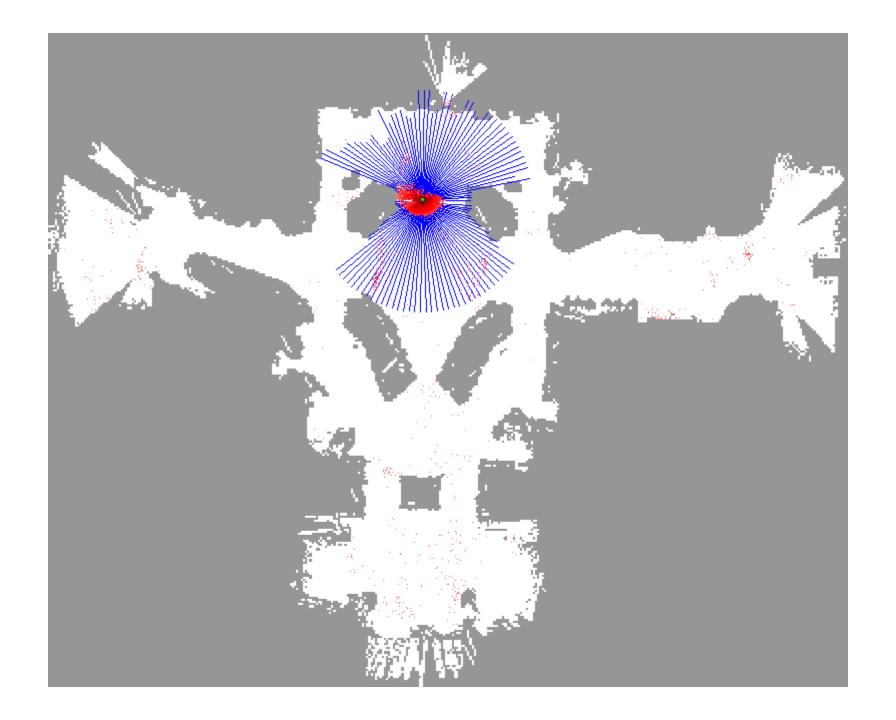


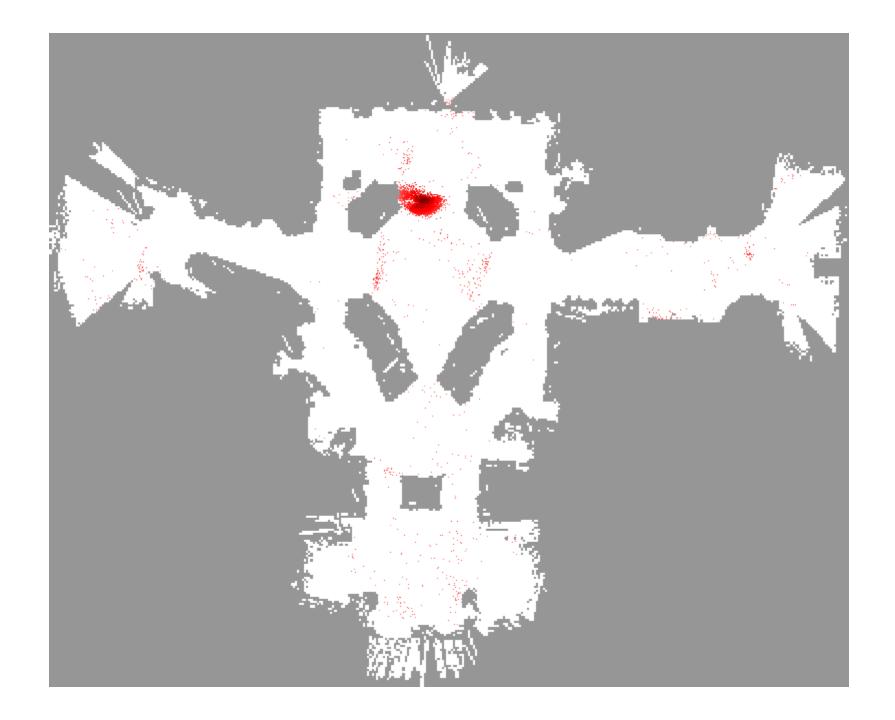


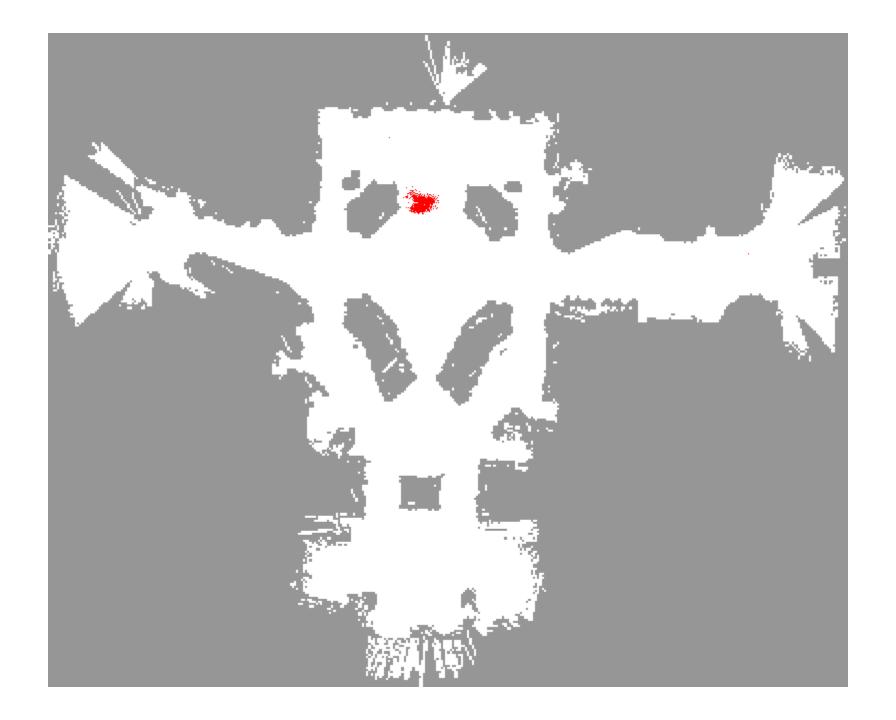


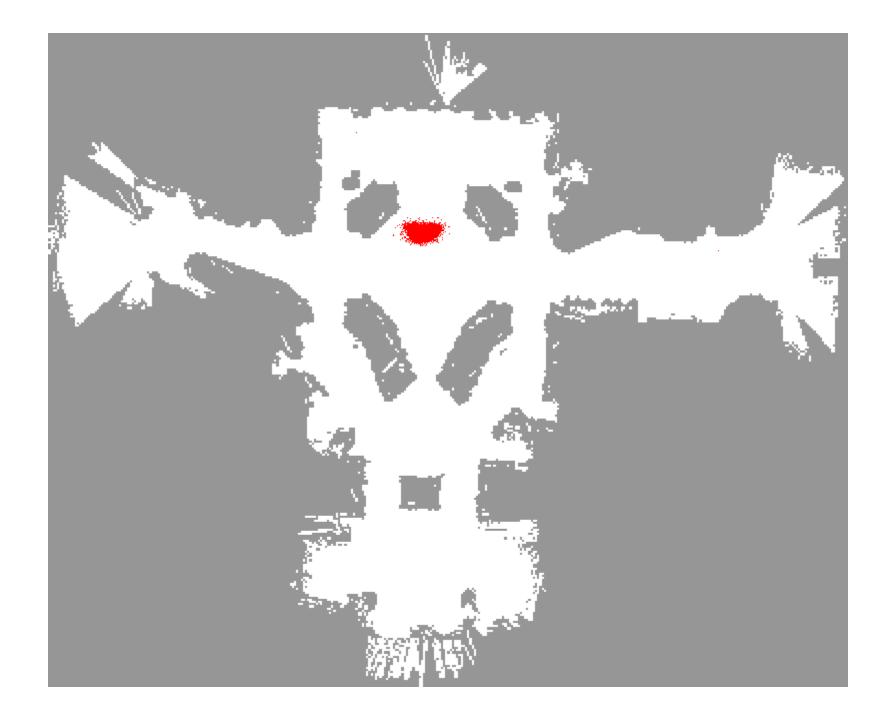


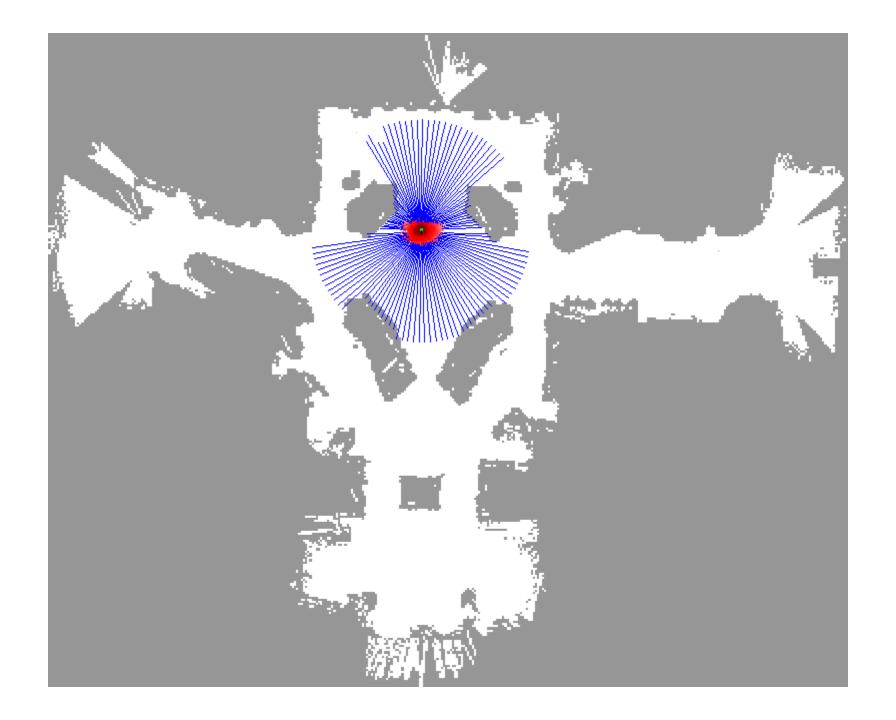


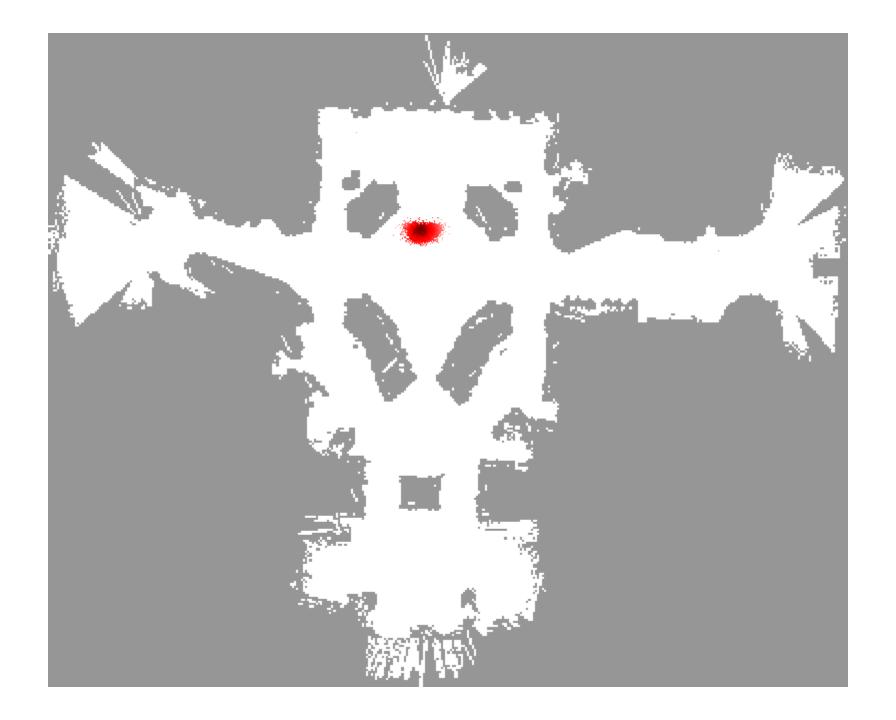


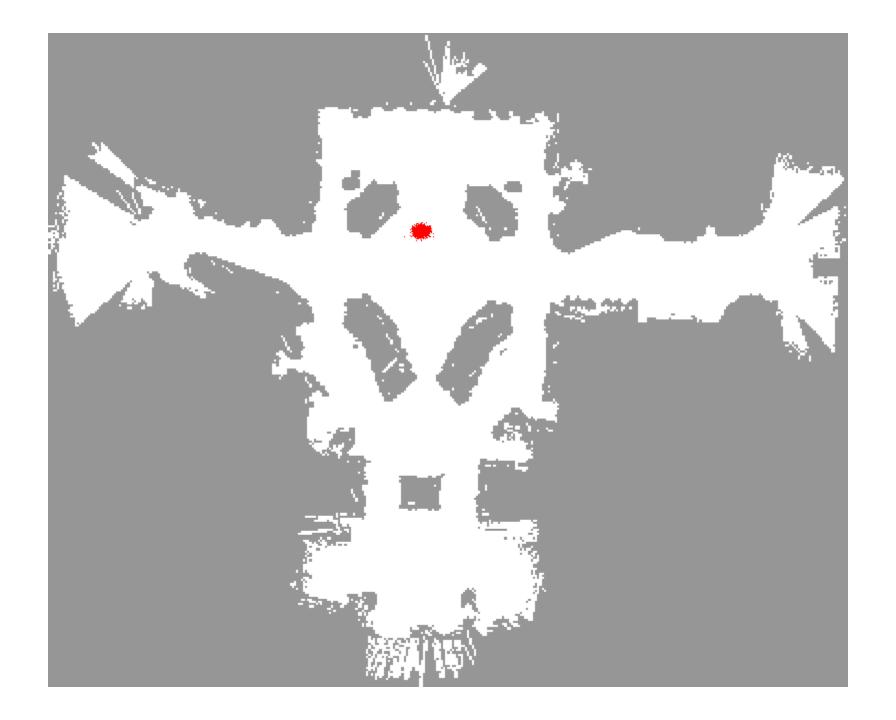


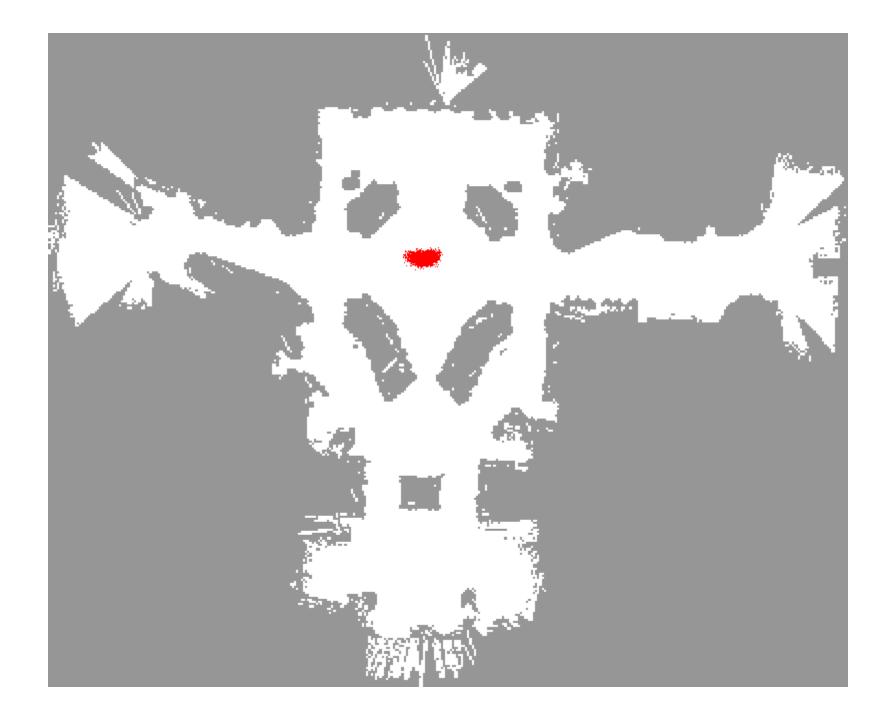


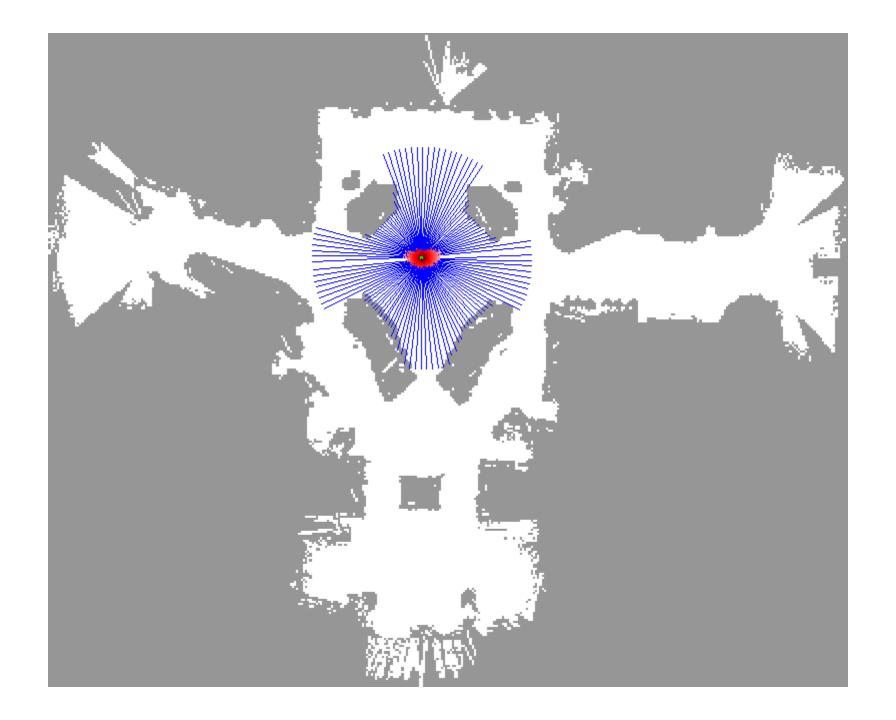


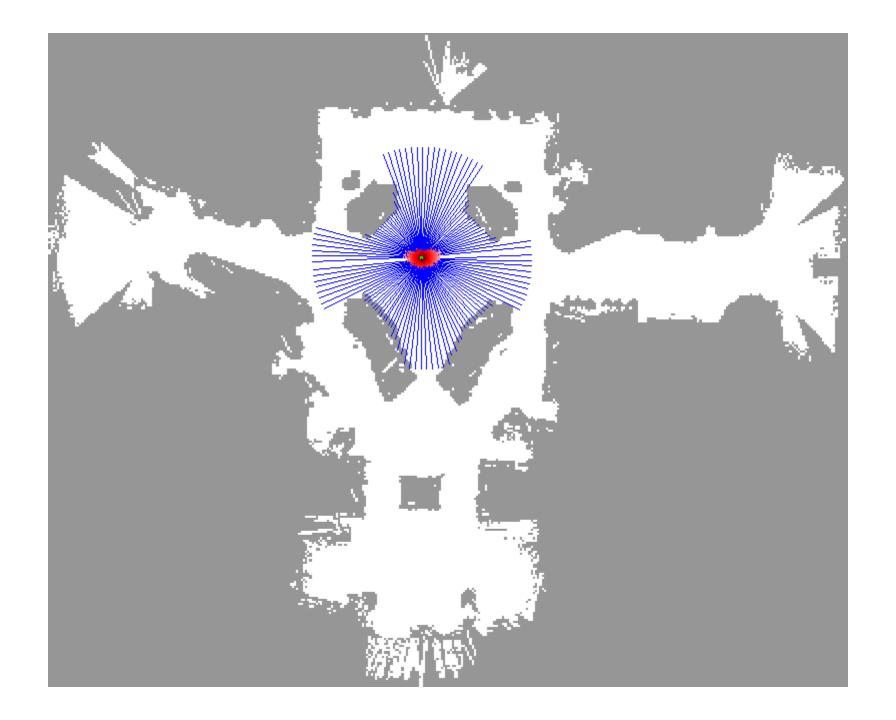












Recovery from Failure

Problem:

- Samples are highly concentrated during tracking
- True location is not covered by samples if position gets lost

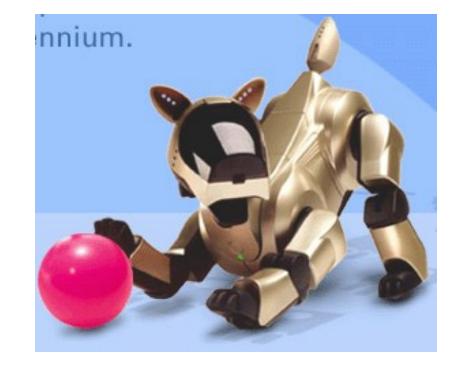
Solutions:

- Add uniformly distributed samples [Fox et al., 99]
- Draw samples according to observation density [Lenser et al.,00; Thrun et al., 00]

MCL: Recovery from Failure

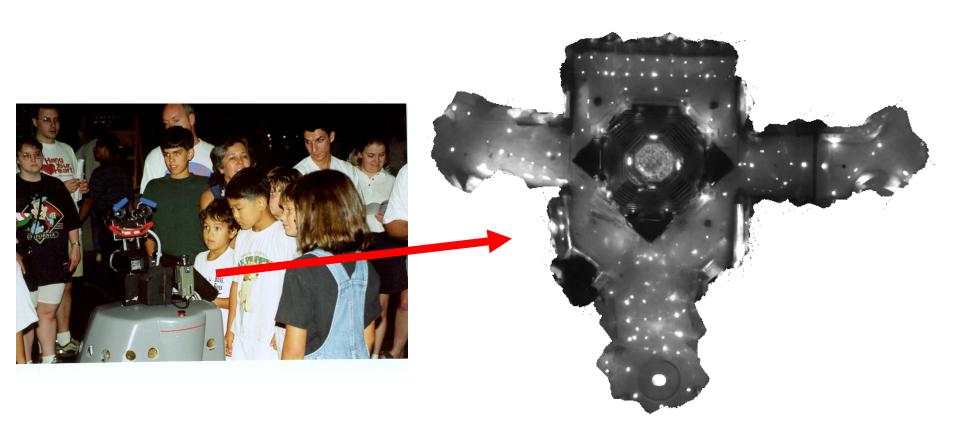


The RoboCup Challenge

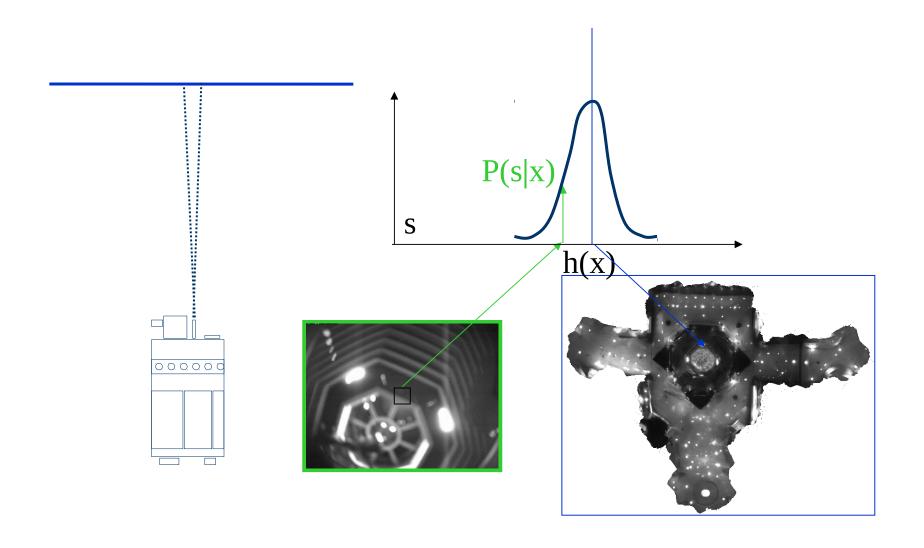


- Dynamic, adversarial environments
- Limited computational power
- Multi-robot collaboration
- Particle filters allow efficient localization [Lenser et al. 00]

Using Ceiling Maps for Localization

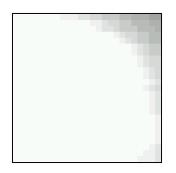


Vision-based Localization

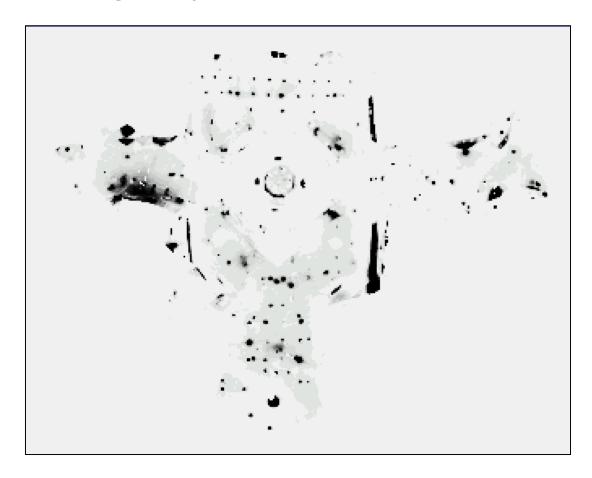


Under a Light

Measurement:



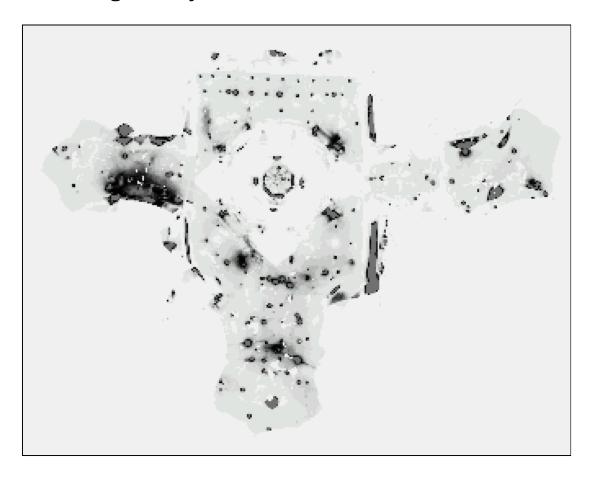
Resulting density:



Next to a Light

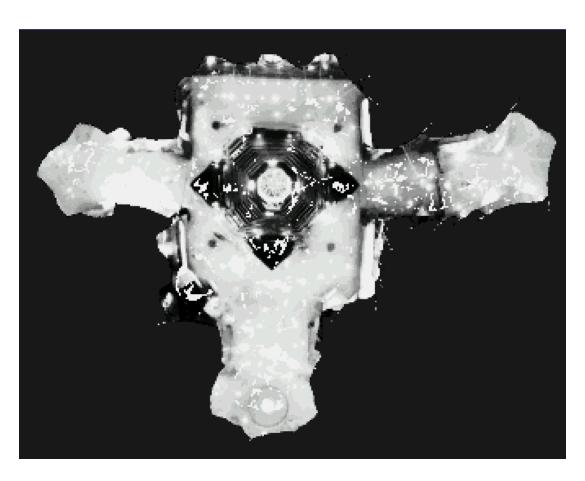
Measurement:

Resulting density:

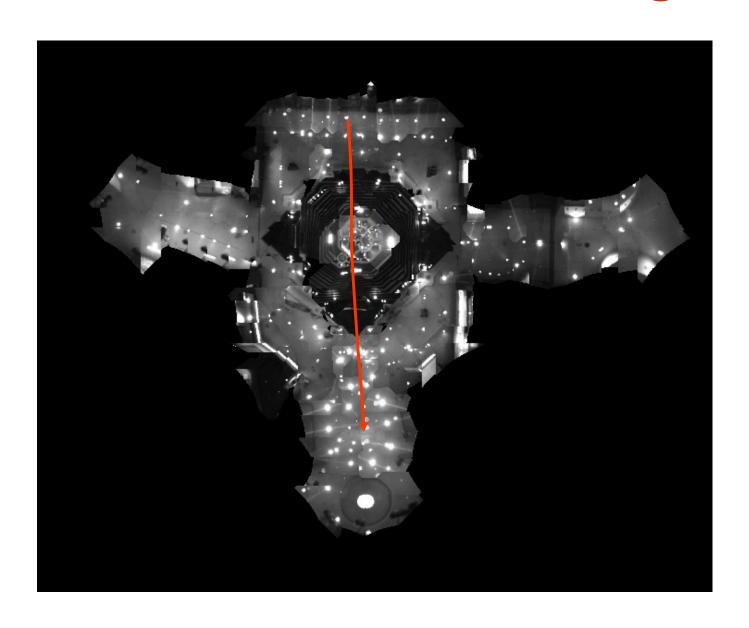


Elsewhere

Measurement:

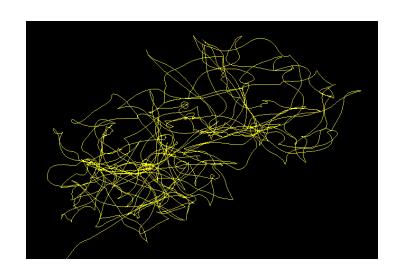


MCL: Global Localization Using Vision

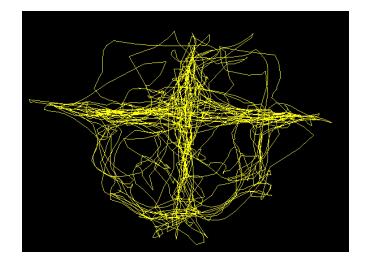


Vision-based Localization

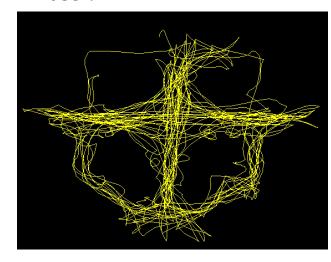
Odometry only:



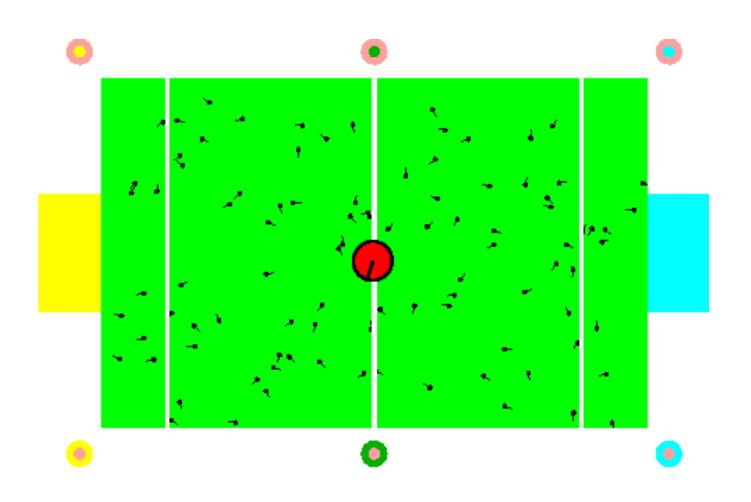
Vision:



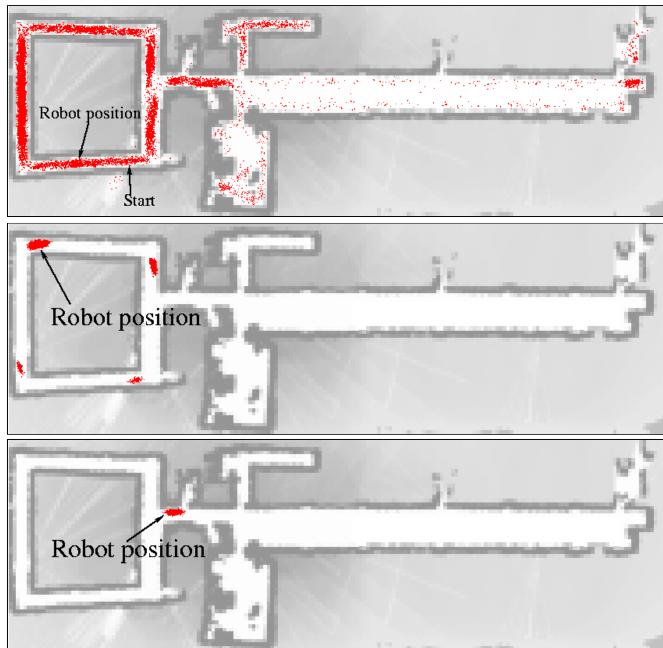
Laser:



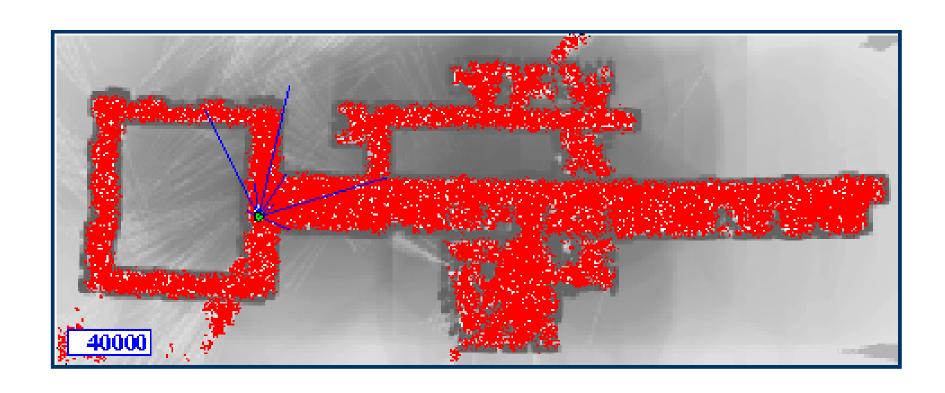
Localization for AIBO robots



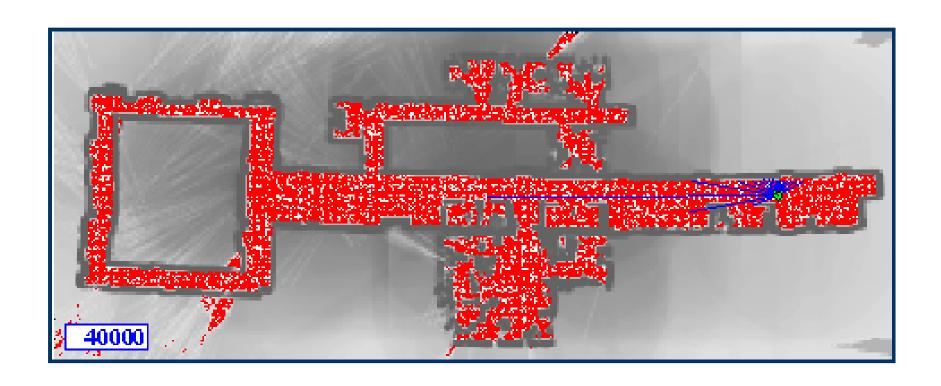
Adaptive Sampling



MCL: Adaptive Sampling (Sonar)



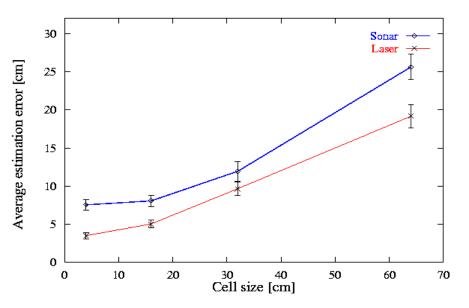
MCL: Adaptive Sampling (Laser)

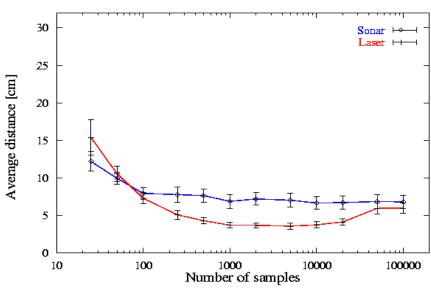


Performance Comparison

Grid-based localization

Monte Carlo localization





Particle Filters for Robot Localization (Summary)

- Approximate Bayes Estimation/Filtering
 - Full posterior estimation
 - Converges in O(1/√#samples) [Tanner'93]
 - Robust: multiple hypotheses with degree of belief
 - Efficient in low-dimensional spaces: focuses computation where needed
 - Any-time: by varying number of samples
 - Easy to implement

Localization Algorithms - Comparison

Multi-hypot

hesiś

tracking

Kalman

filter

Topological

maps

Grid-based

(fixed/variable)

Particle

filter

Sensors	Gaussian		Features	Non-Gaussian	Non-Gaus sian
Posterior	Gaussian	Multi-modal	Piecewise	Piecewise	Samples
Posterior	Gaussiaii	Multi-IIIouai	constant	constant	Samples
Efficiency (memory)	++	++	++	-/+	+/++
Efficiency (time)	++	++	++	0/+	+/++
Implementation	+	0	+	+/0	++
Accuracy	++	++	-	+/++	++
Robustness	_	+	+	++	+/++

Bayes Filtering: Lessons Learned

- General algorithm for recursively estimating the state of dynamic systems.
- Variants:
 - Hidden Markov Models
 - (Extended) Kalman Filters
 - Discrete Filters
 - Particle Filters