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Range Sensing strategies

  Active range sensors
  Ultrasound 
 Laser range sensor



Range Sensors (time of flight) (1)

 Large range distance measurement  -> called range sensors
 Range information:

 key element for localization and environment modeling
 Ultrasonic sensors as well as laser range sensors make use of 

propagation speed of sound or electromagnetic waves respectively. 
The traveled distance of a sound or electromagnetic wave is given by 

              d = c . t 
 Where

 d = distance traveled (usually round-trip)
 c = speed of wave propagation
 t = time of flight.



Range Sensors (time of flight) (2)

 It is important to point out 
 Propagation speed v of sound: 0.3 m/ms 
 Propagation speed v of  electromagnetic signals:  0.3 m/ns, 

 one million times faster. 

 3 meters 
 is 10 ms ultrasonic system 
 only 10 ns for a laser range sensor
 laser range sensors expensive and delicate

 The quality of time of flight range sensors manly depends on:
 Uncertainties about the exact time of arrival of the reflected signal
 Inaccuracies in the time of fight measure (laser range sensors)
 Opening angle of transmitted beam (ultrasonic range sensors)
 Interaction with the target (surface, specular reflections)
 Variation of propagation speed
 Speed of mobile robot and target (if not at stand still)



Ultrasonic Sensor (time of flight, sound) (1)

 transmit a packet of (ultrasonic) pressure waves 
 distance d of the echoing object can be calculated based on the 

propagation speed of sound c and the time of flight t.

 The speed of sound c (340 m/s) in air is given by

where

   : ration of specific heats

R: gas constant

T: temperature in degree Kelvin

c=√γ . R .T

d=
c .t
2

γ



Ultrasonic Sensor (time of flight, sound) (2)
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Wave packet

Signals of an ultrasonic sensor

• Send a wave packet wait until in comes back 



Ultrasonic Sensor (time of flight, sound) (3)

 typically a frequency: 40 - 180 kHz 
 generation of sound wave: piezo transducer

 transmitter and receiver separated or not separated
 sound beam propagates in a cone like manner 

 opening angles around 20 to 40 degrees
 regions of constant depth
 segments of an arc (sphere for 3D)
 Effective range 12cm, 5m
 Accuracy between 98-99%

Typical intensity distribution of a ultrasonic sensor
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Ultrasonic Sensor (time of flight, sound) (4)

 Other problems for ultrasonic sensors
 soft surfaces that absorb most of the 

sound energy
 surfaces that are far from being 

perpendicular to the direction of 
the sound -> specular reflection

a) 360° scan b) results from different geometric primitives



Sources of Error

 Opening angle
 Crosstalk
 Specular reflection
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Typical Ultrasound Scan
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Parallel Operation

 Given a 15 degrees opening angle, 24 sensors are needed to cover the 
whole 360 degrees area around the robot.

 Let the maximum range we are interested in be 10m.

 The time of flight then is 2*10/330 s=0.06 s

 A complete scan requires 1.45 s

 To allow frequent updates (necessary for high speed) the sensors 
have to be fired in parallel.

 This increases the risk of crosstalk

Slide adopted from C. Stachniss



Laser Range Sensor (time of flight, electromagnetic) (1)

 Laser light instead of sound
 Transmitted and received beams coaxial
 Transmitter illuminates a target with a collimated beam
 Receiver detects the time needed for round-trip
 Lidar (light detection and ranging)
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Laser Range Sensor (time of flight, electromagnetic) (2)

Time of flight measurement
 Pulsed laser

 measurement of elapsed time directly (as in ultrasound) 
 Beat frequency between a frequency modulated continuous wave and 

its received reflection
 Phase shift measurement to produce range estimation

 technically easier than the above two methods.



Laser Range Sensor (time of flight, electromagnetic) (3)

 Phase-Shift Measurement
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Laser Range Sensor (time of flight, electromagnetic) (5)

 Confidence in the range (phase estimate) is inversely proportional to the square of 
the received signal amplitude. 

 Hence dark, distant objects will not produce such good range estimated as 
closer brighter objects …



Laser Range Sensor (time of flight, electromagnetic)

 Typical range image of a 2D laser range sensor with a rotating mirror. The length 
of the lines through the measurement points indicate the uncertainties.
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Robots Equipped with Laser Scanners
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Typical Scans



Triangulation Ranging

 geometrical properties of the image to establish a distance measurement 
 e.g. project a well defined light pattern (e.g. point, line) onto the environment. 

 reflected light is than captured by a photo-sensitive line or matrix (camera) 
sensor device

 simple triangulation allows to establish a distance.
 e.g. size of an captured object is precisely known

 triangulation without light projecting



3D Laser



3D Laser



Structured Light (vision, 2 or 3D)

 Eliminate the correspondence problem by projecting structured light on the scene. 
 Slits of light or emit collimated light (possibly laser) by means of a rotating mirror. 
 Light perceived by camera 
 Range to an illuminated point can then be determined from simple geometry. 

H=D⋅tan α

b

u

a b



Heading Sensors

 Heading sensors can be proprioceptive (gyroscope, inclinometer) or 
exteroceptive (compass). 

 Used to determine the robots orientation and inclination. 
 Allow, together with an appropriate velocity information, to integrate 

the movement to an position estimate. 
 This procedure is called dead reckoning (ship navigation) 



Compass

 Since over 2000 B.C.
 when Chinese suspended a piece of naturally magnetite from a silk thread 

and used it to guide a chariot over land. 
 Magnetic field on earth 

 absolute measure for orientation. 
 Large variety of solutions to measure the earth magnetic field

 mechanical magnetic compass
 direct measure of the magnetic field (Hall-effect, magnetoresistive sensors)

 Major drawback
 weakness of the earth field
 easily disturbed by magnetic objects or other sources
 not feasible for indoor environments



Gyroscope

 Heading sensors, that keep the orientation to a fixed frame
 absolute measure for the heading of a mobile system. 

 Two categories, the mechanical and the optical gyroscopes
 Mechanical Gyroscopes

 Standard gyro

 Rated gyro

 Optical Gyroscopes
 Rated gyro



Mechanical Gyroscopes

 Concept:  inertial properties of a fast spinning rotor
 gyroscopic precession

 Angular momentum associated with a spinning wheel keeps the axis of the 
gyroscope inertially stable. 

 Reactive torque t (tracking stability) is proportional to the spinning speed w, the 
precession speed W and the wheels inertia I.

 No torque can be transmitted from the outer pivot to the wheel axis
 spinning axis will therefore be space-stable

 Quality: 0.1° in 6 hours

 If the spinning axis is aligned with the 
north-south meridian, the earth’s rotation 
has no effect on the gyro’s horizontal axis

 If it points east-west, the horizontal axis 
reads the earth rotation

τ=IωΩ



Ground-Based Active and Passive Beacons

 Elegant way to solve the localization problem in mobile robotics
 Beacons are signaling guiding devices with a precisely known position
 Beacon base navigation is used since the humans started to travel

 Natural beacons (landmarks) like stars, mountains or the sun
 Artificial beacons like lighthouses 

 The recently introduced Global Positioning System (GPS) revolutionized modern 
navigation technology

 Already one of the key sensors for outdoor mobile robotics
 For indoor robots GPS is not applicable, 

 Major drawback with the use of beacons in indoor:
 Beacons require changes in the environment 

-> costly. 
 Limit flexibility and adaptability to changing 

environments. 



Global Positioning System (GPS) (1)

 Developed for military use
 Recently it became accessible for commercial applications
 24 satellites (including three spares) orbiting the earth every 12 hours at a 

height of 20.190 km. 
 Four satellites are located in each of six planes inclined 55 degrees with 

respect to the plane of the earth’s equators
 Location of any GPS receiver is determined through a time of flight 

measurement 

 Technical challenges:
 Time synchronization between the individual satellites and the GPS receiver
 Real time update of the exact location of the satellites
 Precise measurement of the time of flight
 Interferences with other signals



Global Positioning System (GPS) (2)



GPS positioning

 Simple positioning principle
 Sattelites send signals, receivers received them with delay

ρ=( tr−t e)´ speedof light

ρ=√( X s−X r )
2+(Y s−Y r )

2+(Z s−Z r )
2

If we know at least three distance
Measurements, we can solve for 
Postion on earth



Characterizing Sensor Performance 

 Basic sensor response ratings (cont.)
 Resolution

 minimum difference between two values

 usually: lower limit of dynamic range = resolution

 for digital sensors it is usually the A/D resolution.

e.g.  5V / 255 (8 bit)

 Linearity
 variation of output signal as function of the input signal
 linearity is less important when signal is after treated with a computer

 Bandwidth or Frequency
 the speed with which a sensor can provide a stream of readings

 usually there is an upper limit depending on the sensor and the sampling rate
 Lower limit is also possible, e.g. acceleration sensor



In Situ Sensor Performance (1)

Characteristics that are especially relevant for real world environments

 Sensitivity
 ratio of output change to input change
 however, in real world environment, the sensor has very often high 

sensitivity to other environmental changes, e.g. illumination
 Cross-sensitivity

 sensitivity to environmental parameters that are orthogonal to the 
target parameters

 Error / Accuracy
 difference between the sensor’s output and the true value

m = measured value

v = true value

error



In Situ Sensor Performance (2)

Characteristics that are especially relevant for real world environments

 Systematic error -> deterministic errors
 caused by factors that can (in theory) be modeled -> prediction
 e.g. calibration of a laser sensor or of the distortion cause by the optic 

of a camera
 Random error -> non-deterministic

 no prediction possible
 however, they can be described probabilistically 
 e.g. Hue instability of camera, black level noise of camera ..

 Precision
 reproducibility of sensor results



Characterizing Error: The Challenges in Mobile Robotics

 Mobile Robot has to perceive, analyze and interpret the state of the 
surrounding

 Measurements in real world environment are dynamically changing 
and error prone. 

 Examples:
 changing illuminations
 specular reflections
 light or sound absorbing surfaces
 cross-sensitivity of robot sensor to robot pose and robot-environment 

dynamics
 rarely possible to model -> appear as random errors
 systematic errors and random errors might be well defined in controlled 

environment. This is not the case for mobile robots !!



Multi-Modal Error Distributions: The Challenges in …

 Behavior of sensors modeled by probability distribution (random 
errors)
 usually very little knowledge about the causes of random errors
 often probability distribution is assumed to be symmetric or even 

Gaussian
 however, it is important to realize how wrong this can be!
 Examples: 

 Sonar (ultrasonic) sensor might overestimate the distance in real environment 
and is therefore not symmetric

Thus the sonar sensor might be best modeled by two modes:
- mode for the case that the signal returns directly
- mode for the case that the signals returns after multi-path reflections.

 Stereo vision system might correlate to images incorrectly, thus causing results 
that make no sense at all 
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