
CS 689 – Robot Motion Planning
Manipulation Planning

Amarda Shehu

Department of Computer Science
George Mason University

What is Manipulation Planning?

[movie: industrial]

[movie: L-shape]

What is a manipulator?

Body: articulated chain (what are configuration parameters)?

Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

What moves where?

Workspace?

Configuration space?

Need to keep track of ? and ? moving in workspace?

Amarda Shehu (689) 2

What is Manipulation Planning?

[movie: industrial]

[movie: L-shape]

What is a manipulator?

Body: articulated chain (what are configuration parameters)?

Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

What moves where?

Workspace?

Configuration space?

Need to keep track of ? and ? moving in workspace?

Amarda Shehu (689) 2

What is Manipulation Planning?

[movie: industrial]

[movie: L-shape]

What is a manipulator?

Body: articulated chain (what are configuration parameters)?

Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

What moves where?

Workspace?

Configuration space?

Need to keep track of ? and ? moving in workspace?

Amarda Shehu (689) 2

What is Manipulation Planning?

[movie: industrial]

[movie: L-shape]

What is a manipulator?

Body: articulated chain (what are configuration parameters)?

Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

What moves where?

Workspace?

Configuration space?

Need to keep track of ? and ? moving in workspace?

Amarda Shehu (689) 2

What is Manipulation Planning?

[movie: industrial]

[movie: L-shape]

What is a manipulator?

Body: articulated chain (what are configuration parameters)?

Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

What moves where?

Workspace?

Configuration space?

Need to keep track of ? and ? moving in workspace?

Amarda Shehu (689) 2

Problem Formulation

Given:

a description of the obstacles

a description of the robot manipulator

a description of the object to be manipulated

a description of the initial and desired placements for the object

Objective:

compute a sequence of motions where the robot manipulator grasps the object in
its initial placement and places it in its desired placement while avoiding collisions

Amarda Shehu (689) 3

Some Challenges

How to grasp the object?

Is the grasp stable?

Does the solution require re-grasping?

When should the robot manipulator release the object and re-grasp it in a different
configuration?

Amarda Shehu (689) 4

Two Representative Approaches

PRM-based: Nielsen and Kavraki, IROS 2000.

Expands roadmap/graph to manipulation graph.

Assumes stable robot grasps and object placements pre-computed and provided
ahead of time.

RRT-based: Berenson et al., ICRA 2009.

Approaches it as an inverse kinematics problem.

Enriches any provided object placements with more and computes new robot
grasps.

Amarda Shehu (689) 5

PRM-based Manipulation Planning

Assumed: stable object placements necessitating re-grasping provided ahead of time.

How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.

How can they be pre-computed?

Focus: efficient construction of manipulation graph.

Observation on whether motion of robot is with object grasped or not.

Amarda Shehu (689) 6

PRM-based Manipulation Planning

Assumed: stable object placements necessitating re-grasping provided ahead of time.

How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.

How can they be pre-computed?

Focus: efficient construction of manipulation graph.

Observation on whether motion of robot is with object grasped or not.

Amarda Shehu (689) 6

PRM-based Manipulation Planning

Assumed: stable object placements necessitating re-grasping provided ahead of time.

How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.

How can they be pre-computed?

Focus: efficient construction of manipulation graph.

Observation on whether motion of robot is with object grasped or not.

Amarda Shehu (689) 6

PRM-based Manipulation Planning

Assumed: stable object placements necessitating re-grasping provided ahead of time.

How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.

How can they be pre-computed?

Focus: efficient construction of manipulation graph.

Observation on whether motion of robot is with object grasped or not.

Amarda Shehu (689) 6

Observations

Solution path consists of a sequence of transfer and transit paths

Transfer path: subpath where object is stably grasped and moved by robot

Transit path: subpath where object is left in a stable position while robot changes
grasp

Amarda Shehu (689) 7

Manipulation Graph: Vertices

Each node is a triple (qobj, g , qrob), where:

qobj specifies a stable placement (position and orientation) of the object
Provided or pre-computed before construction of graph

g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

Provided before construction of graph

qrob is the configuration of the robot for which the robot tool is able to grasp the
object placed at qobj using the grasp g

Focus of this approach

Amarda Shehu (689) 8

Manipulation Graph: Vertices

Each node is a triple (qobj, g , qrob), where:

qobj specifies a stable placement (position and orientation) of the object
Provided or pre-computed before construction of graph

g specifies a position and orientation of the robot tool relative to the placement of
the object at which the tool is able to grasp the object

Provided before construction of graph

qrob is the configuration of the robot for which the robot tool is able to grasp the
object placed at qobj using the grasp g

Focus of this approach

Amarda Shehu (689) 8

Manipulation Graph: Edges

Transfer edge: Robot moves with object grasped by tool. What is changing?

Is robot moving in space?

Is object moving in space?

Is tool/grasper moving in space?

An edge
(

(qi
obj, g , q

i
rob), (qj

obj, g , q
j
rob)

)
indicates a tranfer (local) path where the

object is grasped according to g and the robot moves with the object from configuration
(qi

obj, q
i
rob) to (qj

obj, q
j
rob)

Amarda Shehu (689) 9

Manipulation Graph: Edges

Transfer edge: Robot moves with object grasped by tool. What is changing?

Is robot moving in space?

Is object moving in space?

Is tool/grasper moving in space?

An edge
(

(qi
obj, g , q

i
rob), (qj

obj, g , q
j
rob)

)
indicates a tranfer (local) path where the

object is grasped according to g and the robot moves with the object from configuration
(qi

obj, q
i
rob) to (qj

obj, q
j
rob)

Amarda Shehu (689) 9

Manipulation Graph: Edges

Transfer edge: Robot moves with object grasped by tool. What is changing?

Is robot moving in space?

Is object moving in space?

Is tool/grasper moving in space?

An edge
(

(qi
obj, g , q

i
rob), (qj

obj, g , q
j
rob)

)
indicates a tranfer (local) path where the

object is grasped according to g and the robot moves with the object from configuration
(qi

obj, q
i
rob) to (qj

obj, q
j
rob)

Amarda Shehu (689) 9

Manipulation Graph: Edges

Transit edge: Robot moves to reposition its end effector/tool for object on ground.
What is changing?

Is robot moving in space?

Is object moving in space?

Is tool/grasper moving in space?

An edge
(

(qobj, g
i , qi

rob), (qobj, g
j , qj

rob)
)

indicates a transit (local) path where the

object is left at a stable placement qobj while the robot changes grasp from (g i , qi
rob) to

(g j , qj
rob)

Amarda Shehu (689) 10

Manipulation Graph: Edges

Transit edge: Robot moves to reposition its end effector/tool for object on ground.
What is changing?

Is robot moving in space?

Is object moving in space?

Is tool/grasper moving in space?

An edge
(

(qobj, g
i , qi

rob), (qobj, g
j , qj

rob)
)

indicates a transit (local) path where the

object is left at a stable placement qobj while the robot changes grasp from (g i , qi
rob) to

(g j , qj
rob)

Amarda Shehu (689) 10

Manipulation Graph: Edges

Transit edge: Robot moves to reposition its end effector/tool for object on ground.
What is changing?

Is robot moving in space?

Is object moving in space?

Is tool/grasper moving in space?

An edge
(

(qobj, g
i , qi

rob), (qobj, g
j , qj

rob)
)

indicates a transit (local) path where the

object is left at a stable placement qobj while the robot changes grasp from (g i , qi
rob) to

(g j , qj
rob)

Amarda Shehu (689) 10

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

How is sampling done for each of the components of the configuration?

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

How is local path generated for transfer or transit edge?

Amarda Shehu (689) 11

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

How is sampling done for each of the components of the configuration?

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

How is local path generated for transfer or transit edge?

Amarda Shehu (689) 11

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

How is sampling done for each of the components of the configuration?

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

How is local path generated for transfer or transit edge?

Amarda Shehu (689) 11

Computing the Manipulation Graph

PRM Approach

Node Generation:
for i = 1, . . . ,N do sample a node (qi

obj, g
i , qi

rob)

How is sampling done for each of the components of the configuration?

Edge Generation:

connect neighboring nodes
(

(qi
obj, g

i , qi
rob), (qj

obj, g
j , qj

rob)
)

How is local path generated for transfer or transit edge?

Amarda Shehu (689) 11

Manipulation Graph

Solid lines represent transit paths, and dotted lines represent transfer paths.

Amarda Shehu (689) 12

Challenges and Key Idea

Challenges:

Each edge generation gives rise to a path-planning problem

Must verify edge validity before adding it to manipulation graph

Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

Probabilistic edges instead of deterministic edges

Use a probabilistic path planner to compute edge connections

Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

From the people that gave you the Lazy PRM...

Amarda Shehu (689) 13

Challenges and Key Idea

Challenges:

Each edge generation gives rise to a path-planning problem

Must verify edge validity before adding it to manipulation graph

Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

Probabilistic edges instead of deterministic edges

Use a probabilistic path planner to compute edge connections

Probability associated with an edge e depends on the time spent by probabilistic
path planner on e

From the people that gave you the Lazy PRM...

Amarda Shehu (689) 13

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph

2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do

2: σ ← compute most probable path in the
manipulation graph

3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph

3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do

4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time

6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1

8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)

5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then

6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability

9: if prob(q′, q′′) 6= 1 then
10: run subdivision collision checking to

validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)

12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure

14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)

16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

A two-level Fuzzy PRM for Manipulation Planning

[Nielsen, Kavraki: IROS 2000]

Manipulation Graph

1: User supplies nodes (qiobj, g
i , qirob),

i = 1, . . . ,N of the manipulation graph
2: for each pair of nodes

e = ((qiobj, g
i , qirob), (qjobj, g

j , qjrob) do

3: if g i = g j then add e as a transfer edge
and set prob(e)← 0.9999

4: if qiobj = qjobj then add e as a transit

edge and set prob(e)← 0.9999

Query Stage

1: while no solution found do
2: σ ← compute most probable path in the

manipulation graph
3: for each edge e ∈ σ do
4: if prob(e) 6= 1 then
5: run low-level fuzzy PRM on e for a

short period of time
6: if success then
7: prob(e)← 1
8: else
9: prob(e)← 1− time(e)

total time

Low-Level Fuzzy PRM

1: if mode = “CONSTRUCTION” then
2: add a new sample q to graph Ge

3: add an edge(q, q′) to all previous samples
4: prob(q, q′)← P∗(l)
5: if mode = “QUERY” then
6: φ← compute most probable path in Ge

7: repeat
8: (q′, q′′)← edge in φ with lowest

probability
9: if prob(q′, q′′) 6= 1 then

10: run subdivision collision checking to
validate (q′, q′′) at resolution
`(q′, q′′)

11: increment `(q′, q′′)
12: if collision then
13: remove (q′, q′′) from Ge and

return failure
14: else
15: update prob(q′, q′′) based on

collision resolution `(q′, q′′)
16: until all edges in φ have prob 1
17: return success

Amarda Shehu (689) 14

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Manipulation planners often require specification of a set of stable grasp
configurations

This forces the planner to use only these configurations as goals

If the chosen goal configurations are unreachable, the planner will fail

Even when reachable, it may take the planner a long time to find solutions to these
goal configurations

Amarda Shehu (689) 15

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Manipulation planners often require specification of a set of stable grasp
configurations

This forces the planner to use only these configurations as goals

If the chosen goal configurations are unreachable, the planner will fail

Even when reachable, it may take the planner a long time to find solutions to these
goal configurations

Amarda Shehu (689) 15

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Proposed Approach

Introduce concept of Workspace Goal Regions (WGRs)

WGR allows the specification of continuous regions in the six-dimensional
workspace of end-effector poses as goals for the planner

Two WGRs describe grasping a soda can

Bounds allow rotation around z axis of w

Amarda Shehu (689) 16

Definition of a WGR

Reference frame w attached at object
specifying pre-computed grasp pose

Workspace bounds Bw specifying
flexibility around target grasp w:
[(xmin, xmax), (ymin, ymax), (zmin, zmax),
(ψmin, ψmax), (θmin, θmax), (φmin, φmax)]

To allow offset for end-effector, transform Tw
e specifies end-effector pose relative to

the (w) reference frame of the desired grasp

Simple operations can be done: T 0
wT

w
e now specifies a target pose of end effector

in world coordinate frame

One can sample alternative pose for end effector from Bw , and then convert to
world coordinate frame to provide an end-effector goal pose to IK solver

Amarda Shehu (689) 17

Why Use WGRs for Manipulation Planning

Sampling from Bw (in the provided range for each of the 6 coordinates that specify
the pose of target, pre-specified grasp) gives alternative grasper pose in
(w/object’s) coordinate frame.

Sample can be converted into new, sampled goal pose for end-effector.

IK can be used to steer manipulator towards sampled goal end-effector pose.

All encapsulated in an IK bi-directional RRT (IKBiRRT) so as to deal with the
usual get-stuck (subptimal) behavior of gradient-descent type methods for IK.

A distance measure can be specified to give a sense of how far or near two
end-effector configurations are for RRT.

Amarda Shehu (689) 18

Some Sampling Target End-Effector Pose from WGR

dw
sample ← sample a random value

between each of the bounds defined by
Bw with uniform probability

convert dw
sample into a transformation

matrix Tw
sample, which specifies the

sampled grasper pose relative to the
coordinate frame w of the target grasp.

convert the sampled grasper pose into
a sampled pose for the end-effector,
still in the coordinate frame of w
(target grasp pose)

Tw
sample · Tw

e

convert the sampled end-effector pose in world coordinates

T 0
sample′ = T 0

wT
w
sampleT

w
e

T 0
sample′ is passed to an IK solver to generate solution(a)s, which are checked for

collisions. Only collision-free solutions are added to the RRT.

Amarda Shehu (689) 19

Distance Measurement for RRT

use FK to get end-effector pose at current
qs configuration: T 0

s is pose of
end-effector in world coordinates.

get pose of grasp, if object held there, in
world coordinates

T 0
s′ = T 0

s (Tw
e)−1

convert it from world to coordinates of w

Tw
s′ = (T 0

w)−1T 0
s′

convert Tw
s′ into a 6× 1 displacement

vector from origin of w frame

dw =

tw
s′

arctan2(Rw
s′32
,Rw

s′33
)

−arcsin(Rw
s′31

)

arctan2(Rw
s′21
,Rw

s′11
)

take into account bounds Bw to get 6× 1
displacement vector ∆x from dw

∆xi =

dw
i − Bw

i,1 if dw
i < Bw

i,1

dw
i − Bw

i,2 if dw
i > Bw

i,2

0 otherwise

Distance to WGRs: d(qs ,WGR)

d(qs ,WGR) = ||∆x ||

Amarda Shehu (689) 20

Inverse Kinematics Bi-Directional RRT (IKBiRRT): Overall Approach

Grows one tree from start and one tree from goal configuration.

At each iteration chooses between one of two modes: exploration through standard
BiRRT and sampling from the set of WGRs W. The probability of choosing the
mode is controlled by the parameter Psample.

Goal configurations sampled from a WGR are injected into the backwards tree that
grows from goal.

Termination when both trees meet at some configuration.

Amarda Shehu (689) 21

Inverse Kinematics Bi-Directional RRT (IKBiRRT)

1: Ta.Init(qs); Tb.Init(NULL)
2: while TimeRemaining() do
3: Tgoal ← GetBackwardTree(Ta,Tb)
4: if Tgoal.size() = 0 or rand(0, 1) < Psample then
5: AddIKSolutions(Tgoal)
6: else
7: qrand ← RandConfig()

8: qa
near ← NearestNeighbor(Ta, qrand)

9: qa
reached ← ExtendTree(Ta, q

a
near, qrand)

10: qb
near ← NearestNeighbor(Tb, qrand)

11: qb
reached ← ExtendTree(Tb, q

b
near, qrand)

12: if qa
reached = qb

reached then
13: return ExtractPath(Ta, q

a
reached,Tb, q

b
reached)

14: else
15: Swap(Ta,Tb)

[movie]

Amarda Shehu (689) 22

