
CS689 - Robot Motion Planning
Motion Planning with Kinematics and Dynamics

Amarda Shehu

Department of Computer Science
George Mason University

Beyond Motion Planning with Geometric Constraints

Geometric constraints are generally not sufficient to adequately
express robot motions

[movie: Moving Car 1]

Are the motions realistic?

What is missing?

Amarda Shehu (689) 2

Beyond Motion Planning with Geometric Constraints

Geometric constraints are generally not sufficient to adequately
express robot motions

[movie: Moving Car 1]

Are the motions realistic?

What is missing?

Amarda Shehu (689) 2

Motion Planning with Kinematic Constraints

Actual car steering and constraints on velocity may make planned
motions more realistic.

[movie: Moving Car 2]

Are the motions more realistic?

Can they be made more realistic?

How?

Amarda Shehu (689) 3

Motion Planning with Kinematic Constraints

Actual car steering and constraints on velocity may make planned
motions more realistic.

[movie: Moving Car 2]

Are the motions more realistic?

Can they be made more realistic?

How?

Amarda Shehu (689) 3

Motion Planning with Kinematic and Dynamic Constraints

Geometric constraints are generally not sufficient to adequately
express robot motions

Constraints on velocity, forces, torques, accelerations are needed for
better representations

[movie: Moving Car 1 - Geometric]

[movie: Moving Car 1 - Kinematics]

[movie: Moving Car 3 - Dynamics]

Amarda Shehu (689) 4

Kinematics Constraints == Constraints on Velocity

Illustration:

C-space = R2 = {q = (x , y) ∈ R2}

Velocity dq
dt = q̇ = (ẋ , ẏ)

Each (ẋ , ẏ) is an element of the tangent space Tq(R2), which is a 2D
vector space at every (x , y)

At each q ∈ R2, restricting the set of velocities yields some set
U(q) ⊂ Tq(R2)

Think about the kinds of constraints imposed on velocity

Amarda Shehu (689) 5

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0:

Paddling boat on river flowing in positive x direction.

ẋ ≥ 0:

Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0:

No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0:

Paddling boat on river flowing in positive x direction.

ẋ ≥ 0:

Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0:

No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0:

Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0:

No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0:

Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0:

No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0:

No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0:

No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0: No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0: No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1:

Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0: No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1: Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0: No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1: Constraint enforces maximum speed.

ẋ + ẏ ≥ 1:

Impossible to stop or slow down.

Amarda Shehu (689) 6

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

ẋ > 0: Paddling boat on river flowing in positive x direction.

ẋ ≥ 0: Allows to stop in x direction; e.g. following velocity in y.

ẋ = 0: No motion in x direction; (0, ẏ) allowed.

ẋ + ẏ ≤ 1: Constraint enforces maximum speed.

ẋ + ẏ ≥ 1: Impossible to stop or slow down.

Amarda Shehu (689) 6

Implicit vs. Parametric Kinematics Constraints

Implicit and parametric representations are alternative ways to express
U(q) ∀q ∈ R2.

Implicit (indirect) representation: expresses velocities that are
not allowed.

Parametric (direct) representation: expresses velocities that are
allowed.

Amarda Shehu (689) 7

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed and are
of the form:

g(q, q̇) on 0

where

g(q, q̇) is some function g : Q × Q̇ → R
on can be any of the symbols =, <,>,≤,≥

Example of point in plane

configuration: q = (x , y) ∈ R2

velocity: dq
dt = q̇ = (ẋ , ẏ)

Examples of implicit velocity constraints

ẋ > 0, ẋ = 0, ẋ2 + ẏ2 ≤ 1, x = ẋ , etc.

Amarda Shehu (689) 8

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed and are
of the form:

g(q, q̇) on 0

where

g(q, q̇) is some function g : Q × Q̇ → R
on can be any of the symbols =, <,>,≤,≥

Example of point in plane

configuration: q = (x , y) ∈ R2

velocity: dq
dt = q̇ = (ẋ , ẏ)

Examples of implicit velocity constraints

ẋ > 0, ẋ = 0, ẋ2 + ẏ2 ≤ 1, x = ẋ , etc.

Amarda Shehu (689) 8

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are not allowed and are
of the form:

g(q, q̇) on 0

where

g(q, q̇) is some function g : Q × Q̇ → R
on can be any of the symbols =, <,>,≤,≥

Example of point in plane

configuration: q = (x , y) ∈ R2

velocity: dq
dt = q̇ = (ẋ , ẏ)

Examples of implicit velocity constraints

ẋ > 0, ẋ = 0, ẋ2 + ẏ2 ≤ 1, x = ẋ , etc.

Amarda Shehu (689) 8

Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed and are
of the form:

q̇ = f (q, u)

where

f (q, u) is some function f : Q × U → Q̇ that expresses a set of
differential equations.

Why a set?

f is referred to as the configuration transition equation

u is an input control/action.

So, Tq(Q) is parameterized through u: Given a (sampled?)
control/action, one can obtain an allowed velocity.

Let’s work out the kinematics of some simple wheeled systems.

Amarda Shehu (689) 9

Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed and are
of the form:

q̇ = f (q, u)

where

f (q, u) is some function f : Q × U → Q̇ that expresses a set of
differential equations. Why a set?

f is referred to as the configuration transition equation

u is an input control/action.

So, Tq(Q) is parameterized through u: Given a (sampled?)
control/action, one can obtain an allowed velocity.

Let’s work out the kinematics of some simple wheeled systems.

Amarda Shehu (689) 9

Parametric Velocity Constraints

Parametric velocity constraints express velocities that are allowed and are
of the form:

q̇ = f (q, u)

where

f (q, u) is some function f : Q × U → Q̇ that expresses a set of
differential equations. Why a set?

f is referred to as the configuration transition equation

u is an input control/action.

So, Tq(Q) is parameterized through u: Given a (sampled?)
control/action, one can obtain an allowed velocity.

Let’s work out the kinematics of some simple wheeled systems.

Amarda Shehu (689) 9

Kinematics for Wheeled Systems

Objective 1: Derive configuration transition equation (do the
kinematics) for wheeled systems (car, differential drive, and unicycle).

Constrain velocities for more realistic motions.

Objective 2: Proceed with dynamics after working out kinematics.

Constrain accelerations for even more realistic motions.

Amarda Shehu (689) 10

Kinematics for Wheeled Systems – A Simple Car

a simple car as opposed to other car variations

Objective: Obtain f as in q̇ = f (q, u).

Preliminaries:

Car cannot drive sideways because

back wheels roll instead of slide
(which is why parallel parking is challenging)

.

Parallel parking would be trivial

if all four wheels could
simultaneously be turned towards the curb.

Complicated maneuvers arise due to rolling constraints.

Need: model for car

Need: understand way car moves (what do we control?)

Amarda Shehu (689) 11

Kinematics for Wheeled Systems – A Simple Car

a simple car as opposed to other car variations

Objective: Obtain f as in q̇ = f (q, u).

Preliminaries:

Car cannot drive sideways because back wheels roll instead of slide
(which is why parallel parking is challenging).

Parallel parking would be trivial

if all four wheels could
simultaneously be turned towards the curb.

Complicated maneuvers arise due to rolling constraints.

Need: model for car

Need: understand way car moves (what do we control?)

Amarda Shehu (689) 11

Kinematics for Wheeled Systems – A Simple Car

a simple car as opposed to other car variations

Objective: Obtain f as in q̇ = f (q, u).

Preliminaries:

Car cannot drive sideways because back wheels roll instead of slide
(which is why parallel parking is challenging).

Parallel parking would be trivial if all four wheels could
simultaneously be turned towards the curb.

Complicated maneuvers arise due to rolling constraints.

Need: model for car

Need: understand way car moves (what do we control?)

Amarda Shehu (689) 11

Kinematics for Wheeled Systems – A Simple Car

a simple car as opposed to other car variations

Objective: Obtain f as in q̇ = f (q, u).

Preliminaries:

Car cannot drive sideways because back wheels roll instead of slide
(which is why parallel parking is challenging).

Parallel parking would be trivial if all four wheels could
simultaneously be turned towards the curb.

Complicated maneuvers arise due to rolling constraints.

Need: model for car

Need: understand way car moves (what do we control?)

Amarda Shehu (689) 11

Kinematics for Wheeled Systems – A Simple Car

a simple car as opposed to other car variations

Objective: Obtain f as in q̇ = f (q, u).

Preliminaries:

Car cannot drive sideways because back wheels roll instead of slide
(which is why parallel parking is challenging).

Parallel parking would be trivial if all four wheels could
simultaneously be turned towards the curb.

Complicated maneuvers arise due to rolling constraints.

Need: model for car

Need: understand way car moves (what do we control?)

Amarda Shehu (689) 11

Kinematics for Wheeled Systems – A Simple Car

Car: rigid body that moves in plane.

Car configuration:
q = (x , y , θ) ∈ R× S1

Body frame:

Origin is at the center of rear axle
x-axis points along main axis of
the car

Velocity (signed speed in x direction
of body frame): s

Steering angle: φ

Distance between front and rear
axles: L

Amarda Shehu (689) 12

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

If steering angle φ is kept fixed, car
travels in circular motion.

Center of circle: intersection
between normals to steering axis
and car axis.

Radius of circle: ρ

Need : Express car motions as a set of
differential equations

ẋ = f1(q, u)

= f1(x , y , θ, s, φ)

ẏ = f2(q, u)

= f2(x , y , θ, s, φ)

θ̇ = f3(q, u)

= f3(x , y , θ, s, φ)

Amarda Shehu (689) 13

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

If steering angle φ is kept fixed, car
travels in circular motion.

Center of circle: intersection
between normals to steering axis
and car axis.

Radius of circle: ρ

Need : Express car motions as a set of
differential equations

ẋ = f1(q, u) = f1(x , y , θ, s, φ)

ẏ = f2(q, u)

= f2(x , y , θ, s, φ)

θ̇ = f3(q, u)

= f3(x , y , θ, s, φ)

Amarda Shehu (689) 13

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

If steering angle φ is kept fixed, car
travels in circular motion.

Center of circle: intersection
between normals to steering axis
and car axis.

Radius of circle: ρ

Need : Express car motions as a set of
differential equations

ẋ = f1(q, u) = f1(x , y , θ, s, φ)

ẏ = f2(q, u) = f2(x , y , θ, s, φ)

θ̇ = f3(q, u)

= f3(x , y , θ, s, φ)

Amarda Shehu (689) 13

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

If steering angle φ is kept fixed, car
travels in circular motion.

Center of circle: intersection
between normals to steering axis
and car axis.

Radius of circle: ρ

Need : Express car motions as a set of
differential equations

ẋ = f1(q, u) = f1(x , y , θ, s, φ)

ẏ = f2(q, u) = f2(x , y , θ, s, φ)

θ̇ = f3(q, u) = f3(x , y , θ, s, φ)

Amarda Shehu (689) 13

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

In small time interval ∆t, car must
move approximately in direction
rear wheels are pointing

In the limit, as ∆t → 0, then
dy
dx = tan θ, i.e.,
−ẋ sin θ + ẏ cos θ = 0

Solution is of the form ẋ = s cos θ
and ẏ = s sin θ

What about θ̇?

Amarda Shehu (689) 14

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

In small time interval ∆t, car must
move approximately in direction
rear wheels are pointing

In the limit, as ∆t → 0, then
dy
dx = tan θ, i.e.,
−ẋ sin θ + ẏ cos θ = 0

Solution is of the form ẋ = s cos θ
and ẏ = s sin θ

What about θ̇?

Amarda Shehu (689) 14

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

In small time interval ∆t, car must
move approximately in direction
rear wheels are pointing

In the limit, as ∆t → 0, then
dy
dx = tan θ, i.e.,
−ẋ sin θ + ẏ cos θ = 0

Solution is of the form ẋ = s cos θ
and ẏ = s sin θ

What about θ̇?

Amarda Shehu (689) 14

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

In small time interval ∆t, car must
move approximately in direction
rear wheels are pointing

In the limit, as ∆t → 0, then
dy
dx = tan θ, i.e.,
−ẋ sin θ + ẏ cos θ = 0

Solution is of the form ẋ = s cos θ
and ẏ = s sin θ

What about θ̇?

Amarda Shehu (689) 14

Kinematics for Wheeled Systems – A Simple Car

How does the car move?

In small time interval ∆t, car must
move approximately in direction
rear wheels are pointing

In the limit, as ∆t → 0, then
dy
dx = tan θ, i.e.,
−ẋ sin θ + ẏ cos θ = 0

Solution is of the form ẋ = s cos θ
and ẏ = s sin θ

What about θ̇?

Amarda Shehu (689) 14

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s?

dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?

dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

Need to put car at consecutive
configs on circle to see ∆θ as
∆t → 0.

L/ρ = tan(φ) [angle relations]

Let w be distance traveled on circle

What is translational velocity dw
relative to s? dw = s.

How does translational velocity dw
= s relate to angular velocity dθ?
dw = ρdθ [cord length]

So, putting it all together:

dθ =
tanφ

L
dw =

tanφ

L
s ⇒ θ̇ =

s

L
tanφ

Amarda Shehu (689) 15

Kinematics for Wheeled Systems – A Simple Car

What we have so far on configuration
transition equations:

ẋ = s · cos(θ)

ẏ = s · sin(θ)

θ̇ = s
L tanφ

How should we control the car? Where are our controls/actions?

Amarda Shehu (689) 16

Kinematics for Wheeled Systems – A Simple Car

What we have so far on configuration
transition equations:

ẋ = s · cos(θ)

ẏ = s · sin(θ)

θ̇ = s
L tanφ

How should we control the car? Where are our controls/actions?

Amarda Shehu (689) 16

Kinematics for Wheeled Systems – A Simple Car

What we have so far on configuration
transition equations:

ẋ = s · cos(θ)

ẏ = s · sin(θ)

θ̇ = s
L tanφ

How should we control the car? Where are our controls/actions?

Amarda Shehu (689) 16

Kinematics for Wheeled Systems – A Simple Car

How should we control the car?

Setting the speed s, i.e., us = s

Setting the steering angle φ, i.e.,
uφ = φ

Putting it all together:

Input controls: us (speed) and uφ
(steering angle)

CTE:
ẋ = us cos θ
ẏ = us sin θ
θ̇ = us

L tan uφ

Amarda Shehu (689) 17

Kinematics for Wheeled Systems – A Simple Car

How should we control the car?

Setting the speed s, i.e., us = s

Setting the steering angle φ, i.e.,
uφ = φ

Putting it all together:

Input controls: us (speed) and uφ
(steering angle)

CTE:
ẋ = us cos θ
ẏ = us sin θ
θ̇ = us

L tan uφ

Amarda Shehu (689) 17

Kinematics for Wheeled Systems – A Simple Car

How should we control the car?

Setting the speed s, i.e., us = s

Setting the steering angle φ, i.e.,
uφ = φ

Putting it all together:

Input controls: us (speed) and uφ
(steering angle)

CTE:
ẋ = us cos θ
ẏ = us sin θ
θ̇ = us

L tan uφ

Amarda Shehu (689) 17

Forward Kinematics for Simple Car

Problem formulation when only worrying about geometric constraints:

Standing at configuration q = (x , y , θ), what are the workspace
coordinates of the control points?

Approach: treat car as rigid-body in 2D workspace, use combination
of rotation by θ followed by translation by center point (x , y).

New problem formulation under kinematic constraints:

Standing at configuration q = (x , y , θ) at time t, determine
configuration q

′
= (x

′
, y

′
, θ

′
) at time t + δt given controls us , uφ

Approach: use CTE to obtain q̇

Update q
′

= q + δt · q̇ [movie: Traj]

How can I generate a random path in configuration space?
Sample values for controls. Should there be bounds?

Amarda Shehu (689) 18

Forward Kinematics for Simple Car

Problem formulation when only worrying about geometric constraints:

Standing at configuration q = (x , y , θ), what are the workspace
coordinates of the control points?

Approach: treat car as rigid-body in 2D workspace, use combination
of rotation by θ followed by translation by center point (x , y).

New problem formulation under kinematic constraints:

Standing at configuration q = (x , y , θ) at time t, determine
configuration q

′
= (x

′
, y

′
, θ

′
) at time t + δt given controls us , uφ

Approach: use CTE to obtain q̇

Update q
′

= q + δt · q̇ [movie: Traj]

How can I generate a random path in configuration space?
Sample values for controls. Should there be bounds?

Amarda Shehu (689) 18

Forward Kinematics for Simple Car

Problem formulation when only worrying about geometric constraints:

Standing at configuration q = (x , y , θ), what are the workspace
coordinates of the control points?

Approach: treat car as rigid-body in 2D workspace, use combination
of rotation by θ followed by translation by center point (x , y).

New problem formulation under kinematic constraints:

Standing at configuration q = (x , y , θ) at time t, determine
configuration q

′
= (x

′
, y

′
, θ

′
) at time t + δt given controls us , uφ

Approach: use CTE to obtain q̇

Update q
′

= q + δt · q̇ [movie: Traj]

How can I generate a random path in configuration space?
Sample values for controls. Should there be bounds?

Amarda Shehu (689) 18

Forward Kinematics for Simple Car

Problem formulation when only worrying about geometric constraints:

Standing at configuration q = (x , y , θ), what are the workspace
coordinates of the control points?

Approach: treat car as rigid-body in 2D workspace, use combination
of rotation by θ followed by translation by center point (x , y).

New problem formulation under kinematic constraints:

Standing at configuration q = (x , y , θ) at time t, determine
configuration q

′
= (x

′
, y

′
, θ

′
) at time t + δt given controls us , uφ

Approach: use CTE to obtain q̇

Update q
′

= q + δt · q̇ [movie: Traj]

How can I generate a random path in configuration space?

Sample values for controls. Should there be bounds?

Amarda Shehu (689) 18

Forward Kinematics for Simple Car

Problem formulation when only worrying about geometric constraints:

Standing at configuration q = (x , y , θ), what are the workspace
coordinates of the control points?

Approach: treat car as rigid-body in 2D workspace, use combination
of rotation by θ followed by translation by center point (x , y).

New problem formulation under kinematic constraints:

Standing at configuration q = (x , y , θ) at time t, determine
configuration q

′
= (x

′
, y

′
, θ

′
) at time t + δt given controls us , uφ

Approach: use CTE to obtain q̇

Update q
′

= q + δt · q̇ [movie: Traj]

How can I generate a random path in configuration space?
Sample values for controls.

Should there be bounds?

Amarda Shehu (689) 18

Forward Kinematics for Simple Car

Problem formulation when only worrying about geometric constraints:

Standing at configuration q = (x , y , θ), what are the workspace
coordinates of the control points?

Approach: treat car as rigid-body in 2D workspace, use combination
of rotation by θ followed by translation by center point (x , y).

New problem formulation under kinematic constraints:

Standing at configuration q = (x , y , θ) at time t, determine
configuration q

′
= (x

′
, y

′
, θ

′
) at time t + δt given controls us , uφ

Approach: use CTE to obtain q̇

Update q
′

= q + δt · q̇ [movie: Traj]

How can I generate a random path in configuration space?
Sample values for controls. Should there be bounds?

Amarda Shehu (689) 18

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]. Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.
What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2].

Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.
What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]. Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.
What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]. Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.

What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]. Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.
What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]. Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.
What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Variations of the Simple Car Model

Input controls: us (speed) and uφ (steering angle)

CTE:ẋ = us cos θ, ẏ = us sin θ, θ̇ = us
L tan uφ

What are bounds on steering angle and speed? Why bound speed?

Tricycle

us ∈ [−1, 1] and uφ ∈ [−π/2, π/2]. Can it rotate in place?

Standard simple car

us ∈ [−1, 1] and uφ ∈ (−φmax, φmax) for some φmax < π/2.
What happens at π/2 and −π/2?

Reeds-Shepp car

Variation: us ∈ {−1, 0, 1} (i.e., “reverse”, “park”, “forward”)

Dubins car

Variation: us ∈ {0, 1} (i.e., “park”, “forward”)

Amarda Shehu (689) 19

Reachability Issues under Kinematic Constraints

Fundamental question:

Is any configuration reachable from a given configuration in wheeled
systems?

Most often, no. A car cannot move sideways. Specifying an arbitrary
goal configuration does not mean that one can always find
instataneous controls/one set of velocities.

We say a car is not instantaneously controllable (non-holonomic) but
series of maneuvers may exist (small time locally controllable).

We have issue of constrained mobility (no instantaneous controls).

Amarda Shehu (689) 20

Reachability Issues under Kinematic Constraints

Fundamental question:

Is any configuration reachable from a given configuration in wheeled
systems?

Most often, no. A car cannot move sideways. Specifying an arbitrary
goal configuration does not mean that one can always find
instataneous controls/one set of velocities.

We say a car is not instantaneously controllable (non-holonomic) but
series of maneuvers may exist (small time locally controllable).

We have issue of constrained mobility (no instantaneous controls).

Amarda Shehu (689) 20

Reachability Issues under Kinematic Constraints

Fundamental question:

Is any configuration reachable from a given configuration in wheeled
systems?

Most often, no. A car cannot move sideways. Specifying an arbitrary
goal configuration does not mean that one can always find
instataneous controls/one set of velocities.

We say a car is not instantaneously controllable (non-holonomic) but
series of maneuvers may exist (small time locally controllable).

We have issue of constrained mobility (no instantaneous controls).

Amarda Shehu (689) 20

Reachability Issues under Kinematic Constraints

Fundamental question:

Is any configuration reachable from a given configuration in wheeled
systems?

Most often, no. A car cannot move sideways. Specifying an arbitrary
goal configuration does not mean that one can always find
instataneous controls/one set of velocities.

We say a car is not instantaneously controllable (non-holonomic) but
series of maneuvers may exist (small time locally controllable).

We have issue of constrained mobility (no instantaneous controls).

Amarda Shehu (689) 20

Inverse Kinematics for Simple Car

Problem formulation:

Standing at configuration qstart = (xstart, ystart, θstart) at time t find
path that places robot at qgoal = (xgoal, ygoal, θgoal) at time t + δt.

How can we increase constrained mobility in non-holonomic systems?
Allow a sequence of maneuvers/different velocities. Look for a path
rather than a single edge.

If path exists, we say system is small-time locally controllable
(maneuvers exist).

New problem formulation: Find series of controls to get to goal.

Motion planning with kinematic constraints to find feasible series of
maneuvers.

Amarda Shehu (689) 21

Inverse Kinematics for Simple Car

Problem formulation:

Standing at configuration qstart = (xstart, ystart, θstart) at time t find
path that places robot at qgoal = (xgoal, ygoal, θgoal) at time t + δt.

How can we increase constrained mobility in non-holonomic systems?
Allow a sequence of maneuvers/different velocities. Look for a path
rather than a single edge.

If path exists, we say system is small-time locally controllable
(maneuvers exist).

New problem formulation: Find series of controls to get to goal.

Motion planning with kinematic constraints to find feasible series of
maneuvers.

Amarda Shehu (689) 21

Inverse Kinematics for Simple Car

Problem formulation:

Standing at configuration qstart = (xstart, ystart, θstart) at time t find
path that places robot at qgoal = (xgoal, ygoal, θgoal) at time t + δt.

How can we increase constrained mobility in non-holonomic systems?
Allow a sequence of maneuvers/different velocities. Look for a path
rather than a single edge.

If path exists, we say system is small-time locally controllable
(maneuvers exist).

New problem formulation: Find series of controls to get to goal.

Motion planning with kinematic constraints to find feasible series of
maneuvers.

Amarda Shehu (689) 21

Inverse Kinematics for Simple Car

Problem formulation:

Standing at configuration qstart = (xstart, ystart, θstart) at time t find
path that places robot at qgoal = (xgoal, ygoal, θgoal) at time t + δt.

How can we increase constrained mobility in non-holonomic systems?
Allow a sequence of maneuvers/different velocities. Look for a path
rather than a single edge.

If path exists, we say system is small-time locally controllable
(maneuvers exist).

New problem formulation: Find series of controls to get to goal.

Motion planning with kinematic constraints to find feasible series of
maneuvers.

Amarda Shehu (689) 21

Constrained Mobility in Non-holonomic Systems

Simple Car is under-actuated: only 2 controls, but C-space has 3
dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable
equation of the form f (q, q̇) = 0.

Simple Car is non-holonomic because −ẋsinθ + ẏ cosθ = 0.

Reeds-Shepp car can be maneuvered into an arbitrarily small parking
space, provided that a small amount of clearance exists.

Property called small-time locally controllable (STLC).

Dubins car is non-holonomic but not small-time controllable.

Why?

Try to parallel park with no reverse gear!

Can do it in an infinitely-large parking lot with no obstacles.

Amarda Shehu (689) 22

Constrained Mobility in Non-holonomic Systems

Simple Car is under-actuated: only 2 controls, but C-space has 3
dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable
equation of the form f (q, q̇) = 0.

Simple Car is non-holonomic because −ẋsinθ + ẏ cosθ = 0.

Reeds-Shepp car can be maneuvered into an arbitrarily small parking
space, provided that a small amount of clearance exists.

Property called small-time locally controllable (STLC).

Dubins car is non-holonomic but not small-time controllable. Why?

Try to parallel park with no reverse gear!

Can do it in an infinitely-large parking lot with no obstacles.

Amarda Shehu (689) 22

Constrained Mobility in Non-holonomic Systems

Simple Car is under-actuated: only 2 controls, but C-space has 3
dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable
equation of the form f (q, q̇) = 0.

Simple Car is non-holonomic because −ẋsinθ + ẏ cosθ = 0.

Reeds-Shepp car can be maneuvered into an arbitrarily small parking
space, provided that a small amount of clearance exists.

Property called small-time locally controllable (STLC).

Dubins car is non-holonomic but not small-time controllable. Why?

Try to parallel park with no reverse gear!

Can do it in an infinitely-large parking lot with no obstacles.

Amarda Shehu (689) 22

Constrained Mobility in Non-holonomic Systems

Simple Car is under-actuated: only 2 controls, but C-space has 3
dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable
equation of the form f (q, q̇) = 0.

Simple Car is non-holonomic because −ẋsinθ + ẏ cosθ = 0.

Reeds-Shepp car can be maneuvered into an arbitrarily small parking
space, provided that a small amount of clearance exists.

Property called small-time locally controllable (STLC).

Dubins car is non-holonomic but not small-time controllable. Why?

Try to parallel park with no reverse gear!

Can do it in an infinitely-large parking lot with no obstacles.

Amarda Shehu (689) 22

Kinematics for Other Wheeled Systems

Other non-holonomic wheeled systems:

Differential drive

Unicycle

Tractor trailer

Objective 1: Derive CTE for each of them

Objective 2: Move on to dynamic constraints

Put it all together for sampling-based motion planning.

Amarda Shehu (689) 23

Kinematics for Wheeled Systems – Differential Drive

Differential drives

Most indoor robots are modeled
after ddrives.

Two main wheels, each attached
to its own motor.

Third invisible (caster) wheel in
rear to passively roll and prevent
falling over.

Wheels move at same or different
angular velocity.

As a result, ddrive moves ahead
or on circle.

Amarda Shehu (689) 24

Kinematics for Wheeled Systems – Differential Drive

Body frame:
Origin at center of axle

x-axis perpendicular to axle

L: distance between wheels.

r: wheel radius

(a) Pure translation when both wheels
move at same angular velocity

(b) pure rotation when wheels move at
opposite velocities.

That is why origin placed at center of
axle, so ddrive rotates in place in (b).

Amarda Shehu (689) 25

Kinematics for Wheeled Systems – Differential Drive

Body frame:
Origin at center of axle

x-axis perpendicular to axle

L: distance between wheels.

r: wheel radius

Input controls v = (v`, vr)

v`: angular velocity of left wheel

vr : angular velocity of right wheel

How does the ddrive move?

v` = vr ⇒ moves in direction
wheels are pointing

v` = −vr ⇒ rotates in place

CTE for ddrive?

Variant of car, but need to
introduce concept of ICC

Amarda Shehu (689) 26

Kinematics for Wheeled Systems – Differential Drive

Body frame:
Origin at center of axle

x-axis perpendicular to axle

L: distance between wheels.

r: wheel radius

Input controls v = (v`, vr)

v`: angular velocity of left wheel

vr : angular velocity of right wheel

How does the ddrive move?

v` = vr ⇒ moves in direction
wheels are pointing

v` = −vr ⇒ rotates in place

CTE for ddrive?

Variant of car, but need to
introduce concept of ICC

Amarda Shehu (689) 26

Kinematics for Wheeled Systems – Differential Drive

Body frame:
Origin at center of axle

x-axis perpendicular to axle

L: distance between wheels.

r: wheel radius

Input controls v = (v`, vr)

v`: angular velocity of left wheel

vr : angular velocity of right wheel

How does the ddrive move?

v` = vr ⇒ moves in direction
wheels are pointing

v` = −vr ⇒ rotates in place

CTE for ddrive?

Variant of car, but need to
introduce concept of ICC

Amarda Shehu (689) 26

Kinematics for Wheeled Systems – Differential Drive

Body frame:
Origin at center of axle

x-axis perpendicular to axle

L: distance between wheels.

r: wheel radius

Input controls v = (v`, vr)

v`: angular velocity of left wheel

vr : angular velocity of right wheel

How does the ddrive move?

v` = vr ⇒ moves in direction
wheels are pointing

v` = −vr ⇒ rotates in place

CTE for ddrive?

Variant of car, but need to
introduce concept of ICC

Amarda Shehu (689) 26

Kinematics for Wheeled Systems – Differential Drive

Body frame:
Origin at center of axle

x-axis perpendicular to axle

L: distance between wheels.

r: wheel radius

Input controls v = (v`, vr)

v`: angular velocity of left wheel

vr : angular velocity of right wheel

How does the ddrive move?

v` = vr ⇒ moves in direction
wheels are pointing

v` = −vr ⇒ rotates in place

CTE for ddrive?

Variant of car, but need to
introduce concept of ICC

Amarda Shehu (689) 26

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

There must be a point that lies along
common left and right wheel axis,
known as ICC – Instantaneous Center
of Curvature.

For ddrive, ICC exists as long as
v` 6= vr . Ddrive rotates around ICC.

Amarda Shehu (689) 27

Kinematics for Wheeled Systems – Differential Drive

ICC location on wheel axis changes as v` and vr change.

ICC

vl vr

ω

l
R

yB

xB

ICC

vl vr

ω

l
R

yB

xB
(Both wheels moving forward,
right wheel faster)

(left wheel moving backwards,
right wheel forward and faster)

Amarda Shehu (689) 28

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2)

= v` · r
w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r

w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2)

= vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Observations to obtain CTE:

Ddrive rotates around ICC

Center and wheels rotate on
concentric circles with radii R,
R − L/2 (left), and R + L/2
(right), respectively.

Let ω be angular vel. around ICC

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Amarda Shehu (689) 29

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Solving for w and R, we obtain:

w = r/L · (vr − v`)

R = L/2 · v`+vr
vr−v` r

Question: how does ω relate to θ̇?
Answer: They are one and the same.

Amarda Shehu (689) 30

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Solving for w and R, we obtain:

w = r/L · (vr − v`)

R = L/2 · v`+vr
vr−v` r

Question: how does ω relate to θ̇?
Answer: They are one and the same.

Amarda Shehu (689) 30

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Solving for w and R, we obtain:

w = r/L · (vr − v`)

R = L/2 · v`+vr
vr−v` r

Question: how does ω relate to θ̇?
Answer: They are one and the same.

Amarda Shehu (689) 30

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Solving for w and R, we obtain:

w = r/L · (vr − v`)

R = L/2 · v`+vr
vr−v` r

Question: how does ω relate to θ̇?

Answer: They are one and the same.

Amarda Shehu (689) 30

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

Arclengths traveled per unit of time by
left and right wheel:

w · (R − L/2) = v` · r
w · (R + L/2) = vr · r

Solving for w and R, we obtain:

w = r/L · (vr − v`)

R = L/2 · v`+vr
vr−v` r

Question: how does ω relate to θ̇?
Answer: They are one and the same.

Amarda Shehu (689) 30

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

So:

θ̇ = r/L · (vr − v`)

What about s?

s is translational velocity

(of center of axle)

When vl = vr , ddrive moves
forward but not at twice the
speed: suggests:
s = r/2 · (v` + vr)

s = R · ω ⇒ s = r/2 · (v` + vr)

Amarda Shehu (689) 31

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

So:

θ̇ = r/L · (vr − v`)

What about s?

s is translational velocity
(of center of axle)

When vl = vr , ddrive moves
forward but not at twice the
speed: suggests:
s = r/2 · (v` + vr)

s = R · ω ⇒ s = r/2 · (v` + vr)

Amarda Shehu (689) 31

Kinematics for Wheeled Systems – Differential Drive

Ddrive is variant of simple car:
ẋ = s(v`, vr) cos θ

ẏ = s(v`, vr) sin θ

θ̇ = f (v`, vr)

s := translational velocity
θ := angular velocity

So:

θ̇ = r/L · (vr − v`)

What about s?

s is translational velocity
(of center of axle)

When vl = vr , ddrive moves
forward but not at twice the
speed: suggests:
s = r/2 · (v` + vr)

s = R · ω ⇒ s = r/2 · (v` + vr)

Amarda Shehu (689) 31

Kinematics for Wheeled Systems – Differential Drive

CTE (using u` and ur for controls on
wheel (angular) velocities:

ẋ = r
2 (u` + ur) cos θ

ẏ = r
2 (u` + ur) sin θ

θ̇ = r
L(ur − u`)

Interesting questions:

What happens when either u` or ur (not both) are set to 0?

Can ddrive simulate motions of simple car?

Is ddrive non-holonomic?

Is it STLC?

Amarda Shehu (689) 32

Kinematics for Wheeled Systems – Differential Drive

Can ddrive move between any two configurations?

Point wheels as in destination. Translate. Rotate to desired orientation.

Amarda Shehu (689) 33

Kinematics for Wheeled Systems – Differential Drive

Can ddrive move between any two configurations?

Point wheels as in destination. Translate. Rotate to desired orientation.

Amarda Shehu (689) 33

Kinematics for Wheeled Systems – Unicycle

Rider can set pedaling speed and
orientation of the wheel with respect
to the z-axis

r : wheel radius

σ: pedaling angular velocity

s = rσ: speed of unicycle

ω: rotational velocity in the xy plane
controlled directly.

Note: ddrive with L = 1, us = ruσ

Ddrive can simulate a unicycle.
Unicycle can simulate simple car.
Unicycle == tricycle.

Amarda Shehu (689) 34

Kinematics for Wheeled Systems – Unicycle

CTE:
ẋ = uσr cos θ

ẏ = uσr sin θ

θ̇ = uω

Rider can set pedaling speed and
orientation of the wheel with respect
to the z-axis

r : wheel radius

σ: pedaling angular velocity

s = rσ: speed of unicycle

ω: rotational velocity in the xy plane
controlled directly.

Note: ddrive with L = 1, us = ruσ

Ddrive can simulate a unicycle.
Unicycle can simulate simple car.
Unicycle == tricycle.

Amarda Shehu (689) 34

Kinematics for Wheeled Systems – Unicycle

CTE:
ẋ = uσr cos θ

ẏ = uσr sin θ

θ̇ = uω

Rider can set pedaling speed and
orientation of the wheel with respect
to the z-axis

r : wheel radius

σ: pedaling angular velocity

s = rσ: speed of unicycle

ω: rotational velocity in the xy plane
controlled directly.

Note: ddrive with L = 1, us = ruσ

Ddrive can simulate a unicycle.
Unicycle can simulate simple car.
Unicycle == tricycle.

Amarda Shehu (689) 34

Tractor Trailer

CTE:
ẋ = s cos θ

ẏ = s sin θ

θ̇0 = s/L tanφ

θ̇1 = s/d1 sin(θ1 − θ0)

...

θ̇i = s/dj(Πi−1
j=1 cos(θj−1 −

θj)) sin(θi−1 − θi)

Simple car pulling k trailers, each
attached to rear axle of body in front
of it.

New: hitch length, di , distance from
center of rear axle of trailer i to point
at which trailer is hitched to next
body.

Car itself contributes R2 × S1 to C ,
and each trailer contributes an S1.
So, |C| = k + 1.

Configuration transition equation is
hard to get right. Shown one here is
adapted from Murray, Sastry, IEEE
Trans Autom Control, 1993.

[movie: strailer4]

Amarda Shehu (689) 35

Beyond Kinematics: Dynamical Systems

Involve acceleration q̈ in addition to velocity q̇ and configuration q

Control acceleration directly

Implicit constraints:
g(q̈, q̇, q) = 0

Parametric constraints:
q̈ = f (q̇, q, u)

Amarda Shehu (689) 36

State Space: Reducing Degree by Increasing Dimension

Example: y ∈ R is a scalar variable and

ÿ − 3ẏ + y = 0 (1)

Let x = (x1, x2) denote a state vector, where x1 = y and x2 = ẏ .

Then:
ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

Yes, if we also add the constraint x2 = ẋ1.

Thus, (1) can be rewritten as two constraints

ẋ1 = x2

ẋ2 = 3x2 − x1

Amarda Shehu (689) 37

State Space: Reducing Degree by Increasing Dimension

Example: y ∈ R is a scalar variable and

ÿ − 3ẏ + y = 0 (1)

Let x = (x1, x2) denote a state vector, where x1 = y and x2 = ẏ .

Then:
ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

Yes, if we also add the constraint x2 = ẋ1.

Thus, (1) can be rewritten as two constraints

ẋ1 = x2

ẋ2 = 3x2 − x1

Amarda Shehu (689) 37

State Space: Reducing Degree by Increasing Dimension

Example: y ∈ R is a scalar variable and

ÿ − 3ẏ + y = 0 (1)

Let x = (x1, x2) denote a state vector, where x1 = y and x2 = ẏ .

Then:
ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

Yes, if we also add the constraint x2 = ẋ1.

Thus, (1) can be rewritten as two constraints

ẋ1 = x2

ẋ2 = 3x2 − x1

Amarda Shehu (689) 37

State Space: Reducing Degree by Increasing Dimension

Example: y ∈ R is a scalar variable and

ÿ − 3ẏ + y = 0 (1)

Let x = (x1, x2) denote a state vector, where x1 = y and x2 = ẏ .

Then:
ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

Yes, if we also add the constraint x2 = ẋ1.

Thus, (1) can be rewritten as two constraints

ẋ1 = x2

ẋ2 = 3x2 − x1

Amarda Shehu (689) 37

State Space: Reducing Degree by Increasing Dimension

Example: y ∈ R is a scalar variable and

ÿ − 3ẏ + y = 0 (1)

Let x = (x1, x2) denote a state vector, where x1 = y and x2 = ẏ .

Then:
ẋ2 − 3x2 + x1 = 0 (2)

Are (1) and (2) equivalent?

Yes, if we also add the constraint x2 = ẋ1.

Thus, (1) can be rewritten as two constraints

ẋ1 = x2

ẋ2 = 3x2 − x1

Amarda Shehu (689) 37

Extending Models by Adding Integrators

Suppose equations of motions are given as:

ẋ = f (x , u)

Let n denote the dimension. Then:

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing
ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui

Amarda Shehu (689) 38

Extending Models by Adding Integrators

Suppose equations of motions are given as:

ẋ = f (x , u)

Let n denote the dimension. Then:

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing
ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui

Amarda Shehu (689) 38

Extending Models by Adding Integrators

Suppose equations of motions are given as:

ẋ = f (x , u)

Let n denote the dimension. Then:

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing
ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui

Amarda Shehu (689) 38

Extending Models by Adding Integrators

Suppose equations of motions are given as:

ẋ = f (x , u)

Let n denote the dimension. Then:

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing
ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui

Amarda Shehu (689) 38

Extending Models by Adding Integrators

Suppose equations of motions are given as:

ẋ = f (x , u)

Let n denote the dimension. Then:

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing
ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui

Amarda Shehu (689) 38

Extending Models by Adding Integrators

Suppose equations of motions are given as:

ẋ = f (x , u)

Let n denote the dimension. Then:

1 Select an input control ui

2 Rename the input control as a new state variable xn+1 = ui

3 Define a new input control u′i that takes the place of ui

4 Extend the equations of motions by one dimension by introducing
ẋn+1 = u′i

Procedure referred to as placing an integrator in front of ui

Amarda Shehu (689) 38

Putting it all together: Car

Kinematic (first-order) model

Config q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (us , uφ)

Signed speed us ∈ R
Steering angle uφ ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 us cos θ
us sin θ
us
L tan uφ



Dynamics (second-order) model

State s = (x , y , θ, σ, φ)

Signed speed σ ∈ R
Steering angle φ ∈ R

Control inputs u = (u1, u2)

Transl. accel. u1 ∈ R
Steering rotational vel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇

φ̇

 =


σ cos θ
σ sin θ
σ
L tanφ
u1

u2


[movie: SCar]

Amarda Shehu (689) 39

Putting it all together: Car

Kinematic (first-order) model

Config q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (us , uφ)

Signed speed us ∈ R
Steering angle uφ ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 us cos θ
us sin θ
us
L tan uφ



Dynamics (second-order) model

State s = (x , y , θ, σ, φ)

Signed speed σ ∈ R
Steering angle φ ∈ R

Control inputs u = (u1, u2)

Transl. accel. u1 ∈ R
Steering rotational vel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇

φ̇

 =


σ cos θ
σ sin θ
σ
L tanφ
u1

u2


[movie: SCar]

Amarda Shehu (689) 39

Putting it all together: Car

Kinematic (first-order) model

Config q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (us , uφ)

Signed speed us ∈ R
Steering angle uφ ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 us cos θ
us sin θ
us
L tan uφ



Dynamics (second-order) model

State s = (x , y , θ, σ, φ)

Signed speed σ ∈ R
Steering angle φ ∈ R

Control inputs u = (u1, u2)

Transl. accel. u1 ∈ R
Steering rotational vel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇

φ̇

 =


σ cos θ
σ sin θ
σ
L tanφ
u1

u2


[movie: SCar]

Amarda Shehu (689) 39

Putting it all together: Car

Kinematic (first-order) model

Config q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (us , uφ)

Signed speed us ∈ R
Steering angle uφ ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 us cos θ
us sin θ
us
L tan uφ



Dynamics (second-order) model

State s = (x , y , θ, σ, φ)

Signed speed σ ∈ R
Steering angle φ ∈ R

Control inputs u = (u1, u2)

Transl. accel. u1 ∈ R
Steering rotational vel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇

φ̇

 =


σ cos θ
σ sin θ
σ
L tanφ
u1

u2


[movie: SCar]

Amarda Shehu (689) 39

Putting it all together: Differential Drive

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (u`, ur)

Angular velocities u`, ur ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 r
2 (u` + ur) cos θ
r
2 (u` + ur) sin θ

r
L(ur − u`)



Dynamics (second-order) model

State s = (x , y , θ, v`, vr)

Angular velocities v`, vr ∈ R
Control inputs u = (u1, u2)

Left wheel ang. accel. u1 ∈ R
Right wheel ang. accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
v̇`
v̇r

 =


r
2 (v` + vr) cos θ
r
2 (v` + vr) sin θ

r
L(vr − v`)

u1

u2


[movie: SDDrive]

Amarda Shehu (689) 40

Putting it all together: Differential Drive

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (u`, ur)

Angular velocities u`, ur ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 r
2 (u` + ur) cos θ
r
2 (u` + ur) sin θ

r
L(ur − u`)



Dynamics (second-order) model

State s = (x , y , θ, v`, vr)

Angular velocities v`, vr ∈ R

Control inputs u = (u1, u2)

Left wheel ang. accel. u1 ∈ R
Right wheel ang. accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
v̇`
v̇r

 =


r
2 (v` + vr) cos θ
r
2 (v` + vr) sin θ

r
L(vr − v`)

u1

u2


[movie: SDDrive]

Amarda Shehu (689) 40

Putting it all together: Differential Drive

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (u`, ur)

Angular velocities u`, ur ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 r
2 (u` + ur) cos θ
r
2 (u` + ur) sin θ

r
L(ur − u`)



Dynamics (second-order) model

State s = (x , y , θ, v`, vr)

Angular velocities v`, vr ∈ R
Control inputs u = (u1, u2)

Left wheel ang. accel. u1 ∈ R
Right wheel ang. accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
v̇`
v̇r

 =


r
2 (v` + vr) cos θ
r
2 (v` + vr) sin θ

r
L(vr − v`)

u1

u2


[movie: SDDrive]

Amarda Shehu (689) 40

Putting it all together: Differential Drive

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (u`, ur)

Angular velocities u`, ur ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 r
2 (u` + ur) cos θ
r
2 (u` + ur) sin θ

r
L(ur − u`)



Dynamics (second-order) model

State s = (x , y , θ, v`, vr)

Angular velocities v`, vr ∈ R
Control inputs u = (u1, u2)

Left wheel ang. accel. u1 ∈ R
Right wheel ang. accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
v̇`
v̇r

 =


r
2 (v` + vr) cos θ
r
2 (v` + vr) sin θ

r
L(vr − v`)

u1

u2


[movie: SDDrive]

Amarda Shehu (689) 40

Putting it all together: Unicycle

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (uσ, uω)

Translational velocity uσ ∈ R
Rotational velocity uω ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 uσr cos θ
uσr sin θ

uω



Dynamics (second-order) model

State s = (x , y , θ, σ, ω)

Translational velocity σ ∈ R
Rotational velocity ω ∈ R

Control inputs u = (u1, u2)

Translat. accel. u1 ∈ R
Rotational accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇
ω̇

 =


σr cos θ
σr sin θ
ω
u1

u2



Amarda Shehu (689) 41

Putting it all together: Unicycle

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (uσ, uω)

Translational velocity uσ ∈ R
Rotational velocity uω ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 uσr cos θ
uσr sin θ

uω



Dynamics (second-order) model

State s = (x , y , θ, σ, ω)

Translational velocity σ ∈ R
Rotational velocity ω ∈ R

Control inputs u = (u1, u2)

Translat. accel. u1 ∈ R
Rotational accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇
ω̇

 =


σr cos θ
σr sin θ
ω
u1

u2



Amarda Shehu (689) 41

Putting it all together: Unicycle

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (uσ, uω)

Translational velocity uσ ∈ R
Rotational velocity uω ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 uσr cos θ
uσr sin θ

uω



Dynamics (second-order) model

State s = (x , y , θ, σ, ω)

Translational velocity σ ∈ R
Rotational velocity ω ∈ R

Control inputs u = (u1, u2)

Translat. accel. u1 ∈ R
Rotational accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇
ω̇

 =


σr cos θ
σr sin θ
ω
u1

u2



Amarda Shehu (689) 41

Putting it all together: Unicycle

Kinematic (first-order) model

Config. q = (x , y , θ)
Position (x , y) ∈ R2

Orientation θ ∈ S1

Control inputs u = (uσ, uω)

Translational velocity uσ ∈ R
Rotational velocity uω ∈ R

CTE q̇ = f (q, u):

q̇ =

 ẋ
ẏ

θ̇

 =

 uσr cos θ
uσr sin θ

uω



Dynamics (second-order) model

State s = (x , y , θ, σ, ω)

Translational velocity σ ∈ R
Rotational velocity ω ∈ R

Control inputs u = (u1, u2)

Translat. accel. u1 ∈ R
Rotational accel. u2 ∈ R

CTE ṡ = f (s, u):

ṡ =


ẋ
ẏ

θ̇
σ̇
ω̇

 =


σr cos θ
σr sin θ
ω
u1

u2


Amarda Shehu (689) 41

Generating Motions

Robot motions obtained by applying input controls and integrating
equations of motions

Consider

a starting state s0

an input control u

motion equations ṡ = f (s, u)

Let s(t) denote the state at time t. Then,

s(t) = s0 +

∫ h=t

h=0
f (s(h), u)dh

Computation can be carried out by

Closed-form integration when available or

Numerical integration

Amarda Shehu (689) 42

Generating Motions

Robot motions obtained by applying input controls and integrating
equations of motions

Consider

a starting state s0

an input control u

motion equations ṡ = f (s, u)

Let s(t) denote the state at time t. Then,

s(t) = s0 +

∫ h=t

h=0
f (s(h), u)dh

Computation can be carried out by

Closed-form integration when available or

Numerical integration
Amarda Shehu (689) 42

Numerical Integration – Euler Method

Let ∆t denote a small time step. We would like to compute s(∆t) as

s(∆t) = s(0) +

∫ h=∆t

h=0
f (s(h), u)dh

Euler Approximation

f (s(t), u) = ṡ(t) =
ds(t)

dt
≈ s(∆t)− s(0)

∆t

Therefore,
s(∆t) ≈ s(0) + ∆t f (s(t), u)

For example, Euler integration of the kinematic model of unicycle yields:

s(∆t) ≈

 x0

y0

θ0

 + ∆t

 uσr cos θ
uσr sin θ

uω


Advantage: Simple and efficient

Disadvantage: Not very accurate (first-order approximation)

Amarda Shehu (689) 43

Numerical Integration – Runge-Kutta Method

Let ∆t denote a small time step. We would like to compute s(∆t) as

s(∆t) = s(0) +

∫ h=∆t

h=0
f (s(h), u)dh

Fourth-order Runge-Kutta integration:

s(∆t) ≈ s(0) +
∆t

6
(w1 + w2 + w3 + w4)

where
w1 = f (s(0), u)

w2 = f (s(0) +
∆t

2
w1, u)

w3 = f (s(0) +
∆t

2
w2, u)

w4 = f (s(0) + ∆t w3, u)

Amarda Shehu (689) 44

Motion-Planning Problem for Systems with Kinodynamics

Given

State space S

Control space U

Equations of motions as differential equations f : S × U → Ṡ

State-validity function valid : S → {true, false} for collisions

Goal function goal : S → {true, false}
Initial state s0

Compute a control trajectory u : [0,T]→ U so resulting state trajectory
s : [0,T]→ S obtained by integration is valid and reaches the goal, i.e.,

s(t) = s0 +

∫ h=t

h=0
f (s(t), u(t))dh (1)

∀t ∈ [0,T] : valid(s(t)) = true (2)

∃t ∈ [0,T] : goal(s(t)) = true (3)

Amarda Shehu (689) 45

Motion-Planning Methods for Systems with Kinodynamics

Decoupled approach

1 Compute a geometric solution path ignoring differential constraints

2 Transform the geometric path into a trajectory that satisfies the
differential constraints

Sampling-based Motion Planning

Take the differential constraints into account during motion planning

Amarda Shehu (689) 46

Sampling-based Motion Planning with Kinodynamics

Roadmap Approaches

0. Initialization
add sinit and sgoal to roadmap vertex set V

b

b

goal

init

1. Sampling
repeat several times

s ← StateSample()

if IsStateValid(s) = true

add s to roadmap vertex set V

b

b

goal

init

b b

b b
b

b

b

b

b
b

b

b

b
b

b
b

b

b

b

Amarda Shehu (689) 47

Sampling-based Motion Planning with Kinodynamics

Roadmap Approaches

2. Connect Samples
for each pair of neighboring samples
(sa, sb) ∈ V × V

λ← GenerateLocalTrajectory(sa, sb)

if IsTrajectoryValid(λ) = true

add (sa, sb) to roadmap edge set E

b
goal

init

b

b b

b

b

b

b
b

b

b

b
b

b

b

b

b
b

b

b

b

3. Graph Search
search graph (V ,E) for path from sinit to sgoal

goal

init

b

b b

b

b

b

b
b

b

b

b
b

b

b

b

b
b

b

b

b

b

Amarda Shehu (689) 48

Implementation of Roadmap Approaches

s ← StateSample()

generate random values for all the state components

IsStateValid(s)

place the robot in the configuration specified by the position and
orientation components of the state

check if the robot collides with the obstacles

check if velocity and other state components are within bounds

IsTrajectoryValid(λ)

use subdivision or incremental approach to check intermediate states

Amarda Shehu (689) 49

Implementation of Roadmap Approaches

λ← GenerateLocalTrajectory(sa, sb)

linear interpolation between sa and sb won’t work as it does not
respect underlying differential constraints

need to find control function u : [0,T]→ U such that trajectory
obtained by applying u to sa for T time units ends at sb

known as two-point boundary value problem: cannot always be solved
analytically, and numerical solutions increase computational cost

Amarda Shehu (689) 50

Tree Approaches with Differential Constraints

RRT
1: T ← create tree rooted at sinit
2: while solution not found do
Bselect state from tree
3: srand ← StateSample()
4: snear ← nearest configuration in T to qrand according to distance ρ
Badd new branch to tree from selected configuration
5: λ← GenerateLocalTrajectory(snear, srand)
6: if IsSubTrajectoryValid(λ, 0, step) then
7: snew ← λ(step)
8: add configuration snew and edge (snear, snew) to T
Bcheck if a solution is found
9: if ρ(snew, sgoal) ≈ 0 then

10: return solution trajectory from root to snew

Amarda Shehu (689) 51

Tree Approaches with Differential Constraints

XStateSample(): random values for state components
Xρ : S × S → R≥0: distance metric between states
XIsSubTrajectoryValid(λ, 0, step): incremental approach

λ← GenerateLocalTrajectory(snear, srand)

will it not create the same two-boundary value problems as in PRM?

is it necessary to connect to srand?

would it suffice to just come close to srand?

Amarda Shehu (689) 52

Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from snear to srand compute a
trajectory that starts at snear and extends toward srand

Approach 1 – extend according to random control

Sample random control u in U

Integrate equations of motions when applying u to snear for ∆t units
of time, i.e.,

λ→ s(t) = snear +

∫ h=∆t

h=0
f (s(t), u)dh

Approach 2 – find the best-out-of-many random controls
1 for i = 1, . . . ,m do

1 ui ← sample random control in U

2 λi → s(t) = snear +
∫ h=∆t

h=0
f (s(t), ui)dh

3 di ← ρ(srand, λi (∆t))

2 return λi with minimum di
[movie: Traj]

Amarda Shehu (689) 53

Sampling-based Motion Planning and Physics

Tree approaches require only the ability to simulate robot motions

Physics engines can be used to simulate robot motions

Physics engines provide greater simulation accuracy

Physics engines can take into account friction, gravity, and
interactions of the robot with objects in the evironment

[movie: PhysicsTricycle]

[movie: PhysicsBug]

Amarda Shehu (689) 54

