CS689 - Robot Motion Planning

Motion Planning with Kinematics and Dynamics

Amarda Shehu

Department of Computer Science
George Mason University

■ Geometric constraints are generally not sufficient to adequately express robot motions
[movie: Moving Car 1]

■ Geometric constraints are generally not sufficient to adequately express robot motions

> [movie: Moving Car 1]

- Are the motions realistic?
- What is missing?
- Actual car steering and constraints on velocity may make planned motions more realistic.
[movie: Moving Car 2]
- Actual car steering and constraints on velocity may make planned motions more realistic.
[movie: Moving Car 2]
- Are the motions more realistic?
- Can they be made more realistic?

■ How?

■ Geometric constraints are generally not sufficient to adequately express robot motions

- Constraints on velocity, forces, torques, accelerations are needed for better representations

[movie: Moving Car 1-Geometric]
[movie: Moving Car 1 - Kinematics]
[movie: Moving Car 3 - Dynamics]

Kinematics Constraints $==$ Constraints on Velocity

Illustration:
■ C-space $=\mathbb{R}^{2}=\left\{q=(x, y) \in \mathbb{R}^{2}\right\}$

- Velocity $\frac{d q}{d t}=\dot{q}=(\dot{x}, \dot{y})$
- Each (\dot{x}, \dot{y}) is an element of the tangent space $T_{q}\left(\mathbb{R}^{2}\right)$, which is a 2D vector space at every (x, y)

■ At each $q \in \mathbb{R}^{2}$, restricting the set of velocities yields some set $U(q) \subset T_{q}\left(\mathbb{R}^{2}\right)$

- Think about the kinds of constraints imposed on velocity

Kinematics Constraints $==$ Constraints on Velocity

Eamples of interesting yet simple constraints:

Kinematics Constraints $==$ Constraints on Velocity

Eamples of interesting yet simple constraints:

- $\dot{x}>0$:

Kinematics Constraints $==$ Constraints on Velocity

Eamples of interesting yet simple constraints:
■ $\dot{x}>0$: Paddling boat on river flowing in positive x direction.

Kinematics Constraints $==$ Constraints on Velocity

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$:

Kinematics Constraints $==$ Constraints on Velocity

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.

■ $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y .

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x}=0$:

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y.

■ $\dot{x}=0$: No motion in \times direction; $(0, \dot{y})$ allowed.

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y.

■ $\dot{x}=0$: No motion in \times direction; $(0, \dot{y})$ allowed.

- $\dot{x}+\dot{y} \leq 1$:

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x}=0$: No motion in \times direction; $(0, \dot{y})$ allowed.
- $\dot{x}+\dot{y} \leq 1$: Constraint enforces maximum speed.

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x}=0$: No motion in \times direction; $(0, \dot{y})$ allowed.
- $\dot{x}+\dot{y} \leq 1$: Constraint enforces maximum speed.
- $\dot{x}+\dot{y} \geq 1$:

Eamples of interesting yet simple constraints:

- $\dot{x}>0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \geq 0$: Allows to stop in x direction; e.g. following velocity in y.

■ $\dot{x}=0$: No motion in \times direction; $(0, \dot{y})$ allowed.

- $\dot{x}+\dot{y} \leq 1$: Constraint enforces maximum speed.

■ $\dot{x}+\dot{y} \geq 1$: Impossible to stop or slow down.

Implicit and parametric representations are alternative ways to express $U(q) \quad \forall q \in \mathbb{R}^{2}$.

- Implicit (indirect) representation: expresses velocities that are not allowed.
- Parametric (direct) representation: expresses velocities that are allowed.

Implicit velocity constraints express velocities that are not allowed and are of the form:

$$
g(q, \dot{q}) \bowtie 0
$$

where

- $g(q, \dot{q})$ is some function $g: Q \times \dot{Q} \rightarrow \mathbb{R}$

■ \bowtie can be any of the symbols $=,<,>, \leq, \geq$

Implicit velocity constraints express velocities that are not allowed and are of the form:

$$
g(q, \dot{q}) \bowtie 0
$$

where

- $g(q, \dot{q})$ is some function $g: Q \times \dot{Q} \rightarrow \mathbb{R}$
- \bowtie can be any of the symbols $=,<,>, \leq, \geq$

Example of point in plane

- configuration: $\boldsymbol{q}=(x, y) \in \mathbb{R}^{2}$
- velocity: $\frac{d q}{d t}=\dot{q}=(\dot{x}, \dot{y})$

Implicit velocity constraints express velocities that are not allowed and are of the form:

$$
g(q, \dot{q}) \bowtie 0
$$

where

- $g(q, \dot{q})$ is some function $g: Q \times \dot{Q} \rightarrow \mathbb{R}$
- \bowtie can be any of the symbols $=,<,>, \leq, \geq$

Example of point in plane

- configuration: $q=(x, y) \in \mathbb{R}^{2}$
- velocity: $\frac{d q}{d t}=\dot{q}=(\dot{x}, \dot{y})$

Examples of implicit velocity constraints
■ $\dot{x}>0, \dot{x}=0, \dot{x}^{2}+\dot{y}^{2} \leq 1, x=\dot{x}$, etc.

Parametric velocity constraints express velocities that are allowed and are of the form:

$$
\dot{q}=f(q, u)
$$

where

- $f(q, u)$ is some function $f: Q \times U \rightarrow \dot{Q}$ that expresses a set of differential equations.
f is referred to as the configuration transition equation
- u is an input control/action.
- So, $T_{q}(Q)$ is parameterized through u : Given a (sampled?) control/action, one can obtain an allowed velocity.

Parametric velocity constraints express velocities that are allowed and are of the form:

$$
\dot{q}=f(q, u)
$$

where

- $f(q, u)$ is some function $f: Q \times U \rightarrow \dot{Q}$ that expresses a set of differential equations. Why a set?
f is referred to as the configuration transition equation
- u is an input control/action.
- So, $T_{q}(Q)$ is parameterized through u : Given a (sampled?) control/action, one can obtain an allowed velocity.

Parametric velocity constraints express velocities that are allowed and are of the form:

$$
\dot{q}=f(q, u)
$$

where

- $f(q, u)$ is some function $f: Q \times U \rightarrow \dot{Q}$ that expresses a set of differential equations. Why a set?
f is referred to as the configuration transition equation
- u is an input control/action.
- So, $T_{q}(Q)$ is parameterized through u : Given a (sampled?) control/action, one can obtain an allowed velocity.

Let's work out the kinematics of some simple wheeled systems.

- Objective 1: Derive configuration transition equation (do the kinematics) for wheeled systems (car, differential drive, and unicycle). Constrain velocities for more realistic motions.

■ Objective 2: Proceed with dynamics after working out kinematics.
Constrain accelerations for even more realistic motions.

a simple car as opposed to other car variations

Objective: Obtain f as in $\dot{q}=f(q, u)$.
Preliminaries:

- Car cannot drive sideways because
- Parallel parking would be trivial

■ Complicated maneuvers arise due to rolling constraints.

```
a simple car as opposed to other car variations
```

Objective: Obtain f as in $\dot{q}=f(q, u)$.
Preliminaries:

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial
- Complicated maneuvers arise due to rolling constraints.

Objective: Obtain f as in $\dot{q}=f(q, u)$.
Preliminaries:

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial if all four wheels could simultaneously be turned towards the curb.

■ Complicated maneuvers arise due to rolling constraints.

Objective: Obtain f as in $\dot{q}=f(q, u)$.
Preliminaries:

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial if all four wheels could simultaneously be turned towards the curb.
- Complicated maneuvers arise due to rolling constraints.
- Need: model for car

Objective: Obtain f as in $\dot{q}=f(q, u)$.
Preliminaries:

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial if all four wheels could simultaneously be turned towards the curb.
- Complicated maneuvers arise due to rolling constraints.
- Need: model for car

■ Need: understand way car moves (what do we control?)

- Car: rigid body that moves in plane.
- Car configuration:

$$
q=(x, y, \theta) \in \mathbb{R} \times S^{1}
$$

- Body frame:
- Origin is at the center of rear axle
- x-axis points along main axis of the car
- Velocity (signed speed in \times direction of body frame): s
- Steering angle: ϕ
- Distance between front and rear axles: L

How does the car move?

- If steering angle ϕ is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.
- Radius of circle: ρ

Need : Express car motions as a set of differential equations

- $\dot{x}=f_{1}(q, u)$
- $\dot{y}=f_{2}(q, u)$
- $\dot{\theta}=f_{3}(q, u)$

How does the car move?

- If steering angle ϕ is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.
- Radius of circle: ρ

Need : Express car motions as a set of differential equations

■ $\dot{x}=f_{1}(q, u)=f_{1}(x, y, \theta, s, \phi)$

- $\dot{y}=f_{2}(q, u)$
- $\dot{\theta}=f_{3}(q, u)$

How does the car move?

- If steering angle ϕ is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.
- Radius of circle: ρ

Need: Express car motions as a set of differential equations

■ $\dot{x}=f_{1}(q, u)=f_{1}(x, y, \theta, s, \phi)$

- $\dot{y}=f_{2}(q, u)=f_{2}(x, y, \theta, s, \phi)$
- $\dot{\theta}=f_{3}(q, u)$

How does the car move?

- If steering angle ϕ is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.
- Radius of circle: ρ

Need : Express car motions as a set of differential equations

■ $\dot{x}=f_{1}(q, u)=f_{1}(x, y, \theta, s, \phi)$

- $\dot{y}=f_{2}(q, u)=f_{2}(x, y, \theta, s, \phi)$
- $\dot{\theta}=f_{3}(q, u)=f_{3}(x, y, \theta, s, \phi)$

Kinematics for Wheeled Systems - A Simple Car

How does the car move?

Kinematics for Wheeled Systems - A Simple Car

How does the car move?

- In small time interval Δt, car must move approximately in direction rear wheels are pointing

How does the car move?
■ In small time interval Δt, car must move approximately in direction rear wheels are pointing

- In the limit, as $\Delta t \rightarrow 0$, then $\frac{d y}{d x}=\tan \theta$, i.e., $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$

How does the car move?

■ In small time interval Δt, car must move approximately in direction rear wheels are pointing

■ In the limit, as $\Delta t \rightarrow 0$, then $\frac{d y}{d x}=\tan \theta$, i.e., $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$

- Solution is of the form $\dot{x}=s \cos \theta$ and $\dot{y}=s \sin \theta$

How does the car move?
■ In small time interval Δt, car must move approximately in direction rear wheels are pointing

- In the limit, as $\Delta t \rightarrow 0$, then $\frac{d y}{d x}=\tan \theta$, i.e., $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$
- Solution is of the form $\dot{x}=s \cos \theta$ and $\dot{y}=s \sin \theta$
- What about $\dot{\theta}$?

Kinematics for Wheeled Systems - A Simple Car

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.

Kinematics for Wheeled Systems - A Simple Car

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi)$
[angle relations]

Kinematics for Wheeled Systems - A Simple Car

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi)$ [angle relations]

■ Let w be distance traveled on circle

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi)$ [angle relations]
- Let w be distance traveled on circle
- What is translational velocity $d w$ relative to s ?

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi)$ [angle relations]
- Let w be distance traveled on circle
- What is translational velocity $d w$ relative to $s ? d w=s$.

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi)$ [angle relations]
- Let w be distance traveled on circle
- What is translational velocity $d w$ relative to $s ? d w=s$.
- How does translational velocity $d w$ $=s$ relate to angular velocity $d \theta$?

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi)$ [angle relations]
- Let w be distance traveled on circle
- What is translational velocity $d w$ relative to s ? $d w=s$.
- How does translational velocity $d w$ $=s$ relate to angular velocity $d \theta$? $d w=\rho d \theta$ [cord length]

- Need to put car at consecutive configs on circle to see $\Delta \theta$ as $\Delta t \rightarrow 0$.
- $L / \rho=\tan (\phi) \quad$ [angle relations]
- Let w be distance traveled on circle
- What is translational velocity $d w$ relative to $s ? d w=s$.
- How does translational velocity $d w$ $=s$ relate to angular velocity $d \theta$? $d w=\rho d \theta$ [cord length]
So, putting it all together:

$$
d \theta=\frac{\tan \phi}{L} d w=\frac{\tan \phi}{L} s \Rightarrow \dot{\theta}=\frac{s}{L} \tan \phi
$$

Kinematics for Wheeled Systems - A Simple Car

What we have so far on configuration transition equations:

Kinematics for Wheeled Systems - A Simple Car

What we have so far on configuration transition equations:

- $\dot{x}=s \cdot \cos (\theta)$
- $\dot{y}=s \cdot \sin (\theta)$
- $\dot{\theta}=\frac{s}{L} \tan \phi$

Kinematics for Wheeled Systems - A Simple Car

What we have so far on configuration transition equations:

- $\dot{x}=s \cdot \cos (\theta)$
- $\dot{y}=s \cdot \sin (\theta)$
- $\dot{\theta}=\frac{s}{L} \tan \phi$

How should we control the car? Where are our controls/actions?

Kinematics for Wheeled Systems - A Simple Car

How should we control the car?

Kinematics for Wheeled Systems - A Simple Car

How should we control the car?
■ Setting the speed s, i.e., $u_{s}=s$
■ Setting the steering angle ϕ, i.e., $u_{\phi}=\phi$

How should we control the car?
■ Setting the speed s, i.e., $u_{s}=s$
■ Setting the steering angle ϕ, i.e.,

$$
u_{\phi}=\phi
$$

Putting it all together:

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE:
$\dot{x}=u_{s} \cos \theta$
$\dot{y}=u_{s} \sin \theta$
$\dot{\theta}=\frac{U_{s}}{L} \tan u_{\phi}$

Problem formulation when only worrying about geometric constraints:

- Standing at configuration $q=(x, y, \theta)$, what are the workspace coordinates of the control points?

Problem formulation when only worrying about geometric constraints:

- Standing at configuration $q=(x, y, \theta)$, what are the workspace coordinates of the control points?
■ Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

Problem formulation when only worrying about geometric constraints:

- Standing at configuration $q=(x, y, \theta)$, what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:

- Standing at configuration $q=(x, y, \theta)$ at time t , determine configuration $q^{\prime}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)$ at time $t+\delta t$ given controls u_{s}, u_{ϕ}
- Approach: use CTE to obtain \dot{q}
- Update $q^{\prime}=q+\delta t \cdot \dot{q}$

Problem formulation when only worrying about geometric constraints:

- Standing at configuration $q=(x, y, \theta)$, what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:

- Standing at configuration $q=(x, y, \theta)$ at time t , determine configuration $q^{\prime}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)$ at time $t+\delta t$ given controls u_{s}, u_{ϕ}
- Approach: use CTE to obtain \dot{q}
- Update $q^{\prime}=q+\delta t \cdot \dot{q}$

How can I generate a random path in configuration space?

Problem formulation when only worrying about geometric constraints:

- Standing at configuration $q=(x, y, \theta)$, what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:
■ Standing at configuration $q=(x, y, \theta)$ at time t , determine configuration $q^{\prime}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)$ at time $t+\delta t$ given controls u_{s}, u_{ϕ}

- Approach: use CTE to obtain \dot{q}
- Update $q^{\prime}=q+\delta t \cdot \dot{q}$

How can I generate a random path in configuration space?
Sample values for controls.

Problem formulation when only worrying about geometric constraints:

- Standing at configuration $q=(x, y, \theta)$, what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:
■ Standing at configuration $q=(x, y, \theta)$ at time t , determine configuration $q^{\prime}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)$ at time $t+\delta t$ given controls u_{s}, u_{ϕ}

- Approach: use CTE to obtain \dot{q}
- Update $q^{\prime}=q+\delta t \cdot \dot{q}$

How can I generate a random path in configuration space? Sample values for controls. Should there be bounds?

Variations of the Simple Car Model

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$

What are bounds on steering angle and speed? Why bound speed?

Variations of the Simple Car Model

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$

What are bounds on steering angle and speed? Why bound speed?
Tricycle

- $u_{s} \in[-1,1]$ and $u_{\phi} \in[-\pi / 2, \pi / 2]$.

Variations of the Simple Car Model

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$

What are bounds on steering angle and speed? Why bound speed?
Tricycle

- $u_{s} \in[-1,1]$ and $u_{\phi} \in[-\pi / 2, \pi / 2]$. Can it rotate in place?

Variations of the Simple Car Model

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$

What are bounds on steering angle and speed? Why bound speed?
Tricycle

- $u_{s} \in[-1,1]$ and $u_{\phi} \in[-\pi / 2, \pi / 2]$. Can it rotate in place?

Standard simple car

- $u_{s} \in[-1,1]$ and $u_{\phi} \in\left(-\phi_{\max }, \phi_{\max }\right)$ for some $\phi_{\max }<\pi / 2$.

Variations of the Simple Car Model

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$

What are bounds on steering angle and speed? Why bound speed?
Tricycle

- $u_{s} \in[-1,1]$ and $u_{\phi} \in[-\pi / 2, \pi / 2]$. Can it rotate in place?

Standard simple car

- $u_{s} \in[-1,1]$ and $u_{\phi} \in\left(-\phi_{\max }, \phi_{\max }\right)$ for some $\phi_{\max }<\pi / 2$. What happens at $\pi / 2$ and $-\pi / 2$?

Variations of the Simple Car Model

- Input controls: u_{s} (speed) and u_{ϕ} (steering angle)
- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

- $u_{s} \in[-1,1]$ and $u_{\phi} \in[-\pi / 2, \pi / 2]$. Can it rotate in place?

Standard simple car

- $u_{s} \in[-1,1]$ and $u_{\phi} \in\left(-\phi_{\max }, \phi_{\max }\right)$ for some $\phi_{\max }<\pi / 2$. What happens at $\pi / 2$ and $-\pi / 2$?

Reeds-Shepp car
■ Variation: $u_{s} \in\{-1,0,1\}$ (i.e., "reverse", "park", "forward")

■ Input controls: u_{s} (speed) and u_{ϕ} (steering angle)

- CTE: $\dot{x}=u_{s} \cos \theta, \dot{y}=u_{s} \sin \theta, \dot{\theta}=\frac{u_{s}}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

- $u_{s} \in[-1,1]$ and $u_{\phi} \in[-\pi / 2, \pi / 2]$. Can it rotate in place?

Standard simple car

- $u_{s} \in[-1,1]$ and $u_{\phi} \in\left(-\phi_{\max }, \phi_{\max }\right)$ for some $\phi_{\max }<\pi / 2$. What happens at $\pi / 2$ and $-\pi / 2$?

Reeds-Shepp car
■ Variation: $u_{s} \in\{-1,0,1\}$ (i.e., "reverse", "park", "forward")
Dubins car
■ Variation: $u_{s} \in\{0,1\}$ (i.e., "park", "forward")

Fundamental question:
■ Is any configuration reachable from a given configuration in wheeled systems?

Fundamental question:
■ Is any configuration reachable from a given configuration in wheeled systems?

- Most often, no. A car cannot move sideways. Specifying an arbitrary goal configuration does not mean that one can always find instataneous controls/one set of velocities.

Fundamental question:

- Is any configuration reachable from a given configuration in wheeled systems?
- Most often, no. A car cannot move sideways. Specifying an arbitrary goal configuration does not mean that one can always find instataneous controls/one set of velocities.
- We say a car is not instantaneously controllable (non-holonomic) but series of maneuvers may exist (small time locally controllable).

Fundamental question:

- Is any configuration reachable from a given configuration in wheeled systems?
- Most often, no. A car cannot move sideways. Specifying an arbitrary goal configuration does not mean that one can always find instataneous controls/one set of velocities.
- We say a car is not instantaneously controllable (non-holonomic) but series of maneuvers may exist (small time locally controllable).
- We have issue of constrained mobility (no instantaneous controls).

Inverse Kinematics for Simple Car

Problem formulation:

■ Standing at configuration $q_{\text {start }}=\left(x_{\text {start }}, y_{\text {start }}, \theta_{\text {start }}\right)$ at time t find path that places robot at $q_{\text {goal }}=\left(x_{\text {goal }}, y_{\text {goal }}, \theta_{\text {goal }}\right)$ at time $t+\delta t$.

Problem formulation:

- Standing at configuration $q_{\text {start }}=\left(x_{\text {start }}, y_{\text {start }}, \theta_{\text {start }}\right)$ at time t find path that places robot at $q_{\text {goal }}=\left(x_{\text {goal }}, y_{\text {goal }}, \theta_{\text {goal }}\right)$ at time $t+\delta t$.
- How can we increase constrained mobility in non-holonomic systems? Allow a sequence of maneuvers/different velocities. Look for a path rather than a single edge.

Problem formulation:

- Standing at configuration $q_{\text {start }}=\left(x_{\text {start }}, y_{\text {start }}, \theta_{\text {start }}\right)$ at time t find path that places robot at $q_{\text {goal }}=\left(x_{\text {goal }}, y_{\text {goal }}, \theta_{\text {goal }}\right)$ at time $t+\delta t$.
- How can we increase constrained mobility in non-holonomic systems? Allow a sequence of maneuvers/different velocities. Look for a path rather than a single edge.
- If path exists, we say system is small-time locally controllable (maneuvers exist).

Problem formulation:
■ Standing at configuration $q_{\text {start }}=\left(x_{\text {start }}, y_{\text {start }}, \theta_{\text {start }}\right)$ at time t find path that places robot at $q_{\text {goal }}=\left(x_{\text {goal }}, y_{\text {goal }}, \theta_{\text {goal }}\right)$ at time $t+\delta t$.

- How can we increase constrained mobility in non-holonomic systems? Allow a sequence of maneuvers/different velocities. Look for a path rather than a single edge.
- If path exists, we say system is small-time locally controllable (maneuvers exist).

New problem formulation: Find series of controls to get to goal.

- Motion planning with kinematic constraints to find feasible series of maneuvers.

■ Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q})=0$.

- Simple Car is non-holonomic because $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$.

■ Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists. Property called small-time locally controllable (STLC).

■ Dubins car is non-holonomic but not small-time controllable.

■ Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q})=0$.

- Simple Car is non-holonomic because $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$.

■ Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists. Property called small-time locally controllable (STLC).

■ Dubins car is non-holonomic but not small-time controllable. Why?

■ Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q})=0$.

- Simple Car is non-holonomic because $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$.

■ Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists. Property called small-time locally controllable (STLC).

- Dubins car is non-holonomic but not small-time controllable. Why? Try to parallel park with no reverse gear!

■ Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q})=0$.

- Simple Car is non-holonomic because $-\dot{x} \sin \theta+\dot{y} \cos \theta=0$.

■ Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists. Property called small-time locally controllable (STLC).

- Dubins car is non-holonomic but not small-time controllable. Why? Try to parallel park with no reverse gear!
Can do it in an infinitely-large parking lot with no obstacles.

Other non-holonomic wheeled systems:

- Differential drive
- Unicycle
- Tractor trailer

Objective 1: Derive CTE for each of them
Objective 2: Move on to dynamic constraints
Put it all together for sampling-based motion planning.

Differential drives

- Most indoor robots are modeled after ddrives.

■ Two main wheels, each attached to its own motor.

- Third invisible (caster) wheel in rear to passively roll and prevent falling over.
- Wheels move at same or different angular velocity.
- As a result, ddrive moves ahead or on circle.

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

(a) Pure translation when both wheels move at same angular velocity
(b) pure rotation when wheels move at opposite velocities.
That is why origin placed at center of axle, so ddrive rotates in place in (b).

$$
\begin{aligned}
& \text { Input controls } v=\left(v_{\ell}, v_{r}\right) \\
& \text { - } v_{\ell} \text { : angular velocity of left wheel } \\
& \text { - } v_{r} \text { : angular velocity of right wheel }
\end{aligned}
$$

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle

■ L: distance between wheels.

- r: wheel radius

Input controls $v=\left(v_{\ell}, v_{r}\right)$

- v_{ℓ} : angular velocity of left wheel
- v_{r} : angular velocity of right wheel

How does the ddrive move?

- $v_{\ell}=v_{r} \Rightarrow$ moves in direction wheels are pointing

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Input controls $v=\left(v_{\ell}, v_{r}\right)$

- v_{ℓ} : angular velocity of left wheel
- v_{r} : angular velocity of right wheel

How does the ddrive move?

- $v_{\ell}=v_{r} \Rightarrow$ moves in direction wheels are pointing
- $v_{\ell}=-v_{r} \Rightarrow$ rotates in place

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Input controls $v=\left(v_{\ell}, v_{r}\right)$

- v_{ℓ} : angular velocity of left wheel
- v_{r} : angular velocity of right wheel

How does the ddrive move?

- $v_{\ell}=v_{r} \Rightarrow$ moves in direction wheels are pointing
- $v_{\ell}=-v_{r} \Rightarrow$ rotates in place
- CTE for ddrive?

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.

■ r: wheel radius
Input controls $v=\left(v_{\ell}, v_{r}\right)$

- v_{ℓ} : angular velocity of left wheel
- v_{r} : angular velocity of right wheel

How does the ddrive move?

- $v_{\ell}=v_{r} \Rightarrow$ moves in direction wheels are pointing
- $v_{\ell}=-v_{r} \Rightarrow$ rotates in place
- CTE for ddrive?
- Variant of car, but need to introduce concept of ICC

Kinematics for Wheeled Systems - Differential Drive

Ddrive is variant of simple car:

- $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$
- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$

There must be a point that lies along common left and right wheel axis, known as ICC - Instantaneous Center of Curvature.

For ddrive, ICC exists as long as $v_{\ell} \neq v_{r}$. Ddrive rotates around ICC.

ICC location on wheel axis changes as v_{ℓ} and v_{r} change.

(left wheel moving backwards, right wheel forward and faster)

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$
■ $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$

- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Observations to obtain CTE:

- Ddrive rotates around ICC

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
θ := angular velocity

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, $R-L / 2$ (left), and $R+L / 2$ (right), respectively.

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, $R-L / 2$ (left), and $R+L / 2$ (right), respectively.
- Let ω be angular vel. around ICC

Arclengths traveled per unit of time by left and right wheel:

Ddrive is variant of simple car:
Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, $R-L / 2$ (left), and $R+L / 2$ (right), respectively.
- Let ω be angular vel. around ICC

■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$

Arclengths traveled per unit of time by left and right wheel:

- $w \cdot(R-L / 2)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Ddrive is variant of simple car:
Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, $R-L / 2$ (left), and $R+L / 2$ (right), respectively.
- Let ω be angular vel. around ICC

■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
$s:=$ translational velocity
$\theta:=$ angular velocity

Ddrive is variant of simple car:
Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, $R-L / 2$ (left), and $R+L / 2$ (right), respectively.
- Let ω be angular vel. around ICC

■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$

- $w \cdot(R+L / 2)$

Ddrive is variant of simple car:
Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, $R-L / 2$ (left), and $R+L / 2$ (right), respectively.
- Let ω be angular vel. around ICC

■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
■ $w \cdot(R+L / 2)=v_{r} \cdot r$

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
■ $w \cdot(R+L / 2)=v_{r} \cdot r$

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
■ $w \cdot(R+L / 2)=v_{r} \cdot r$
Solving for w and R, we obtain:
Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
■ $w \cdot(R+L / 2)=v_{r} \cdot r$
Solving for w and R, we obtain:
■ $w=r / L \cdot\left(v_{r}-v_{\ell}\right)$

Ddrive is variant of simple car:

- $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

■ $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$

- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
■ $w \cdot(R+L / 2)=v_{r} \cdot r$
Solving for w and R, we obtain:
■ $w=r / L \cdot\left(v_{r}-v_{\ell}\right)$

- $R=L / 2 \cdot \frac{v_{\ell}+v_{r}}{v_{r}-v_{\ell}} r$

Question: how does ω relate to $\dot{\theta}$?
$s:=$ translational velocity
$\theta:=$ angular velocity

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$

- $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
θ := angular velocity

Arclengths traveled per unit of time by left and right wheel:

■ $w \cdot(R-L / 2)=v_{\ell} \cdot r$
■ $w \cdot(R+L / 2)=v_{r} \cdot r$
Solving for w and R, we obtain:

$$
\begin{aligned}
& \text { ■ } w=r / L \cdot\left(v_{r}-v_{\ell}\right) \\
& \text { - } R=L / 2 \cdot \frac{v_{\ell}+v_{r}}{v_{r}-v_{\ell}} r
\end{aligned}
$$

Question: how does ω relate to $\dot{\theta}$?
Answer: They are one and the same.

So:

- $\dot{\theta}=r / L \cdot\left(v_{r}-v_{\ell}\right)$
- What about s ?
s is translational velocity

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$
■ $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$

- $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$
■ $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
■ $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

So:

- $\dot{\theta}=r / L \cdot\left(v_{r}-v_{\ell}\right)$

■ What about s ?
s is translational velocity (of center of axle)

■ When $v_{l}=v_{r}$, ddrive moves forward but not at twice the speed: suggests:

$$
s=r / 2 \cdot\left(v_{\ell}+v_{r}\right)
$$

Ddrive is variant of simple car:
■ $\dot{x}=s\left(v_{\ell}, v_{r}\right) \cos \theta$
■ $\dot{y}=s\left(v_{\ell}, v_{r}\right) \sin \theta$
■ $\dot{\theta}=f\left(v_{\ell}, v_{r}\right)$
$s:=$ translational velocity
$\theta:=$ angular velocity

So:

- $\dot{\theta}=r / L \cdot\left(v_{r}-v_{\ell}\right)$
- What about s ?
s is translational velocity (of center of axle)
- When $v_{l}=v_{r}$, ddrive moves forward but not at twice the speed: suggests:

$$
\begin{aligned}
s & =r / 2 \cdot\left(v_{\ell}+v_{r}\right) \\
s & =R \cdot \omega \Rightarrow s=r / 2 \cdot\left(v_{\ell}+v_{r}\right)
\end{aligned}
$$

- What happens when either u_{ℓ} or u_{r} (not both) are set to 0 ?
- Can ddrive simulate motions of simple car?
- Is ddrive non-holonomic?
- Is it STLC?

Can ddrive move between any two configurations?

Can ddrive move between any two configurations?

Point wheels as in destination. Translate. Rotate to desired orientation.

- Rider can set pedaling speed and orientation of the wheel with respect to the z-axis

■ r : wheel radius

- σ : pedaling angular velocity

■ $s=r \sigma$: speed of unicycle
■ ω : rotational velocity in the xy plane controlled directly.

- Rider can set pedaling speed and orientation of the wheel with respect to the z-axis

■ r : wheel radius

- σ : pedaling angular velocity

■ $s=r \sigma$: speed of unicycle

- ω : rotational velocity in the xy plane controlled directly.
- Note: ddrive with $L=1, u_{s}=r u_{\sigma}$

- Rider can set pedaling speed and orientation of the wheel with respect to the z-axis
- r : wheel radius
- σ : pedaling angular velocity

■ $s=r \sigma$: speed of unicycle

- ω : rotational velocity in the xy plane controlled directly.
- Note: ddrive with $L=1, u_{s}=r u_{\sigma}$
- Ddrive can simulate a unicycle. Unicycle can simulate simple car. Unicycle $==$ tricycle.

CTE:

- $\dot{x}=s \cos \theta$
- $\dot{y}=s \sin \theta$
- $\theta_{0}=s / L \tan \phi$
- $\dot{\theta_{1}}=s / d_{1} \sin \left(\theta_{1}-\theta_{0}\right)$
- $\dot{\theta}_{i}=s / d_{j}\left(\Pi_{j=1}^{i-1} \cos \left(\theta_{j-1}-\right.\right.$ $\left.\left.\theta_{j}\right)\right) \sin \left(\theta_{i-1}-\theta_{i}\right)$
- Simple car pulling k trailers, each attached to rear axle of body in front of it.
- New: hitch length, d_{i}, distance from center of rear axle of trailer i to point at which trailer is hitched to next body.
- Car itself contributes $\mathbb{R}^{2} \times S^{1}$ to C, and each trailer contributes an S^{1}. So, $|\mathcal{C}|=k+1$.
- Configuration transition equation is hard to get right. Shown one here is adapted from Murray, Sastry, IEEE Trans Autom Control, 1993.
- Involve acceleration \ddot{q} in addition to velocity \dot{q} and configuration q
- Control acceleration directly
- Implicit constraints:

$$
g(\ddot{q}, \dot{q}, q)=0
$$

- Parametric constraints:

$$
\ddot{q}=f(\dot{q}, q, u)
$$

State Space: Reducing Degree by Increasing Dimension

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\begin{equation*}
\ddot{y}-3 \dot{y}+y=0 \tag{1}
\end{equation*}
$$

State Space: Reducing Degree by Increasing Dimension

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\begin{equation*}
\ddot{y}-3 \dot{y}+y=0 \tag{1}
\end{equation*}
$$

Let $x=\left(x_{1}, x_{2}\right)$ denote a state vector, where $x_{1}=y$ and $x_{2}=\dot{y}$.

State Space: Reducing Degree by Increasing Dimension

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\begin{equation*}
\ddot{y}-3 \dot{y}+y=0 \tag{1}
\end{equation*}
$$

Let $x=\left(x_{1}, x_{2}\right)$ denote a state vector, where $x_{1}=y$ and $x_{2}=\dot{y}$.
Then:

$$
\begin{equation*}
\dot{x}_{2}-3 x_{2}+x_{1}=0 \tag{2}
\end{equation*}
$$

Are (1) and (2) equivalent?

State Space: Reducing Degree by Increasing Dimension

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\begin{equation*}
\ddot{y}-3 \dot{y}+y=0 \tag{1}
\end{equation*}
$$

Let $x=\left(x_{1}, x_{2}\right)$ denote a state vector, where $x_{1}=y$ and $x_{2}=\dot{y}$.
Then:

$$
\begin{equation*}
\dot{x}_{2}-3 x_{2}+x_{1}=0 \tag{2}
\end{equation*}
$$

Are (1) and (2) equivalent?

- Yes, if we also add the constraint $x_{2}=\dot{x}_{1}$.

State Space: Reducing Degree by Increasing Dimension

Example: $y \in \mathbb{R}$ is a scalar variable and

$$
\begin{equation*}
\ddot{y}-3 \dot{y}+y=0 \tag{1}
\end{equation*}
$$

Let $x=\left(x_{1}, x_{2}\right)$ denote a state vector, where $x_{1}=y$ and $x_{2}=\dot{y}$.
Then:

$$
\begin{equation*}
\dot{x}_{2}-3 x_{2}+x_{1}=0 \tag{2}
\end{equation*}
$$

Are (1) and (2) equivalent?
■ Yes, if we also add the constraint $x_{2}=\dot{x}_{1}$.
Thus, (1) can be rewritten as two constraints

- $\dot{x}_{1}=x_{2}$
- $\dot{x}_{2}=3 x_{2}-x_{1}$

Suppose equations of motions are given as:

$$
\dot{x}=f(x, u)
$$

Let n denote the dimension. Then:

Suppose equations of motions are given as:

$$
\dot{x}=f(x, u)
$$

Let n denote the dimension. Then:
1 Select an input control u_{i}

Suppose equations of motions are given as:

$$
\dot{x}=f(x, u)
$$

Let n denote the dimension. Then:
1 Select an input control u_{i}
2. Rename the input control as a new state variable $x_{n+1}=u_{i}$

Suppose equations of motions are given as:

$$
\dot{x}=f(x, u)
$$

Let n denote the dimension. Then:
1 Select an input control u_{i}
2 Rename the input control as a new state variable $x_{n+1}=u_{i}$
3 Define a new input control u_{i}^{\prime} that takes the place of u_{i}

Extending Models by Adding Integrators

Suppose equations of motions are given as:

$$
\dot{x}=f(x, u)
$$

Let n denote the dimension. Then:
1 Select an input control u_{i}
2 Rename the input control as a new state variable $x_{n+1}=u_{i}$
3 Define a new input control u_{i}^{\prime} that takes the place of u_{i}
4 Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1}=u_{i}^{\prime}$

Extending Models by Adding Integrators

Suppose equations of motions are given as:

$$
\dot{x}=f(x, u)
$$

Let n denote the dimension. Then:
1 Select an input control u_{i}
2 Rename the input control as a new state variable $x_{n+1}=u_{i}$
3 Define a new input control u_{i}^{\prime} that takes the place of u_{i}
4 Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1}=u_{i}^{\prime}$

Procedure referred to as placing an integrator in front of u_{i}

Kinematic (first-order) model
Config $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{s}, u_{\phi}\right)$

- Signed speed $u_{s} \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

CTE $\dot{q}=f(q, u)$:
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}u_{s} \cos \theta \\ u_{s} \sin \theta \\ \frac{u_{s}}{L} \tan u_{\phi}\end{array}\right]$

Kinematic (first-order) model
Config $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{s}, u_{\phi}\right)$
■ Signed speed $u_{s} \in \mathbb{R}$
■ Steering angle $u_{\phi} \in \mathbb{R}$
CTE $\dot{q}=f(q, u):$
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}u_{s} \cos \theta \\ u_{s} \sin \theta \\ \frac{u_{s}}{L} \tan u_{\phi}\end{array}\right]$

Dynamics (second-order) model

State $s=(x, y, \theta, \sigma, \phi)$
■ Signed speed $\sigma \in \mathbb{R}$
■ Steering angle $\phi \in \mathbb{R}$

Kinematic (first-order) model
Config $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{s}, u_{\phi}\right)$
■ Signed speed $u_{s} \in \mathbb{R}$
■ Steering angle $u_{\phi} \in \mathbb{R}$
CTE $\dot{q}=f(q, u):$
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}u_{s} \cos \theta \\ u_{s} \sin \theta \\ \frac{u_{s}}{L} \tan u_{\phi}\end{array}\right]$

Dynamics (second-order) model

State $s=(x, y, \theta, \sigma, \phi)$

- Signed speed $\sigma \in \mathbb{R}$

■ Steering angle $\phi \in \mathbb{R}$
Control inputs $u=\left(u_{1}, u_{2}\right)$

- Transl. accel. $u_{1} \in \mathbb{R}$
- Steering rotational vel. $u_{2} \in \mathbb{R}$

Kinematic (first-order) model
Config $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{s}, u_{\phi}\right)$
■ Signed speed $u_{s} \in \mathbb{R}$
■ Steering angle $u_{\phi} \in \mathbb{R}$
CTE $\dot{q}=f(q, u):$
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}u_{s} \cos \theta \\ u_{s} \sin \theta \\ \frac{u_{s}}{L} \tan u_{\phi}\end{array}\right]$

Dynamics (second-order) model
State $s=(x, y, \theta, \sigma, \phi)$

- Signed speed $\sigma \in \mathbb{R}$
- Steering angle $\phi \in \mathbb{R}$

Control inputs $u=\left(u_{1}, u_{2}\right)$

- Transl. accel. $u_{1} \in \mathbb{R}$

■ Steering rotational vel. $u_{2} \in \mathbb{R}$
CTE $\dot{s}=f(s, u)$:

$$
\dot{s}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta} \\
\dot{\sigma} \\
\dot{\phi}
\end{array}\right]=\left[\begin{array}{c}
\sigma \cos \theta \\
\sigma \sin \theta \\
\frac{\sigma}{L} \tan \phi \\
u_{1} \\
u_{2}
\end{array}\right]
$$

[movie: SCar]

Kinematic (first-order) model
Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\ell}, u_{r}\right)$
■ Angular velocities $u_{\ell}, u_{r} \in \mathbb{R}$
CTE $\dot{q}=f(q, u)$:
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}\frac{r}{2}\left(u_{\ell}+u_{r}\right) \cos \theta \\ \frac{r}{2}\left(u_{\ell}+u_{r}\right) \sin \theta \\ \frac{r}{L}\left(u_{r}-u_{\ell}\right)\end{array}\right]$

Kinematic (first-order) model
Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\ell}, u_{r}\right)$
■ Angular velocities $u_{\ell}, u_{r} \in \mathbb{R}$
CTE $\dot{q}=f(q, u)$:
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}\frac{r}{2}\left(u_{\ell}+u_{r}\right) \cos \theta \\ \frac{r}{2}\left(u_{\ell}+u_{r}\right) \sin \theta \\ \frac{r}{L}\left(u_{r}-u_{\ell}\right)\end{array}\right]$

Dynamics (second-order) model

State $s=\left(x, y, \theta, v_{\ell}, v_{r}\right)$

- Angular velocities $v_{\ell}, v_{r} \in \mathbb{R}$

Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\ell}, u_{r}\right)$
■ Angular velocities $u_{\ell}, u_{r} \in \mathbb{R}$
CTE $\dot{q}=f(q, u)$:
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}\frac{r}{2}\left(u_{\ell}+u_{r}\right) \cos \theta \\ \frac{r}{2}\left(u_{\ell}+u_{r}\right) \sin \theta \\ \frac{r}{L}\left(u_{r}-u_{\ell}\right)\end{array}\right]$

Dynamics (second-order) model

State $s=\left(x, y, \theta, v_{\ell}, v_{r}\right)$
■ Angular velocities $v_{\ell}, v_{r} \in \mathbb{R}$
Control inputs $u=\left(u_{1}, u_{2}\right)$
■ Left wheel ang. accel. $u_{1} \in \mathbb{R}$

- Right wheel ang. accel. $u_{2} \in \mathbb{R}$

Kinematic (first-order) model
Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\ell}, u_{r}\right)$

- Angular velocities $u_{\ell}, u_{r} \in \mathbb{R}$

CTE $\dot{q}=f(q, u)$:
$\dot{q}=\left[\begin{array}{c}\dot{x} \\ \dot{y} \\ \dot{\theta}\end{array}\right]=\left[\begin{array}{c}\frac{r}{2}\left(u_{\ell}+u_{r}\right) \cos \theta \\ \frac{r}{2}\left(u_{\ell}+u_{r}\right) \sin \theta \\ \frac{r}{L}\left(u_{r}-u_{\ell}\right)\end{array}\right]$

Dynamics (second-order) model

State $s=\left(x, y, \theta, v_{\ell}, v_{r}\right)$
■ Angular velocities $v_{\ell}, v_{r} \in \mathbb{R}$
Control inputs $u=\left(u_{1}, u_{2}\right)$
■ Left wheel ang. accel. $u_{1} \in \mathbb{R}$

- Right wheel ang. accel. $u_{2} \in \mathbb{R}$ CTE $\dot{s}=f(s, u)$:

$$
\dot{s}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta} \\
\dot{v}_{\ell} \\
\dot{v}_{r}
\end{array}\right]=\left[\begin{array}{c}
\frac{r}{2}\left(v_{\ell}+v_{r}\right) \cos \theta \\
\frac{r}{2}\left(v_{\ell}+v_{r}\right) \sin \theta \\
\frac{r}{L}\left(v_{r}-v_{\ell}\right) \\
u_{1} \\
u_{2}
\end{array}\right]
$$

[movie: SDDrive]

Kinematic (first-order) model
Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\sigma}, u_{\omega}\right)$
■ Translational velocity $u_{\sigma} \in \mathbb{R}$
■ Rotational velocity $u_{\omega} \in \mathbb{R}$
CTE $\dot{q}=f(q, u)$:

$$
\dot{q}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
u_{\sigma} r \cos \theta \\
u_{\sigma} r \sin \theta \\
u_{\omega}
\end{array}\right]
$$

Dynamics (second-order) model

Kinematic (first-order) model
Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\sigma}, u_{\omega}\right)$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

CTE $\dot{q}=f(q, u)$:

$$
\dot{q}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
u_{\sigma} r \cos \theta \\
u_{\sigma} r \sin \theta \\
u_{\omega}
\end{array}\right]
$$

Dynamics (second-order) model

State $s=(x, y, \theta, \sigma, \omega)$

- Translational velocity $\sigma \in \mathbb{R}$

■ Rotational velocity $\omega \in \mathbb{R}$

Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\sigma}, u_{\omega}\right)$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

CTE $\dot{q}=f(q, u)$:

$$
\dot{q}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
u_{\sigma} r \cos \theta \\
u_{\sigma} r \sin \theta \\
u_{\omega}
\end{array}\right]
$$

Dynamics (second-order) model

State $s=(x, y, \theta, \sigma, \omega)$

- Translational velocity $\sigma \in \mathbb{R}$

■ Rotational velocity $\omega \in \mathbb{R}$
Control inputs $u=\left(u_{1}, u_{2}\right)$

- Translat. accel. $u_{1} \in \mathbb{R}$

■ Rotational accel. $u_{2} \in \mathbb{R}$

Config. $q=(x, y, \theta)$

- Position $(x, y) \in \mathbb{R}^{2}$
- Orientation $\theta \in S^{1}$

Control inputs $u=\left(u_{\sigma}, u_{\omega}\right)$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$

CTE $\dot{q}=f(q, u)$:

$$
\dot{q}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{c}
u_{\sigma} r \cos \theta \\
u_{\sigma} r \sin \theta \\
u_{\omega}
\end{array}\right]
$$

Dynamics (second-order) model
State $s=(x, y, \theta, \sigma, \omega)$
■ Translational velocity $\sigma \in \mathbb{R}$
■ Rotational velocity $\omega \in \mathbb{R}$
Control inputs $u=\left(u_{1}, u_{2}\right)$

- Translat. accel. $u_{1} \in \mathbb{R}$

■ Rotational accel. $u_{2} \in \mathbb{R}$
CTE $\dot{s}=f(s, u)$:

$$
\dot{s}=\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta} \\
\dot{\sigma} \\
\dot{\omega}
\end{array}\right]=\left[\begin{array}{c}
\sigma r \cos \theta \\
\sigma r \sin \theta \\
\omega \\
u_{1} \\
u_{2}
\end{array}\right]
$$

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- a starting state s_{0}

■ an input control u
■ motion equations $\dot{s}=f(s, u)$
Let $s(t)$ denote the state at time t. Then,

$$
s(t)=s_{0}+\int_{h=0}^{h=t} f(s(h), u) d h
$$

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider
■ a starting state s_{0}
■ an input control u
■ motion equations $\dot{s}=f(s, u)$
Let $s(t)$ denote the state at time t. Then,

$$
s(t)=s_{0}+\int_{h=0}^{h=t} f(s(h), u) d h
$$

Computation can be carried out by
■ Closed-form integration when available or

- Numerical integration

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$
s(\Delta t)=s(0)+\int_{h=0}^{h=\Delta t} f(s(h), u) d h
$$

Euler Approximation

$$
f(s(t), u)=\dot{s}(t)=\frac{d s(t)}{d t} \approx \frac{s(\Delta t)-s(0)}{\Delta t}
$$

Therefore,

$$
s(\Delta t) \approx s(0)+\Delta t f(s(t), u)
$$

For example, Euler integration of the kinematic model of unicycle yields:

$$
s(\Delta t) \approx\left[\begin{array}{l}
x_{0} \\
y_{0} \\
\theta_{0}
\end{array}\right]+\Delta t\left[\begin{array}{c}
u_{\sigma} r \cos \theta \\
u_{\sigma} r \sin \theta \\
u_{\omega}
\end{array}\right]
$$

■ Advantage: Simple and efficient
■ Disadvantage: Not very accurate (first-order approximation)

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$
s(\Delta t)=s(0)+\int_{h=0}^{h=\Delta t} f(s(h), u) d h
$$

Fourth-order Runge-Kutta integration:

$$
s(\Delta t) \approx s(0)+\frac{\Delta t}{6}\left(w_{1}+w_{2}+w_{3}+w_{4}\right)
$$

where

$$
\begin{gathered}
w_{1}=f(s(0), u) \\
w_{2}=f\left(s(0)+\frac{\Delta t}{2} w_{1}, u\right) \\
w_{3}=f\left(s(0)+\frac{\Delta t}{2} w_{2}, u\right) \\
w_{4}=f\left(s(0)+\Delta t w_{3}, u\right)
\end{gathered}
$$

Given

- State space S
- Control space U
- Equations of motions as differential equations $f: S \times U \rightarrow \dot{S}$
- State-validity function VALID : $S \rightarrow\{$ true, false $\}$ for collisions
- Goal function goal : $S \rightarrow\{$ true, false $\}$
- Initial state s_{0}

Compute a control trajectory $u:[0, T] \rightarrow U$ so resulting state trajectory $s:[0, T] \rightarrow S$ obtained by integration is valid and reaches the goal, i.e.,

$$
\begin{align*}
& s(t)=s_{0}+\int_{h=0}^{h=t} f(s(t), u(t)) d h \tag{1}\\
& \forall t \in[0, T]: \operatorname{VALID}(s(t))=\text { true } \tag{2}\\
& \exists t \in[0, T]: \operatorname{GOAL}(s(t))=\text { true } \tag{3}
\end{align*}
$$

Decoupled approach
1 Compute a geometric solution path ignoring differential constraints
2 Transform the geometric path into a trajectory that satisfies the differential constraints

Sampling-based Motion Planning

- Take the differential constraints into account during motion planning

Roadmap Approaches
0 . Initialization
add $s_{\text {init }}$ and $s_{\text {goal }}$ to roadmap vertex set V

1. Sampling repeat several times

$$
\begin{aligned}
& s \leftarrow \operatorname{StateSample}() \\
& \text { if } \operatorname{IsStateVALID}(s)=\text { true }
\end{aligned}
$$

add s to roadmap vertex set V

Roadmap Approaches

2. Connect Samples
for each pair of neighboring samples $\left(s_{a}, s_{b}\right) \in V \times V$
$\lambda \leftarrow \operatorname{GenerateLocaLTrajectory}\left(s_{a}, s_{b}\right)$
if $\operatorname{IsTrajectory} \operatorname{Valid}(\lambda)=$ true
 add $\left(s_{a}, s_{b}\right)$ to roadmap edge set E
3. Graph Search
search graph (V, E) for path from $s_{\text {init }}$ to $s_{\text {goal }}$

$s \leftarrow$ StateSample ()

- generate random values for all the state components

IsStateValid (s)

- place the robot in the configuration specified by the position and orientation components of the state
- check if the robot collides with the obstacles
- check if velocity and other state components are within bounds

IsTrajectory Valid (λ)
■ use subdivision or incremental approach to check intermediate states
$\lambda \leftarrow \operatorname{GenerateLocaLTrajectory}\left(s_{a}, s_{b}\right)$

- linear interpolation between s_{a} and s_{b} won't work as it does not respect underlying differential constraints
- need to find control function $u:[0, T] \rightarrow U$ such that trajectory obtained by applying u to s_{a} for T time units ends at s_{b}
- known as two-point boundary value problem: cannot always be solved analytically, and numerical solutions increase computational cost

```
RRT
    1: \mathcal{T}}\leftarrow\mathrm{ create tree rooted at s}\mp@subsup{s}{\mathrm{ init}}{
    2: while solution not found do
\triangleright \text { select state from tree}
    3: }\quad\mp@subsup{s}{\mathrm{ rand }}{}\leftarrow\mathrm{ STATESAMPLE()
    4: }\quad\mp@subsup{s}{\mathrm{ near }}{}\leftarrow\mathrm{ nearest configuration in }\mathcal{T}\mathrm{ to }\mp@subsup{q}{\mathrm{ rand }}{}\mathrm{ according to distance }
\triangleright a d d ~ n e w ~ b r a n c h ~ t o ~ t r e e ~ f r o m ~ s e l e c t e d ~ c o n f i g u r a t i o n
    5: }\lambda\leftarrow\mathrm{ GEnERateLocaLTrajEctory( }\mp@subsup{s}{\mathrm{ near }}{},\mp@subsup{s}{\mathrm{ rand }}{}
    6: if IsSubTrajectoryValid}(\lambda,0, step) the
    7: }\quad\mp@subsup{s}{\mathrm{ new }}{}\leftarrow\lambda(\mathrm{ step )
    8: add configuration }\mp@subsup{s}{\mathrm{ new }}{}\mathrm{ and edge ( }\mp@subsup{s}{\mathrm{ near }}{},\mp@subsup{s}{\mathrm{ new }}{})\mathrm{ to }\mathcal{T
Dcheck if a solution is found
    9: if }\rho(\mp@subsup{s}{\mathrm{ new }}{},\mp@subsup{s}{\mathrm{ goal }}{})\approx0\mathrm{ then
10: return solution trajectory from root to snew
```

\checkmark StateSample (): random values for state components $\checkmark \rho: S \times S \rightarrow \mathbb{R}^{\geq 0}$: distance metric between states $\checkmark \operatorname{IsSubTrajectory} \operatorname{Valid}(\lambda, 0$, step): incremental approach
$\lambda \leftarrow$ GenerateLocalTrajectory $\left(s_{\text {near }}, s_{\text {rand }}\right)$
■ will it not create the same two-boundary value problems as in PRM?

- is it necessary to connect to $s_{\text {rand }}$?

■ would it suffice to just come close to $s_{\text {rand }}$?

Rather than computing a trajectory from $s_{\text {near }}$ to $s_{\text {rand }}$ compute a trajectory that starts at $s_{\text {near }}$ and extends toward $s_{\text {rand }}$

Approach 1 - extend according to random control

- Sample random control u in U
- Integrate equations of motions when applying u to $s_{\text {near }}$ for Δt units of time, i.e.,

$$
\lambda \rightarrow s(t)=s_{\text {near }}+\int_{h=0}^{h=\Delta t} f(s(t), u) d h
$$

Approach 2 - find the best-out-of-many random controls
1 for $i=1, \ldots, m$ do
$1 u_{i} \leftarrow$ sample random control in U
$2 \lambda_{i} \rightarrow s(t)=s_{\text {near }}+\int_{h=0}^{h=\Delta t} f\left(s(t), u_{i}\right) d h$
$3 d_{i} \leftarrow \rho\left(s_{\text {rand }}, \lambda_{i}(\Delta t)\right)$
2 return λ_{i} with minimum d_{i}

Tree approaches require only the ability to simulate robot motions

- Physics engines can be used to simulate robot motions
- Physics engines provide greater simulation accuracy

■ Physics engines can take into account friction, gravity, and interactions of the robot with objects in the evironment
[movie: PhysicsTricycle]
[movie: PhysicsBug]

