CS 689: Robot Motion Planning
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Robot Motion Planning

m Application of search approaches, such as A*, stochastic search, and more.
m Search in geometric structures (constrained configuration space)

m Spatial Reasoning
m Challenges

m Continuous state space
m Vast, high-dimensional configuration space for searching
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m The problem is reduced to finding the path of a point robot through configuration
space by expanding obstacles.
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Motion Planning Problem

qstart

qend

A = robot with p dofs in 2D or 3D workspace

m CB = set of obstacles

A configuration q is legal if it does not cause the robot to intersect the obstacles

m Given start and goal configurations, gstart, Ggoal, find a continuous sequence of
legal configurations from gstart t0 Ggoal-

m Report failure if no valid path is found.
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From Formal Guarantees to Practical Algorithms

m Formal result not useful for practical algorithms': A path (if it exists) can be found
in time exponential in p and polynomial in m and d.
m p: dimension of c-space
m m: number of polynomials describing free c-space
m d: maximum degree of the polynomials

m In practical approaches: reduce intractable problem in continuous c-space into
tractable problem in a discrete space, where then one can use all standard
techniques for path finding, such as A*, stochastic search, and more.

m Basic Approaches:
m Roadmaps: Visibility graphs vs. Voronoi diagrams
m Cell decomposition
m Potential fields

m Extensions
m Sampling techniques
m Online algorithms

. Canny. “The complexity of Robot Motion Planning Plans.” MIT Ph.D. Dissertation, 1987.
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General ldea:

m Avoid searching entire space
m Pre-compute a (hopefully small) graph (the roadmap) such that staying on the
“roads"” is guaranteed to avoid the obstacles

m Find a path between gstart and ggoal by using the roadmap
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Visibility Graphs

qend

qstart

In the absence of obstacles, the best path is the straight line between gstart and ggoar.
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Visibility Graphs

qend

qstart

m Assuming polygonal osbtacles, it looks like the shortest path is a sequence of
straight lines joining the vertices of the obstacles.

m Is this always true?
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Visibility Graphs

qend

qstart

m Visibility graph G = set of unblocked lines between vertices of the obstacles, gssart,
and ggoal
® A node P is lined to a node P’ if P’ is visible from P

m Solution = shortest path in visibility graph G.
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Visibility Graph Construction

qstan

m Sweep a line originating at each vertex

m Record those lines that end at visible vertices.
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Complexity

qend

qstart

m Let N = total number of vertices of the obstacle polygons
Naive: O(N?)

Sweep: O(N? - Ig(N))

Optimal: O(N?)
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Visibility Graphs: Weaknesses

m Shortest path but:

m Tries to stay as close as possible to obstacles
m Any execution error will lead to a collision
m Complicated in more than 2 dimensions

m We may not care about strict optimality so long as we find a safe path. Staying
away from obstacles is more important than finding the shortest path

m Need to define other types of “roadmaps”
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O O

m Given a set of data points in the plane:

m Color the entire plane such that the color of any point in the plane is the same as the
color of its nearest neighbor
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Voronoi Diagrams

m Voronoi diagram = Set of line segments separating regions corresponding to
different colors

m Line segment = points equidistant from 2 data points
m Vertices = points equidistant from more than 2 data points
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Voronoi Diagrams

Vertices are equidistant
from 3 points

Points on the edge are
equidistant from the blue
and red points

m Voronoi diagram = Set of line segments separation regions corresponding to
different colors

m Line segment = points equidistant from 2 data points
m Vertices = points equidistant from more than 2 data points
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Voronoi Diagrams

m Complexity (in the plane):
m O(N - logN) time
m O(N) space

m See htpp://www.cs.cornell.edu/Info/People/chew/Delaunay.html for interactive
demo
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Voronoi Diagrams: Beyond Points

m Edges are combinations of straight line segments and segments of quadratic curves
m Straight edges: Points equidistant from 2 lines

m Curved edges: Points equidistant from one corner and one line
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Voronoi Diagrams: Polygons

m Key property: Points on edges of Voronoi diagram are furthest from obstacles

m Idea: Construct a path between gstart and ggoar by following edges on Voronoi
diagram

m Use Voronoi diagram as roadmap graph instead of visibility graph
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Voronoi Diagrams: Planning

m Find point g, of the Voronoi diagram closest to gstart
m Find point g, of the Voronoi diagramn closest to ggoal

m Compute shortest path from ggi.:¢ t0 gzoa On the Voronoi diagram
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Voronoi Diagrams: Weaknesses

m Difficult to compute in higher dimensions or non-polygonal worlds

m Approximate algorithms exist
Use of Voronoi is not necessarily best heuristic (stay away from obstacles)

m It can lead to paths that are much too conservative

m Can be unstable: that is, small changes in obstacle configuration can lead to large
changes in the diagram
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Cell Decomposition

m Key ldea: Decompose c-space into cells so that any path inside a cell is
obstacle-free

m Approximate vs. Exact Cell Decomposition
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Approximate Cell Decomposition

qend

qsta

m Define discrete grid in c-space
m Mark any cell of the grid that intersects configuration space obstacles as blocked

m Find path through remaining cells by using, for instance, A* (using Euclidean
distance as heuristic)

m Cannot be complete as described. Why?
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Approximate Cell Decomposition

4

Cannot find path in this case, even though one exists
Solution:
Distinguish between

m Cells that are entirely contained in some configuration space obtacle (FULL) and
m Cells that partially intersect configuration space obstacles (MIXED)

Try to find path using current set of cells
If no path found:

m Subdivide MIXED cells again and try with new set of cells
m UNTIL some reasonable cell size and then stop with failure
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Approximate Cell Decomposition: Limitations

m Good:

m Limited assumption on obstacle configuration
m Approach used in practice
m Finds obvious solutions quickly

m Bad:

m No clear notion of optimality (“best” path)
m Trade-off completeness/computation
m Still difficult to employ in high dimensions
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Exact Cell Decomposition

</

Any path within one cell is guaranteed to not
intersect any obstacle
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Exact Cell Decomposition

m Graph of cells defines a roadmap
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Exact Cell Decomposition
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m Graph can be used to find a path between any two configurations
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Exact Cell Decomposition

m Critical Event 1: Create new cell
m Critical Event 2: Split cell
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Plane Sweep Algorithm

m Initialize current list of cells to empty

Order vertices of configuration space obstacles along the x direction

For every vertex:
m Construct plane at corresponding x location
m Depending on type of event:

m Slit current cell into 2 new cells OR
m Merge two current cells

m Create a new cell
m Complexity in 2D:

m Time: O(N - logN)

m Space: O(N)
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Exact Cell Decomposition

36

35 37

m A version of exact cell decomposition can be extended to higher dimensions and
non-polygonal boundaries (cylindrical cell decomposition)

m Provides exact solution; thus, completeness

m Expensive and difficult to implement in higher dimensions
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Potential Fields

See previous lecture.
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Back to Roadmaps and Dimensioanlity of C-space

Millipede-like robot (S. Redon) has close to 13,000 dofs.
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Dealing with C-space Dimension

Figure: Full set of neighbors vs. random subset of neighbors

m We should evaluate all neighbors of current state, but:
m Size of neighborhood grows exponentially with dimension
m Very expensive in high dimensions
Solution:
m Evaluate on random subset of K neighbors
m Move to lowest potential neighbor
Draw away:
m Completely describing and optimally exploring C-space is too hard in high
dimensions and not necessary
m Focus on finding a good sampling of C-space. So, probabilistic motion planning!

S
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