CS 689: Robot Motion Planning

Roadmaps

Amarda Shehu

Department of Computer Science
George Mason University

- Application of search approaches, such as A*, stochastic search, and more.
- Search in geometric structures (constrained configuration space)
- Spatial Reasoning
- Challenges
- Continuous state space
- Vast, high-dimensional configuration space for searching

- The problem is reduced to finding the path of a point robot through configuration space by expanding obstacles.

- A $=$ robot with p dofs in 2D or 3D workspace
- $\mathrm{CB}=$ set of obstacles
- A configuration q is legal if it does not cause the robot to intersect the obstacles
- Given start and goal configurations, $q_{\text {start }}, q_{\text {goal }}$, find a continuous sequence of legal configurations from $q_{\text {start }}$ to $q_{\text {goal }}$.
- Report failure if no valid path is found.

- Formal result not useful for practical algorithms ${ }^{1}$: A path (if it exists) can be found in time exponential in p and polynomial in m and d .
- p: dimension of c-space
- m: number of polynomials describing free c-space
- d: maximum degree of the polynomials
- In practical approaches: reduce intractable problem in continuous c-space into tractable problem in a discrete space, where then one can use all standard techniques for path finding, such as A^{*}, stochastic search, and more.
- Basic Approaches:
- Roadmaps: Visibility graphs vs. Voronoi diagrams
- Cell decomposition
- Potential fields
- Extensions
- Sampling techniques
- Online algorithms
${ }^{1}$ J. Canny. "The complexity of Robot Motion Planning Plans." MIT Ph.D. Dissertation, 1987.

General Idea:

- Avoid searching entire space
- Pre-compute a (hopefully small) graph (the roadmap) such that staying on the "roads" is guaranteed to avoid the obstacles.

■ Find a path between $q_{\text {start }}$ and $q_{\text {goal }}$ by using the roadmap.

Visibility Graphs

In the absence of obstacles, the best path is the straight line between $q_{\text {start }}$ and $q_{\text {goal }}$.

Visibility Graphs

- Assuming polygonal osbtacles, it looks like the shortest path is a sequence of straight lines joining the vertices of the obstacles.
■ Is this always true?

- Visibility graph $G=$ set of unblocked lines between vertices of the obstacles, $q_{\text {start }}$, and $q_{\text {goal }}$
- A node P is lined to a node P^{\prime} if P^{\prime} is visible from P
- Solution $=$ shortest path in visibility graph G.

- Sweep a line originating at each vertex
- Record those lines that end at visible vertices.

Complexity

- Let $N=$ total number of vertices of the obstacle polygons
- Naive: $O\left(N^{3}\right)$
- Sweep: $O\left(N^{2} \cdot \lg (N)\right)$
- Optimal: $O\left(N^{2}\right)$
- Shortest path but:
- Tries to stay as close as possible to obstacles
- Any execution error will lead to a collision
- Complicated in more than 2 dimensions
- We may not care about strict optimality so long as we find a safe path. Staying away from obstacles is more important than finding the shortest path
- Need to define other types of "roadmaps"

Voronoi Diagrams

\square

- Given a set of data points in the plane:
- Color the entire plane such that the color of any point in the plane is the same as the color of its nearest neighbor

■ Voronoi diagram $=$ Set of line segments separating regions corresponding to different colors

- Line segment $=$ points equidistant from 2 data points
- Vertices $=$ points equidistant from more than 2 data points

Voronoi Diagrams

■ Voronoi diagram $=$ Set of line segments separation regions corresponding to different colors

- Line segment $=$ points equidistant from 2 data points
- Vertices $=$ points equidistant from more than 2 data points

Voronoi Diagrams

- Complexity (in the plane):
- $O(N \cdot \log N)$ time
- $O(N)$ space
- See htpp://www.cs.cornell.edu/Info/People/chew/Delaunay.html for interactive demo

Voronoi Diagrams: Beyond Points

- Edges are combinations of straight line segments and segments of quadratic curves
- Straight edges: Points equidistant from 2 lines
- Curved edges: Points equidistant from one corner and one line

- Key property: Points on edges of Voronoi diagram are furthest from obstacles
- Idea: Construct a path between $q_{\text {start }}$ and $q_{\text {goal }}$ by following edges on Voronoi diagram
- Use Voronoi diagram as roadmap graph instead of visibility graph

- Find point q_{start}^{*} of the Voronoi diagram closest to $q_{\text {start }}$
- Find point $q_{\text {goal }}^{*}$ of the Voronoi diagramn closest to $q_{\text {goal }}$
- Compute shortest path from $q_{\text {start }}^{*}$ to $q_{\text {goal }}^{*}$ on the Voronoi diagram
- Difficult to compute in higher dimensions or non-polygonal worlds
- Approximate algorithms exist Use of Voronoi is not necessarily best heuristic (stay away from obstacles)
- It can lead to paths that are much too conservative
- Can be unstable: that is, small changes in obstacle configuration can lead to large changes in the diagram

Cell Decomposition

- Key Idea: Decompose c-space into cells so that any path inside a cell is obstacle-free
- Approximate vs. Exact Cell Decomposition

- Define discrete grid in c-space
- Mark any cell of the grid that intersects configuration space obstacles as blocked
- Find path through remaining cells by using, for instance, A* (using Euclidean distance as heuristic)
■ Cannot be complete as described. Why?

- Cannot find path in this case, even though one exists
- Solution:
- Distinguish between
- Cells that are entirely contained in some configuration space obtacle (FULL) and
- Cells that partially intersect configuration space obstacles (MIXED)
- Try to find path using current set of cells
- If no path found:
- Subdivide MIXED cells again and try with new set of cells
- UNTIL some reasonable cell size and then stop with failure
- Good:
- Limited assumption on obstacle configuration
- Approach used in practice
- Finds obvious solutions quickly
- Bad:
- No clear notion of optimality ("best" path)

■ Trade-off completeness/computation

- Still difficult to employ in high dimensions

Exact Cell Decomposition

- Graph of cells defines a roadmap

- Graph can be used to find a path between any two configurations

Exact Cell Decomposition

- Critical Event 1: Create new cell
- Critical Event 2: Split cell
- Initialize current list of cells to empty
- Order vertices of configuration space obstacles along the x direction
- For every vertex:
- Construct plane at corresponding \times location
- Depending on type of event:

■ Slit current cell into 2 new cells OR

- Merge two current cells

■ Create a new cell

- Complexity in 2D:
- Time: $O(N \cdot \log N)$
- Space: $O(N)$

Exact Cell Decomposition

- A version of exact cell decomposition can be extended to higher dimensions and non-polygonal boundaries (cylindrical cell decomposition)
- Provides exact solution; thus, completeness
- Expensive and difficult to implement in higher dimensions

See previous lecture.

Millipede-like robot (S. Redon) has close to 13,000 dofs.

Figure: Full set of neighbors vs. random subset of neig币̄ors

- We should evaluate all neighbors of current state, but:
- Size of neighborhood grows exponentially with dimension
- Very expensive in high dimensions

Solution:

- Evaluate on random subset of K neighbors
- Move to lowest potential neighbor

Draw away:

- Completely describing and optimally exploring C-space is too hard in high dimensions and not necessary
- Focus on finding a good sampling of C-space. So, probabilistic motion planning!

