CS 689: Robot Motion Planning

Potential Functions, aka May the Force be with you
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m Suppose the goal is a point g € R?
m Suppose the robot is a point r € R?
m Think of a spring drawing the robot toward the goal and away from obstacles

m Can also think of like and opposite charges
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Another Idea

m Think of the goal as the bottom of a bowl
m The robot is at the rim of the bowl

m What will happen?
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Using Potential Functions for Path Planning

m Both the spring and bowl analogies are ways of storing potential energy
m The robot moves to a lower-energy configuration
A potential function is a function U : R" — R

Energy is minimized by following the negated gradient of the potential energy function

, " ou VN
gradient at g €R": - VU(q) = | 5 (a).-- - 5 -(q)

We can now think of a vector field over the space of all ¢'s

m the robot looks at the vector at its current position and goes in that direction
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Attractive + Repulsive Potentials

Desired objectives
m robot moves toward the goal (attractive potential)

m robot stays away from the obstacles (repulsive potential)

U(q) = Uaee(q) + Urep(q)
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Attractive Potential: Conic Potential

Attractive potential: U.«(q)
m monotonically increasing with distance from ggoas

m example: conic potential (scaled distance to goal, ¢ > 0 scaling factor)

Uatt(q) =¢ an qgoa/”

m what's the gradient?
¢
VU, -5 (g_
n(q) qu nga/” (q qgoal)
m what's the magnitude of the gradient at g?
HVUatt(q)H _ C7 . q 7£ Qgoal
undefined, q = Qgoal

m conic potential has discontinuity at ggoas
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Attractive Potential: Quadratic Potential

Attractive potential: U.u(q)
m monotonically increasing with distance from ggoa
m preference:
continuously differentiable + magnitude decreases as robot approaches ggoa
m example: quadratic potential (¢ > 0 scaling factor)

1
Uatt(q) = EC an qgoal”2

m what's the gradient?
VUar(q) = ¢ (9 — Ggoar)
m what's the magnitude of the gradient at g7

IV Uaee(@)1] = <l19; goalll

(b

(a) (b) (e)
Figure: (a) Potential Field. (b) Contour Plot. (c) Quadratic Potential.

Amarda Shehu (689) 7



Attractive Potential: Quadratic Potential

Attractive potential: U.u(q)
m monotonically increasing with distance from ggoas

m preference:
continuously differentiable + magnitude decreases as robot approaches ggoa

m example: quadratic potential (¢ > 0 scaling factor)

1
Uatt(q) = EC an qgoal“2

m what's the gradient?
VUa(q) = ¢ (g — qgoa/)
m what's the magnitude of the gradient at g7

[V Uaee(9)|] = <llq, Ggoal|

m what happens when robot is far away from the goal?

m robot may move too fast as potential grows without bounds the further away from
goal; this may produce a velocity that is too large
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Attractive Potential: Combining Conic and Quadratic

Attractive potential: U.«(q)
m monotonically increasing with distance from ggoas

m preference:
continuously differentiable, magnitude decreases as robot approaches ggoa
does not produce very large velocities

m combine conic and quadratic potentials (¢ > 0 scaling factor)

_ }3¢11a, Geoal if 19, Ggoall| < dioa
Uatt(q) = . 1 . N2 . 3
dgoa/C HCI, qgoa/H — EC ( goal) , if ||q7 qgoaIH > dgoa/

(d;‘oa,: threshold from goal where planner switches between conic and quadratic potentials)

m what's the gradient? is it well defined at the boundary?

VUatt(q) — qu - qg03/)7 If Hq7 CIgoa/H S d{oal
dgoalé- (q - nga/)/Hq, ngaI”y if qu ngS/H > dgoa/

Amarda Shehu (689) 9



Repulsive Potential

Repulsive potential: Uyep(q)
m the closer the robot is to an obstacle, the stronger the repulsive force should be
m robot keeps track of closest obstacle

m there is a threshold so robot can ignore far away obstacles

Obstacle
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Repulsive Potential

Repulsive potential: Uyep(q)
m the closer the robot is to an obstacle, the stronger the repulsive force should be

2
0 (olg — 5t ) if D(9) < i

1
Uren(q) = 2 .
0, otherwise

1 1) 1 ; < g
Uy = |7 (@~ ot9) wiar YO, if Dla) < dise

0, otherwise

m D(q): distance to the closest obstacle; n > 0 scaling factor
m d),.;: threshold to allow the robot to ignore obstacles far away from it
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Repulsive Potential

Repulsive potential: Uyep(q)

m the closer the robot is to an obstacle, the stronger the repulsive force should be

2
n (5t~ =) s if D(a) < e

1
Uep(q) = 4 2
0, otherwise

0 (3 = o) wip V0@, i D(a) < e
0, otherwise

m D(q): distance to the closest obstacle; 1 > 0 scaling factor

m d,.: threshold to allow the robot to ignore obstacles far away from it

m what happens around points that are two-way equidistant from obstacles?
D is nonsmooth = path may oscillate
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Repulsive Potential

Repulsive potential: Uyep(q)

m minimum distance to i-th obstacle

di(q)= _min d(q,c)

cE&Olbstacle;

m for convex obstacles (c is closest point to q)

() €49
V(@) = 12

m repulsive potential for each obstacle

2
%77 (d;zQ) o ﬁst’) ’ if dl(q) < d;bst,-

Urep; (9) =
0, otherwise

m overall repulsive potential as sum of obstacle potentials

Urep(q) = Z U'EP,'(q)
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Gradient Descent: Moving Opposite to the Gradient

repeat until gradient is zero (or its magnitude very small)

m take small step in the direction opposite the gradient
Pseudocode

1: g < Qinit

2: while [[VU(q)|| > € do

33 g+ q—aVU(q)

m ¢ > 0: small constant to ensure termination criteria

m o > 0: step size (doesn't have to be constant)

(a) (]yj (c) [121]
Figure: (a): Configuration space with gray obstacles. (b) Potential function energy surface. (c)
Contour plot for energy surface. (d) Gradient vectors for potential function.
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Gradient Descent: Moving Opposite to the Gradient

repeat until gradient is zero (or its magnitude very small)

m take small step in the direction opposite the gradient

Pseudocode
1: g < Qinit
2: while |[VU(q)|| > ¢ do
33 g+ q—aVU(q)
m ¢ > 0: small constant to ensure termination criteria
m o > 0: step size (doesn't have to be constant)
Weaknesses of Gradient Descent
m it is relatively slow close to the minimum

m it might 'zigzag' down valleys

Better Methods
m Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

... but more complex to implement
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Mobile Robot Implementation

m Robot knows goal position
m Robot does not know where obstacles are located

m Robot has range sensor and can determine its own position

Uae(q)
Urep(q) approximate it via data from range sensor
= D(q
di(q

can be easily computed since goal position is known

approximated as the global minimum of the raw distance function p
approximated as local minima with respect to 6 in p(gq,0)

):
):
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Brushfire Algorithm — Compute Distances on a Grid

Urep(9):

discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)
label with 1 cells that are partially or fully occupied by obstacles

label with 2 all unlabeled cells neighboring 1-labeled cells

label with n all unlabeled cells neighboring (n — 1)-labeled cells
stop when all cells have been labeled
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m gradient from each cell points to a neighbor with lowest label
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Brushfire Algorithm — Compute Distances on a Grid

Urep(9):
m discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)

m label with 1 cells that are partially or fully occupied by obstacles

m label with 2 all unlabeled cells neighboring 1-labeled cells

label with n all unlabeled cells neighboring (n — 1)-labeled cells

stop when all cells have been labeled

can planner get stuck?
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Local Minima Problem

Gradient descent algorithms may get stuck in local minima

\

@
(goal

Ginit |7

Two approaches to avoid local-minima problem

m do something different than gradient descent to overcome/avoid local minima

m define potential function so that there is only one global minimum
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Wave-Front Planner: Complete Planner in Grid Spaces

m similar to Brushfire algorithm discretize space by imposing a grid
m label with 1 cells that are partially or fully occupied by obstacles
m label with 2 cell where goal is located
m label with 3 all unlabeled cells neighboring 2-labeled cells
m label with n all unlabeled cells neighboring (n — 1)-labeled cells
m stop when init cell ( : ) has been labeled
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m each time move to neighboring non-obstacle cell with lowest label
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Potential Functions in Non-Euclidean Spaces

How can we deal with rigid bodies and manipulators?
m Think of gradient vectors as forces
m Define forces in workspace W (which is R? or R?)
m “Lift up” forces in configuration space Q

Relationship between Forces in the Workspace and Configuration Space
m point x € W in workspace related to configuration g € Q via forward kinematics

x =FK(q)

“virtual work” principle: work (or power) is a coordinate-independent quantity
in workspace, power done by a force f is 7 x

in configuration space, power done by a force uis u’ g

mapping from workspace forces to configuration space forces done via Jacobian
J = OFK/dq of the forward kinematic function

fTx=u'gq (by the ‘virtual work” principle)

= flJg=u"g (by Jacobian property x = Jq)
=>fTJ=u"
=JTf=u
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Potential Functions for Rigid-Body Robots

m Pick control points ri,..., r, on the robot in its initial placement, e.g.,
ri could be selected as the j-th robot vertex

Let FK;(qg) denote the forward kinematics of point r;
example: when g = (x,y,0) and r; = (xj,y;)

) _ cosf —sinf Xj X _ xjcosf — yjsinf + x
FKJ(q)—< sinf  cosf )(yj >+(y>_<xjsin9+yjc059+y
m Define VU, in workspace for each control point r;, and scale it appropriately, e.g.,

V Uat;(q) = SCALEa (FKj(q) — ( ? )) ,  where (g, gy) is goal center
y

m Define VU, ; in workspace for each control point r; and obstacle /, and scale it
appropriately,

Ly

Oj,x
VUrep, ;(q) = SCALEep (( o ) - FKJ'(‘?)) )

where (0; «, 0i,y) is closest point to FK;(g) on obstacle i
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Potential Functions for Rigid-Body Robots (cont.)

m Compute Jacobian

OFK;(q)ll]  OFKi(q)ft]  9FK;(q)[1]

J( )_ Ox dy 0
RO =\ orp oFK@R] OFK (@)1
Ox Oy 20

m Compute overall gradient in configuration space
(apply Jacobian to scaled versions of the workspace gradients)

VUes(q ZJ )V Vet (9) + D I (9) 3 V Ure ()
J i

Apply appropriate scaling to position and orientation components separately, i.e.,

movey , < SCALE«(V Ues, , (9)), movey < SCALE(V Ues, (q))
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Potential Functions for Manipulators

2d chain with n revolute joints where link j has length {;
End position of the j-th link (1 <j < n):

0
FK;(61,62,...,0n) = M(61)M(62)...M(6;) | O | ,whereforl<i<j
1
cosf; —sinf; 0 1 0 ¢ cos; —sinf; {icosb;
M(6;) = sinf; cos@; O 01 0 = sinf; cosf; {;isin0;
0 0 1 0 0 1 0 0 1
Jacobian of j-th lipk (1 <j < n): lon
AFK;(01,...,00)[1] OFK;(01,...,0,)[1] m
Ji(01,...,0n) = 96, 96; ,where for 1 < <j
OFK;(q)[2] OFK,(a)l2]
= ~—s 0.0
8FKJ(918"6j 1] sinf;(ga + hb + al;) + cos 0;(gb — ha + b¥;)
aFKj(ela’éj -, 0n)[2] = —sin0;(gd + he + d¥;) + cos6i(ge — hd + el;)
a b c g 0
d e f | =M@O).. . MO, | h | =M0O)... M) | 0
0 0 1 1 1
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Potential Functions for Manipulators (cont.)

2d chain with n revolute joints where link j has length {;

m Compute Ji(61,...,0,), i <, using a simplified but equivalent definition

OFK,- _ ( 7FKJ'(01,...,(9")[2] +FK;_1(91,...,9,7)[2] )
9.~ \ FK;(01,...,00)[1] - FKi_1(6n,. .. 00)[1]

m Define VU,4, for the end-effector and scale it appropriately:

V Uatt, (61, - . ., 0n) = SCALEas (FKn(01, ey 0y) — ( ? )) , (&, &) goal center
y

m Define VU, ; in workspace between the end-position of the j-th link and the i-th
obstacle and scale it appropriately, e.g.,

VUrep, (01, .. ,05) = SCALE/ep <( Zfax ) — FK;(61,.. .,0,,)) ,
iy
(0i,x; 0i,y): closest point on the i-th obstacle to the end position of the j-th link
m Compute overall gradient in configuration space
VUcs(01,...,0,) =
SCALE(J] (01, ... ,00)V Uatt, (61, . .., 0,) +

> I (01, ,00)V Urep, (61, ...,0))
i
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Basic potential fields: attractive/repulsive forces

Path planning by following gradient of potential field
m Gradient descent (incomplete, suffers from local minima)
m Brushfire algorithm (incomplete, suffers from local minima, grid world)

m Wavefront planner (complete, grid world)

Potential Functions in Non-Euclidean Spaces
m Gradients as forces
m Lift up workspace forces to configuration space forces

m Applicable to rigid body robots and manipulators
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