
CS 689: Robot Motion Planning
Potential Functions, aka May the Force be with you

Amarda Shehu

Department of Computer Science
George Mason University

Basic Idea

Suppose the goal is a point g ∈ R2

Suppose the robot is a point r ∈ R2

Think of a spring drawing the robot toward the goal and away from obstacles

Can also think of like and opposite charges

Amarda Shehu (689) 2

Another Idea

Think of the goal as the bottom of a bowl

The robot is at the rim of the bowl

What will happen?

Amarda Shehu (689) 3

Using Potential Functions for Path Planning

Both the spring and bowl analogies are ways of storing potential energy

The robot moves to a lower-energy configuration

A potential function is a function U : Rn → R

Energy is minimized by following the negated gradient of the potential energy function

gradient at q ∈ Rn : ∇U(q) =

[
∂U

∂q1
(q), . . . ,

∂U

∂qn
(q)

]T
We can now think of a vector field over the space of all q’s

the robot looks at the vector at its current position and goes in that direction

Amarda Shehu (689) 4

Attractive + Repulsive Potentials

Desired objectives

robot moves toward the goal (attractive potential)

robot stays away from the obstacles (repulsive potential)

U(q) = Uatt(q) + Urep(q)

Amarda Shehu (689) 5

Attractive Potential: Conic Potential

Attractive potential: Uatt(q)

monotonically increasing with distance from qgoal

example: conic potential (scaled distance to goal, ζ > 0 scaling factor)

Uatt(q) = ζ ||q, qgoal||

what’s the gradient?

∇Uatt(q) =
ζ

||q, qgoal||
(q − qgoal)

what’s the magnitude of the gradient at q?

||∇Uatt(q)|| =

{
ζ, q 6= qgoal

undefined, q = qgoal

conic potential has discontinuity at qgoal

Amarda Shehu (689) 6

Attractive Potential: Quadratic Potential

Attractive potential: Uatt(q)

monotonically increasing with distance from qgoal
preference:

continuously differentiable + magnitude decreases as robot approaches qgoal
example: quadratic potential (ζ > 0 scaling factor)

Uatt(q) =
1

2
ζ ||q, qgoal||2

what’s the gradient?
∇Uatt(q) = ζ (q − qgoal)

what’s the magnitude of the gradient at q?

||∇Uatt(q)|| = ζ||q, qgoal||

Figure: (a) Potential Field. (b) Contour Plot. (c) Quadratic Potential.

Amarda Shehu (689) 7

Attractive Potential: Quadratic Potential

Attractive potential: Uatt(q)

monotonically increasing with distance from qgoal

preference:
continuously differentiable + magnitude decreases as robot approaches qgoal

example: quadratic potential (ζ > 0 scaling factor)

Uatt(q) =
1

2
ζ ||q, qgoal||2

what’s the gradient?
∇Uatt(q) = ζ (q − qgoal)

what’s the magnitude of the gradient at q?

||∇Uatt(q)|| = ζ||q, qgoal||

what happens when robot is far away from the goal?

robot may move too fast as potential grows without bounds the further away from
goal; this may produce a velocity that is too large

Amarda Shehu (689) 8

Attractive Potential: Combining Conic and Quadratic

Attractive potential: Uatt(q)

monotonically increasing with distance from qgoal

preference:
continuously differentiable, magnitude decreases as robot approaches qgoal
does not produce very large velocities

combine conic and quadratic potentials (ζ > 0 scaling factor)

Uatt(q) =

{
1
2
ζ ||q, qgoal||2, if ||q, qgoal|| ≤ d∗goal

d∗goal ζ ||q, qgoal|| − 1
2
ζ
(
d∗goal

)2
, if ||q, qgoal|| > d∗goal

(d∗goal: threshold from goal where planner switches between conic and quadratic potentials)

what’s the gradient? is it well defined at the boundary?

∇Uatt(q) =

{
ζ (q − qgoal), if ||q, qgoal|| ≤ d∗goal
d∗goal ζ (q − qgoal)/||q, qgoal||, if ||q, qgoal|| > d∗goal

Amarda Shehu (689) 9

Repulsive Potential

Repulsive potential: Urep(q)

the closer the robot is to an obstacle, the stronger the repulsive force should be

robot keeps track of closest obstacle

there is a threshold so robot can ignore far away obstacles

Amarda Shehu (689) 10

Repulsive Potential

Repulsive potential: Urep(q)

the closer the robot is to an obstacle, the stronger the repulsive force should be

Urep(q) =

 1
2
η
(

1
D(q)
− 1

d∗
obst

)2

, if D(q) ≤ d∗obst

0, otherwise

∇Urep(q) =

{
η
(

1
d∗
obst
− 1

D(q)

)
1

(D(q))2∇D(q), if D(q) ≤ d∗obst

0, otherwise

D(q): distance to the closest obstacle; η > 0 scaling factor

d∗obst: threshold to allow the robot to ignore obstacles far away from it

Amarda Shehu (689) 11

Repulsive Potential

Repulsive potential: Urep(q)

the closer the robot is to an obstacle, the stronger the repulsive force should be

Urep(q) =

 1
2
η
(

1
D(q)
− 1

d∗
obst

)2

, if D(q) ≤ d∗obst

0, otherwise

∇Urep(q) =

{
η
(

1
d∗
obst
− 1

D(q)

)
1

(D(q))2∇D(q), if D(q) ≤ d∗obst

0, otherwise

D(q): distance to the closest obstacle; η > 0 scaling factor

d∗obst: threshold to allow the robot to ignore obstacles far away from it

what happens around points that are two-way equidistant from obstacles?
D is nonsmooth =⇒ path may oscillate

Amarda Shehu (689) 12

Repulsive Potential

Repulsive potential: Urep(q)

minimum distance to i-th obstacle

di (q) = min
c∈Obstaclei

d(q, c)

for convex obstacles (c is closest point to q)

∇di (q) =
c − q

||q, c||

repulsive potential for each obstacle

Urepi (q) =

1
2
η

(
1

di (q)
− 1

d∗
obsti

)2

, if di (q) ≤ d∗obsti

0, otherwise

overall repulsive potential as sum of obstacle potentials

Urep(q) =
∑
i

Urepi (q)

Amarda Shehu (689) 13

Gradient Descent: Moving Opposite to the Gradient

repeat until gradient is zero (or its magnitude very small)

take small step in the direction opposite the gradient

Pseudocode

1: q ← qinit
2: while ||∇U(q)|| > ε do
3: q ← q − α∇U(q)

ε > 0: small constant to ensure termination criteria

α > 0: step size (doesn’t have to be constant)

Figure: (a): Configuration space with gray obstacles. (b) Potential function energy surface. (c)
Contour plot for energy surface. (d) Gradient vectors for potential function.

Amarda Shehu (689) 14

Gradient Descent: Moving Opposite to the Gradient

repeat until gradient is zero (or its magnitude very small)

take small step in the direction opposite the gradient

Pseudocode

1: q ← qinit
2: while ||∇U(q)|| > ε do
3: q ← q − α∇U(q)

ε > 0: small constant to ensure termination criteria

α > 0: step size (doesn’t have to be constant)

Weaknesses of Gradient Descent

it is relatively slow close to the minimum

it might ’zigzag’ down valleys

Better Methods

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

. . . but more complex to implement

Amarda Shehu (689) 15

Mobile Robot Implementation

Robot knows goal position

Robot does not know where obstacles are located

Robot has range sensor and can determine its own position

Uatt(q) can be easily computed since goal position is known

Urep(q) approximate it via data from range sensor

D(q): approximated as the global minimum of the raw distance function ρ

di (q): approximated as local minima with respect to θ in ρ(q, θ)

Amarda Shehu (689) 16

Brushfire Algorithm – Compute Distances on a Grid

Urep(q):

discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)

label with 1 cells that are partially or fully occupied by obstacles

label with 2 all unlabeled cells neighboring 1-labeled cells

. . .

label with n all unlabeled cells neighboring (n − 1)-labeled cells

stop when all cells have been labeled

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

1 1

1 1

11

1

1

1

1 1 1

1 1

1

1

1

1

2

2 2 2 2 2

2

2

2

2

22222

2

2

2

2

2

2

2

2 2

22

2

2

2

2

2

2

3 3 3 3

3

3

3

3 3 3 3 3 3 3

3 3 3 3 3 3 3

3

3

3

3

3

3

3

3

3

3

3 3 34

4

4

4

4

4

4

4 4 4 4 4

gradient from each cell points to a neighbor with lowest label

Amarda Shehu (689) 17

Brushfire Algorithm – Compute Distances on a Grid

Urep(q):

discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)

label with 1 cells that are partially or fully occupied by obstacles

label with 2 all unlabeled cells neighboring 1-labeled cells

. . .

label with n all unlabeled cells neighboring (n − 1)-labeled cells

stop when all cells have been labeled

can planner get stuck?

Amarda Shehu (689) 18

Local Minima Problem

Gradient descent algorithms may get stuck in local minima

qgoal

qinit

Two approaches to avoid local-minima problem

do something different than gradient descent to overcome/avoid local minima

define potential function so that there is only one global minimum

Amarda Shehu (689) 19

Wave-Front Planner: Complete Planner in Grid Spaces

similar to Brushfire algorithm discretize space by imposing a grid

label with 1 cells that are partially or fully occupied by obstacles

label with 2 cell where goal is located

label with 3 all unlabeled cells neighboring 2-labeled cells

. . .

label with n all unlabeled cells neighboring (n − 1)-labeled cells

stop when init cell (green circle) has been labeled

0 1 2 3 4 5 6 7 8 9 10 11 12

0

1

2

3

4

5

6

7

8

1 1

1 1

11

1

1

1

1 1 1

1 1

1

1

1

1

4

2

3

3

3 3

3

3 3 3 4

4

4

4 4

5 5 5

5

5

5

6

6

6

6

66 6

7 7 7 7

7 7

7

7

7

7

8 8

8

8

8

88888

9

9

9

9 9

9

each time move to neighboring non-obstacle cell with lowest label

Amarda Shehu (689) 20

Potential Functions in Non-Euclidean Spaces

How can we deal with rigid bodies and manipulators?

Think of gradient vectors as forces

Define forces in workspace W (which is R2 or R3)

“Lift up” forces in configuration space Q

Relationship between Forces in the Workspace and Configuration Space

point x ∈W in workspace related to configuration q ∈ Q via forward kinematics

x = FK(q)

“virtual work” principle: work (or power) is a coordinate-independent quantity

in workspace, power done by a force f is f T ẋ

in configuration space, power done by a force u is uT q̇

mapping from workspace forces to configuration space forces done via Jacobian

J = ∂FK/∂q of the forward kinematic function

f T ẋ = uT q̇ (by the “virtual work” principle)

⇒ f tJq̇ = uT q̇ (by Jacobian property ẋ = Jq̇)

⇒ f TJ = uT

⇒ JT f = u

Amarda Shehu (689) 21

Potential Functions for Rigid-Body Robots

Pick control points r1, . . . , rn on the robot in its initial placement, e.g.,
rj could be selected as the j-th robot vertex

Let FKj(q) denote the forward kinematics of point rj
example: when q = (x , y , θ) and rj = (xj , yj)

FKj (q) =

(
cos θ − sin θ
sin θ cos θ

)(
xj
yj

)
+

(
x
y

)
=

(
xj cos θ − yj sin θ + x
xj sin θ + yj cos θ + y

)

Define ∇Uattj in workspace for each control point rj , and scale it appropriately, e.g.,

∇Uattj (q) = scaleatt

(
FKj(q)−

(
gx
gy

))
, where (gx , gy) is goal center

Define ∇Urepi,j in workspace for each control point rj and obstacle i , and scale it
appropriately,

∇Urepi,j (q) = scalerep

((
oi,x
oi,y

)
− FKj(q)

)
,

where (oi,x , oi,y) is closest point to FKj(q) on obstacle i

Amarda Shehu (689) 22

Potential Functions for Rigid-Body Robots (cont.)

Compute Jacobian

Jj(q) =

 ∂FKj (q)[1]

∂x

∂FKj (q)[1]

∂y

∂FKj (q)[1]

∂θ

∂FKj (q)[2]

∂x

∂FKj (q)[2]

∂y

∂FKj (q)[2]

∂θ

Compute overall gradient in configuration space
(apply Jacobian to scaled versions of the workspace gradients)

∇Ucs(q) =
∑
j

JT
j (q)∇Uattj (q) +

∑
j

JT
j (q)

∑
i

∇Urepi,j (q)

Apply appropriate scaling to position and orientation components separately, i.e.,

movex,y ← scalecs(∇Ucsx,y (q)), moveθ ← scalecs(∇Ucsθ (q))

Amarda Shehu (689) 23

Potential Functions for Manipulators

2d chain with n revolute joints where link j has length `j
End position of the j-th link (1 ≤ j ≤ n):

FKj(θ1, θ2, . . . , θn) = M(θ1)M(θ2) . . .M(θj)

 0
0
1

 ,where for 1 ≤ i ≤ j

M(θi) =

 cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 1 0 `i
0 1 0
0 0 1

 =

 cos θi − sin θi `i cos θi
sin θi cos θi `i sin θi

0 0 1

Jacobian of j-th link (1 ≤ j ≤ n):

Jj(θ1, . . . , θn) =

 ∂FKj (θ1,...,θn)[1]

∂θ1
. . .

∂FKj (θ1,...,θn)[1]

∂θj

j+1...n︷ ︸︸ ︷
0 . . . 0

∂FKj (q)[2]

∂θ1
. . .

∂FKj (q)[2]

∂θj
0 . . . 0

 ,where for 1 ≤ i ≤ j

∂FKj(θ1, . . . , θn)[1]

∂θi
= − sin θi (ga + hb + a`i) + cos θi (gb − ha + b`i)

∂FKj(θ1, . . . , θn)[2]

∂θi
= − sin θi (gd + he + d`i) + cos θi (ge − hd + e`i) a b c

d e f
0 0 1

 = M(θ1) . . .M(θi−1),

 g
h
1

 = M(θi+1) . . .M(θj)

 0
0
1

Amarda Shehu (689) 24

Potential Functions for Manipulators (cont.)

2d chain with n revolute joints where link j has length `j

Compute Jj(θ1, . . . , θn), i ≤ j , using a simplified but equivalent definition

∂FKj

∂θi
=

(
−FKj(θ1, . . . , θn)[2] + FKi−1(θ1, . . . , θn)[2]
FKj(θ1, . . . , θn)[1]− FKi−1(θ1, . . . , θn)[1]

)
Define ∇Uattn for the end-effector and scale it appropriately:

∇Uattn (θ1, . . . , θn) = scaleatt

(
FKn(θ1, . . . , θn)−

(
gx
gy

))
, (gx , gy): goal center

Define ∇Urepi,j in workspace between the end-position of the j-th link and the i-th
obstacle and scale it appropriately, e.g.,

∇Urepi,j (θ1, . . . , θn) = scalerep

((
oi,x
oi,y

)
− FKj(θ1, . . . , θn)

)
,

(oi,x , oi,y): closest point on the i-th obstacle to the end position of the j-th link

Compute overall gradient in configuration space

∇Ucs(θ1, . . . , θn) =

scale(JT
n (θ1, . . . , θn)∇Uattn (θ1, . . . , θn) +∑

i,j

JT
j (θ1, . . . , θn)∇Urepi,j (θ1, . . . , θn))

Amarda Shehu (689) 25

Summary

Basic potential fields: attractive/repulsive forces

Path planning by following gradient of potential field

Gradient descent (incomplete, suffers from local minima)

Brushfire algorithm (incomplete, suffers from local minima, grid world)

Wavefront planner (complete, grid world)

Potential Functions in Non-Euclidean Spaces

Gradients as forces

Lift up workspace forces to configuration space forces

Applicable to rigid body robots and manipulators

Amarda Shehu (689) 26

