CS 689: Robot Motion Planning
 Potential Functions, aka May the Force be with you

Amarda Shehu

Department of Computer Science
George Mason University

- Suppose the goal is a point $g \in \mathbb{R}^{2}$
- Suppose the robot is a point $r \in \mathbb{R}^{2}$
- Think of a spring drawing the robot toward the goal and away from obstacles
- Can also think of like and opposite charges

- Think of the goal as the bottom of a bowl
- The robot is at the rim of the bowl
- What will happen?

- Both the spring and bowl analogies are ways of storing potential energy
- The robot moves to a lower-energy configuration

A potential function is a function $U: \mathbb{R}^{n} \rightarrow \mathbb{R}$
Energy is minimized by following the negated gradient of the potential energy function

$$
\text { gradient at } q \in \mathbb{R}^{n}: \quad \nabla U(q)=\left[\frac{\partial U}{\partial q_{1}}(q), \ldots, \frac{\partial U}{\partial q_{n}}(q)\right]^{T}
$$

We can now think of a vector field over the space of all q's

- the robot looks at the vector at its current position and goes in that direction

Desired objectives

- robot moves toward the goal (attractive potential)
- robot stays away from the obstacles (repulsive potential)

$$
U(q)=U_{\text {att }}(q)+U_{\text {rep }}(q)
$$

Attractive potential: $U_{\text {att }}(q)$

- monotonically increasing with distance from $q_{g o a l}$
- example: conic potential (scaled distance to goal, $\zeta>0$ scaling factor)

$$
U_{\text {att }}(q)=\zeta\left\|q, q_{\text {goal }}\right\|
$$

- what's the gradient?

$$
\nabla U_{\text {att }}(q)=\frac{\zeta}{\left\|q, q_{\text {goal }}\right\|}\left(q-q_{g o a l}\right)
$$

- what's the magnitude of the gradient at q ?

$$
\left\|\nabla U_{\text {att }}(q)\right\|= \begin{cases}\zeta, & q \neq q_{g o a l} \\ \text { undefined }, & q=q_{g o a l}\end{cases}
$$

- conic potential has discontinuity at $q_{\text {goal }}$

Attractive potential: $U_{\text {att }}(q)$

- monotonically increasing with distance from $q_{g o a l}$
- preference:
continuously differentiable + magnitude decreases as robot approaches $q_{\text {goal }}$
- example: quadratic potential ($\zeta>0$ scaling factor)

$$
U_{\text {att }}(q)=\frac{1}{2} \zeta\left\|q, q_{\text {goal }}\right\|^{2}
$$

- what's the gradient?

$$
\nabla U_{a t t}(q)=\zeta\left(q-q_{g o a l}\right)
$$

- what's the magnitude of the gradient at q ?

$$
\left\|\nabla U_{\text {att }}(q)\right\|=\zeta\left\|q, q_{\text {goal }}\right\|
$$

Figure: (a) Potential Field. (b) Contour Plot. (c) Quadratic Potential.

Attractive potential: $U_{\text {att }}(q)$

- monotonically increasing with distance from $q_{g o a l}$
- preference:
continuously differentiable + magnitude decreases as robot approaches $q_{\text {goal }}$
■ example: quadratic potential ($\zeta>0$ scaling factor)

$$
U_{\text {att }}(q)=\frac{1}{2} \zeta\left\|q, q_{\text {goal }}\right\|^{2}
$$

- what's the gradient?

$$
\nabla U_{\text {att }}(q)=\zeta\left(q-q_{\text {goal }}\right)
$$

- what's the magnitude of the gradient at q ?

$$
\left\|\nabla U_{\text {att }}(q)\right\|=\zeta\left\|q, q_{\text {goal }}\right\|
$$

- what happens when robot is far away from the goal?
- robot may move too fast as potential grows without bounds the further away from goal; this may produce a velocity that is too large

Attractive Potential: Combining Conic and Quadratic

Attractive potential: $U_{\text {att }}(q)$

- monotonically increasing with distance from $q_{g o a l}$
- preference:
continuously differentiable, magnitude decreases as robot approaches $q_{\text {goal }}$ does not produce very large velocities
- combine conic and quadratic potentials ($\zeta>0$ scaling factor)

$$
U_{\text {att }}(q)= \begin{cases}\frac{1}{2} \zeta\left\|q, q_{\text {goal }}\right\|^{2}, & \text { if }\left\|q, q_{\text {goal }}\right\| \leq d_{\text {goal }}^{*} \\ d_{\text {goal }}^{*} \zeta\left\|q, q_{\text {goal }}\right\|-\frac{1}{2} \zeta\left(d_{\text {goal }}^{*}\right)^{2}, & \text { if }\left\|q, q_{\text {goal }}\right\|>d_{\text {goal }}^{*}\end{cases}
$$

($d_{\text {goal }}^{*}$: threshold from goal where planner switches between conic and quadratic potentials)

- what's the gradient? is it well defined at the boundary?

$$
\nabla U_{\text {att }}(q)= \begin{cases}\zeta\left(q-q_{\text {goal }}\right), & \text { if }\left\|q, q_{\text {goal }}\right\| \leq d_{\text {goal }}^{*} \\ d_{\text {goal }}^{*} \zeta\left(q-q_{\text {goal }}\right) /\left\|q, q_{\text {goal }}\right\|, & \text { if }\left\|q, q_{\text {goal }}\right\|>d_{\text {goal }}^{*}\end{cases}
$$

Repulsive potential: $U_{\text {rep }}(q)$

- the closer the robot is to an obstacle, the stronger the repulsive force should be
- robot keeps track of closest obstacle
- there is a threshold so robot can ignore far away obstacles

Repulsive potential: $U_{\text {rep }}(q)$

- the closer the robot is to an obstacle, the stronger the repulsive force should be

$$
\begin{aligned}
& U_{\text {rep }}(q)= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{D(q)}-\frac{1}{d_{\text {obst }}}\right)^{2}, & \text { if } D(q) \leq d_{\text {obst }}^{*} \\
0, & \text { otherwise }\end{cases} \\
& \nabla U_{\text {rep }}(q)= \begin{cases}\eta\left(\frac{1}{d_{\text {obst }}^{*}}-\frac{1}{D(q)}\right) \frac{1}{(D(q))^{2}} \nabla D(q), & \text { if } D(q) \leq d_{\text {obst }}^{*} \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

- $D(q)$: distance to the closest obstacle; $\eta>0$ scaling factor
- $d_{\text {obst }}^{*}$: threshold to allow the robot to ignore obstacles far away from it

Repulsive potential: $U_{\text {rep }}(q)$

- the closer the robot is to an obstacle, the stronger the repulsive force should be

$$
\begin{gathered}
U_{\text {rep }}(q)= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{D(q)}-\frac{1}{d_{\text {obst }}^{*}}\right)^{2}, & \text { if } D(q) \leq d_{\text {obst }}^{*} \\
0, & \text { otherwise }\end{cases} \\
\nabla U_{\text {rep }}(q)= \begin{cases}\eta\left(\frac{1}{d_{\text {obst }}^{*}}-\frac{1}{D(q)}\right) \frac{1}{(D(q))^{2}} \nabla D(q), & \text { if } D(q) \leq d_{\text {obst }}^{*} \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

- $D(q)$: distance to the closest obstacle; $\eta>0$ scaling factor
- $d_{\text {obst: }}^{*}$: threshold to allow the robot to ignore obstacles far away from it
- what happens around points that are two-way equidistant from obstacles?
D is nonsmooth \Longrightarrow path may oscillate

Repulsive Potential

Repulsive potential: $U_{\text {rep }}(q)$

- minimum distance to i-th obstacle

$$
d_{i}(q)=\min _{c \in O \text { Ostacle }}^{i} \text { } d(q, c)
$$

- for convex obstacles (c is closest point to q)

$$
\nabla d_{i}(q)=\frac{c-q}{\|q, c\|}
$$

- repulsive potential for each obstacle

$$
U_{\text {rep }}^{i}(q)= \begin{cases}\frac{1}{2} \eta\left(\frac{1}{d_{i}(q)}-\frac{1}{d_{\text {obst }}^{i}}\right)^{2}, & \text { if } d_{i}(q) \leq d_{o b s t_{i}}^{*} \\ 0, & \text { otherwise }\end{cases}
$$

- overall repulsive potential as sum of obstacle potentials

$$
U_{\text {rep }}(q)=\sum_{i} U_{\text {rep }}(q)
$$

repeat until gradient is zero (or its magnitude very small)

- take small step in the direction opposite the gradient

Pseudocode
1: $q \leftarrow q_{\text {init }}$
: while $\|\nabla U(q)\|>\epsilon$ do
3: $\quad q \leftarrow q-\alpha \nabla U(q)$
■ $\epsilon>0$: small constant to ensure termination criteria

- $\alpha>0$: step size (doesn't have to be constant)

Figure: (a): Configuration space with gray obstacles. (b) Potential function energy surface. (c) Contour plot for energy surface. (d) Gradient vectors for potential function.
repeat until gradient is zero (or its magnitude very small)

- take small step in the direction opposite the gradient

Pseudocode
1: $q \leftarrow q_{\text {init }}$
2: while $\|\nabla U(q)\|>\epsilon$ do
3: $\quad q \leftarrow q-\alpha \nabla U(q)$

- $\epsilon>0$: small constant to ensure termination criteria
- $\alpha>0$: step size (doesn't have to be constant)

Weaknesses of Gradient Descent

- it is relatively slow close to the minimum
- it might 'zigzag' down valleys

Better Methods

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
... but more complex to implement
- Robot knows goal position
- Robot does not know where obstacles are located
- Robot has range sensor and can determine its own position
$U_{\text {att }}(q)$ can be easily computed since goal position is known $U_{\text {rep }}(q)$ approximate it via data from range sensor
- $D(q)$: approximated as the global minimum of the raw distance function ρ
- $d_{i}(q)$: approximated as local minima with respect to θ in $\rho(q, \theta)$

$U_{\text {rep }}(q)$:
■ discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)
- label with 1 cells that are partially or fully occupied by obstacles
- label with 2 all unlabeled cells neighboring 1-labeled cells
-...
- label with n all unlabeled cells neighboring $(n-1)$-labeled cells
- stop when all cells have been labeled

4	3	3	3	3	3	3	3	3	3	3	3
4	3	2	2	2	2	2	2	2	2	2	3
4	3	2	1	1	2	2	1	1	1	2	3
4	3	2	1	1	2	2	1	1	1	2	3
4	3	2	1	1	2	2	1	1	1	2	3
4	3	2	2	2	2	2	1	1	1	2	3
4	3	3	3	3	3	2	2	2	2	2	3
4	4	4	4	4	3	3	3	3	3	3	3

- gradient from each cell points to a neighbor with lowest label
$U_{\text {rep }}(q)$:
- discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)
- label with 1 cells that are partially or fully occupied by obstacles

■ label with 2 all unlabeled cells neighboring 1-labeled cells

- ...
- label with n all unlabeled cells neighboring ($n-1$)-labeled cells
- stop when all cells have been labeled
- can planner get stuck?

Gradient descent algorithms may get stuck in local minima

$q_{\text {goal }}$

Two approaches to avoid local-minima problem

- do something different than gradient descent to overcome/avoid local minima
- define potential function so that there is only one global minimum
- similar to Brushfire algorithm discretize space by imposing a grid
- label with 1 cells that are partially or fully occupied by obstacles
- label with 2 cell where goal is located
- label with 3 all unlabeled cells neighboring 2-labeled cells
- ...
- label with n all unlabeled cells neighboring $(n-1)$-labeled cells
- stop when init cell (green circle) has been labeled

8	8	8	8	8	9					
7	7	7	7	8	9	9	9			
6	6	6	1	1	8	8	1	1	1	
5	5	5	1	1	7	7	1	1	1	
4	4	4	1	1	6	7	1	1	1	
3	3	3	4	5	6	7	1	1	1	
3	2	3	4	5	6	7	8	9		
3	3	3	4	5	6	7	8	9		
6	1									

- each time move to neighboring non-obstacle cell with lowest label

How can we deal with rigid bodies and manipulators?

- Think of gradient vectors as forces
- Define forces in workspace W (which is \mathbb{R}^{2} or \mathbb{R}^{3})
- "Lift up" forces in configuration space Q

Relationship between Forces in the Workspace and Configuration Space

- point $x \in W$ in workspace related to configuration $q \in Q$ via forward kinematics

$$
x=\mathrm{FK}(q)
$$

- "virtual work" principle: work (or power) is a coordinate-independent quantity
- in workspace, power done by a force f is $f^{T} \dot{x}$
- in configuration space, power done by a force u is $u^{T} \dot{q}$
- mapping from workspace forces to configuration space forces done via Jacobian $J=\partial \mathrm{FK} / \partial q$ of the forward kinematic function

$$
\begin{aligned}
& f^{T} \dot{x}=u^{T} \dot{q} \quad \text { (by the "virtual work" principle) } \\
\Rightarrow & \left.f^{t} J \dot{q}=u^{T} \dot{q} \quad \text { (by Jacobian property } \dot{x}=J \dot{q}\right) \\
\Rightarrow & f^{T} J=u^{T} \\
& \Rightarrow J^{T} f=u
\end{aligned}
$$

■ Pick control points r_{1}, \ldots, r_{n} on the robot in its initial placement, e.g.,

$$
r_{j} \text { could be selected as the } j \text {-th robot vertex }
$$

■ Let $\mathrm{FK}_{j}(q)$ denote the forward kinematics of point r_{j} example: when $q=(x, y, \theta)$ and $r_{j}=\left(x_{j}, y_{j}\right)$

$$
\mathrm{FK}_{j}(q)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x_{j}}{y_{j}}+\binom{x}{y}=\binom{x_{j} \cos \theta-y_{j} \sin \theta+x}{x_{j} \sin \theta+y_{j} \cos \theta+y}
$$

- Define $\nabla U_{\text {att }}^{j}$ in workspace for each control point r_{j}, and scale it appropriately, e.g.,

$$
\nabla U_{a t t}(q)=\operatorname{SCALE}_{\text {att }}\left(\operatorname{FK}_{j}(q)-\binom{g_{x}}{g_{y}}\right), \quad \text { where }\left(g_{x}, g_{y}\right) \text { is goal center }
$$

- Define $\nabla U_{r e p}^{i, j}$ in workspace for each control point r_{j} and obstacle i, and scale it appropriately,

$$
\nabla U_{r e p}^{i, j}(q)=\operatorname{SCALE}_{r e p}\left(\binom{o_{i, x}}{o_{i, y}}-\mathrm{FK}_{j}(q)\right)
$$

where $\left(o_{i, x}, o_{i, y}\right)$ is closest point to $\mathrm{FK}_{j}(q)$ on obstacle i

Potential Functions for Rigid-Body Robots (cont.)

- Compute Jacobian

$$
J_{j}(q)=\left(\begin{array}{lll}
\frac{\partial \mathrm{FK}_{j}(q)[1]}{\partial x} & \frac{\partial \mathrm{FK}_{j}(q)[1]}{\partial y} & \frac{\partial \mathrm{FK}_{j}(q)[1]}{\partial \theta} \\
\frac{\partial \mathrm{FK}_{j}(q)[2]}{\partial x} & \frac{\partial \mathrm{FK}_{j}(q)[2]}{\partial y} & \frac{\partial \mathrm{FK}_{j}(q)[2]}{\partial \theta}
\end{array}\right)
$$

- Compute overall gradient in configuration space (apply Jacobian to scaled versions of the workspace gradients)

$$
\nabla U_{\mathrm{cs}}(q)=\sum_{j} J_{j}^{T}(q) \nabla U_{a t t}(q)+\sum_{j} J_{j}^{T}(q) \sum_{i} \nabla U_{\text {rep }_{i, j}}(q)
$$

Apply appropriate scaling to position and orientation components separately, i.e.,

$$
\operatorname{move}_{x, y} \leftarrow \operatorname{SCALE}_{c s}\left(\nabla U_{c s_{x}, y}(q)\right), \quad \operatorname{move}_{\theta} \leftarrow \operatorname{SCALE}_{c s}\left(\nabla U_{c s_{\theta}}(q)\right)
$$

Potential Functions for Manipulators

2d chain with n revolute joints where link j has length ℓ_{j} End position of the j-th link $(1 \leq j \leq n)$:
$\mathrm{FK}_{j}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)=M\left(\theta_{1}\right) M\left(\theta_{2}\right) \ldots M\left(\theta_{j}\right)\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$, where for $1 \leq i \leq j$

$$
M\left(\theta_{i}\right)=\left(\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & 0 \\
\sin \theta_{i} & \cos \theta_{i} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & \ell_{i} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\cos \theta_{i} & -\sin \theta_{i} & \ell_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} & \ell_{i} \sin \theta_{i} \\
0 & 0 & 1
\end{array}\right)
$$

Jacobian of j-th link $(1 \leq j \leq n)$:
$J_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)=\left(\begin{array}{cccc}\frac{\partial \mathrm{FK}\left(\theta_{j}, \ldots, \theta_{n}\right)[1]}{\partial \theta_{1}} & \ldots & \frac{\partial \mathrm{FK}\left(\theta_{j}, \ldots, \theta_{n}\right)[1]}{\partial \theta_{j}} & \overbrace{00}^{j+1 . \ldots n} \\ \frac{\partial \mathrm{~F}_{j}(q)[2]}{\partial \theta_{1}} & \ldots & \frac{\partial \mathrm{~F}_{j}(\theta)[2]}{\partial \theta_{j}} & 0 \ldots 0\end{array}\right)$, where for $1 \leq i \leq j$
$\frac{\partial \mathrm{FK}_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)[1]}{\partial \theta_{i}}=-\sin \theta_{i}\left(g a+h b+a \ell_{i}\right)+\cos \theta_{i}\left(g b-h a+b \ell_{i}\right)$
$\frac{\partial \mathrm{FK}_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)[2]}{\partial \theta_{i}}=-\sin \theta_{i}\left(g d+h e+d \ell_{i}\right)+\cos \theta_{i}\left(g e-h d+e \ell_{i}\right)$

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right)=M\left(\theta_{1}\right) \ldots M\left(\theta_{i-1}\right),\left(\begin{array}{l}
g \\
h \\
1
\end{array}\right)=M\left(\theta_{i+1}\right) \ldots M\left(\theta_{j}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

2d chain with n revolute joints where link j has length ℓ_{j}

- Compute $J_{j}\left(\theta_{1}, \ldots, \theta_{n}\right), i \leq j$, using a simplified but equivalent definition

$$
\frac{\partial \mathrm{FK}_{j}}{\partial \theta_{i}}=\binom{-\mathrm{FK}_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)[2]+\mathrm{FK}_{i-1}\left(\theta_{1}, \ldots, \theta_{n}\right)[2]}{\mathrm{FK}_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)[1]-\mathrm{FK}_{i-1}\left(\theta_{1}, \ldots, \theta_{n}\right)[1]}
$$

- Define $\nabla U_{\text {att }}^{n}$ for the end-effector and scale it appropriately:

$$
\nabla U_{\text {att }}\left(\theta_{1}, \ldots, \theta_{n}\right)=\operatorname{SCALE}_{\text {att }}\left(\operatorname{FK}_{n}\left(\theta_{1}, \ldots, \theta_{n}\right)-\binom{g_{x}}{g_{y}}\right), \quad\left(g_{x}, g_{y}\right): \text { goal center }
$$

- Define $\nabla U_{\text {rep } i, j}$ in workspace between the end-position of the j-th link and the i-th obstacle and scale it appropriately, e.g.,

$$
\nabla U_{\text {rep }}^{i, j}, ~\left(\theta_{1}, \ldots, \theta_{n}\right)=\operatorname{SCALE}_{\text {rep }}\left(\binom{o_{i, x}}{o_{i, y}}-\operatorname{FK}_{j}\left(\theta_{1}, \ldots, \theta_{n}\right)\right),
$$

($o_{i, x}, o_{i, y}$): closest point on the i-th obstacle to the end position of the j-th link

- Compute overall gradient in configuration space

$$
\begin{array}{r}
\nabla U_{\mathrm{cs}}\left(\theta_{1}, \ldots, \theta_{n}\right)= \\
\operatorname{SCALE}\left(J_{n}^{T}\left(\theta_{1}, \ldots, \theta_{n}\right) \nabla U_{a t t_{n}}\left(\theta_{1}, \ldots, \theta_{n}\right)+\right. \\
\left.\sum_{i, j} J_{j}^{T}\left(\theta_{1}, \ldots, \theta_{n}\right) \nabla U_{r e p_{i, j}}\left(\theta_{1}, \ldots, \theta_{n}\right)\right)
\end{array}
$$

Basic potential fields: attractive/repulsive forces
Path planning by following gradient of potential field

- Gradient descent (incomplete, suffers from local minima)

■ Brushfire algorithm (incomplete, suffers from local minima, grid world)

- Wavefront planner (complete, grid world)

Potential Functions in Non-Euclidean Spaces

- Gradients as forces

■ Lift up workspace forces to configuration space forces

- Applicable to rigid body robots and manipulators

