CS 689: Robot Motion Planning

 Configuration SpaceAmarda Shehu

Department of Computer Science
George Mason University

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

■ space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)
- space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$ Collision-Free Configuration

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

■ space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$ Collision-Free Configuration

- q is collision free iff the robot does not collide with any obstacles when in configuration q, i.e., $\operatorname{Robot}(q) \cap\left(\bigcup_{i=1}\right.$ Obstacle $\left._{i}\right)=\emptyset$

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

■ space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$ Collision-Free Configuration

- q is collision free iff the robot does not collide with any obstacles when in configuration q, i.e., $\operatorname{Robot}(q) \cap\left(\bigcup_{i=1}\right.$ Obstacle $\left._{i}\right)=\emptyset$
Collision-Free Configuration Space

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

■ space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$ Collision-Free Configuration

- q is collision free iff the robot does not collide with any obstacles when in configuration q, i.e., $\operatorname{Robot}(q) \cap\left(\bigcup_{i=1}\right.$ Obstacle $\left._{i}\right)=\emptyset$
Collision-Free Configuration Space
- $Q_{\text {free }}=\{q \in Q: q$ is collision free $\}$

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

■ space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$ Collision-Free Configuration

- q is collision free iff the robot does not collide with any obstacles when in configuration q, i.e., $\operatorname{Robot}(q) \cap\left(\bigcup_{i=1}\right.$ Obstacle $\left._{i}\right)=\emptyset$
Collision-Free Configuration Space
- $Q_{\text {free }}=\{q \in Q: q$ is collision free $\}$

Path-Planning Problem: Compute collision-free path from $q_{\text {init }}$ to $q_{g o a l}$

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space
Configuration (denoted by q)
- a complete specification of the position of every point of the robot Configuration Space or C-Space (denoted by Q)

■ space of all possible configurations of the robot, i.e., $Q=\{q: q$ is a configuration $\}$ Collision-Free Configuration

- q is collision free iff the robot does not collide with any obstacles when in configuration q, i.e., $\operatorname{Robot}(q) \cap\left(\bigcup_{i=1}\right.$ Obstacle $\left._{i}\right)=\emptyset$
Collision-Free Configuration Space
- $Q_{\text {free }}=\{q \in Q: q$ is collision free $\}$

Path-Planning Problem: Compute collision-free path from $q_{\text {init }}$ to $q_{\text {goal }}$
■ path : $[0,1] \rightarrow Q_{\text {free }}$ is a continuous function with path $(0)=q_{\text {init }}$, $\operatorname{path}(1)=q_{\text {goal }}$

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

- How can the configuration be represented?

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:
■ How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:
■ How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center

- How can the points on the robot be expressed as a function of its configuration?

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

- How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center
- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}\right)=\left\{(x, y):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right) \leq r^{2}\right\}
$$

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

- How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center
- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}\right)=\left\{(x, y):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right) \leq r^{2}\right\}
$$

- What is the configuration space Q ?

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

- How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center
- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}\right)=\left\{(x, y):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right) \leq r^{2}\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2} \text { (same as that of a point robot) }
$$

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:

- How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center
- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}\right)=\left\{(x, y):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right) \leq r^{2}\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2} \text { (same as that of a point robot) }
$$

- What is the free configuration space $Q_{f r e e}$? Is it the same as that of a point robot?

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:
■ How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}\right)=\left\{(x, y):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right) \leq r^{2}\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2}(\text { same as that of a point robot })
$$

- What is the free configuration space $Q_{\text {free }}$? Is it the same as that of a point robot?

[Fig. courtesy of Latombe]

Examples of Configuration Spaces

disk robot with radius r that can translate without rotating in the plane:
■ How can the configuration be represented?
as the two-dimensional position (c_{x}, c_{y}) of the robot's center

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}\right)=\left\{(x, y):\left(x-c_{x}\right)^{2}+\left(y-c_{y}\right) \leq r^{2}\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2}(\text { same as that of a point robot })
$$

- What is the free configuration space $Q_{\text {free }}$? Is it the same as that of a point robot?

[Fig. courtesy of Latombe]
- How would you compute $Q_{\text {free }}$?

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:

- How can the configuration be represented?

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?
$\left(c_{x}, c_{y}, \theta\right)$: position + orientation

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?
$\left(c_{x}, c_{y}, \theta\right)$: position + orientation

- How can the points on the robot be expressed as a function of its configuration?

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?

$$
\left(c_{x}, c_{y}, \theta\right): \text { position }+ \text { orientation }
$$

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}, \theta\right)=\left\{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & c_{x} \\
\sin \theta & \cos \theta & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right):(x, y) \in P\right\}
$$

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?

$$
\left(c_{x}, c_{y}, \theta\right): \text { position }+ \text { orientation }
$$

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}, \theta\right)=\left\{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & c_{x} \\
\sin \theta & \cos \theta & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right):(x, y) \in P\right\}
$$

- What is the configuration space Q ?

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?

$$
\left(c_{x}, c_{y}, \theta\right): \text { position }+ \text { orientation }
$$

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}, \theta\right)=\left\{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & c_{x} \\
\sin \theta & \cos \theta & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right):(x, y) \in P\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2} \times S^{1}\left(S^{1} \text { refers to the unit circle }\right)
$$

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?

$$
\left(c_{x}, c_{y}, \theta\right): \text { position }+ \text { orientation }
$$

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}, \theta\right)=\left\{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & c_{x} \\
\sin \theta & \cos \theta & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right):(x, y) \in P\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2} \times S^{1}\left(S^{1} \text { refers to the unit circle }\right)
$$

■ What is the free configuration space $Q_{\text {free }}$?

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?

$$
\left(c_{x}, c_{y}, \theta\right): \text { position }+ \text { orientation }
$$

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}, \theta\right)=\left\{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & c_{x} \\
\sin \theta & \cos \theta & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right):(x, y) \in P\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2} \times S^{1}\left(S^{1} \text { refers to the unit circle }\right)
$$

- What is the free configuration space $Q_{\text {free }}$?

[Fig. courtesy of Latombe]

Examples of Configuration Spaces

polygon P that can translate and rotate in the plane:
■ How can the configuration be represented?

$$
\left(c_{x}, c_{y}, \theta\right): \text { position }+ \text { orientation }
$$

- How can the points on the robot be expressed as a function of its configuration?

$$
\operatorname{Robot}\left(c_{x}, c_{y}, \theta\right)=\left\{\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & c_{x} \\
\sin \theta & \cos \theta & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right):(x, y) \in P\right\}
$$

- What is the configuration space Q ?

$$
Q=\mathbb{R}^{2} \times S^{1}\left(S^{1} \text { refers to the unit circle }\right)
$$

- What is the free configuration space $Q_{\text {free }}$?

- How would you compute $Q_{\text {free }}$?

Examples of Configuration Spaces

Taking the cros section of configuration space where robot is rotated at 45 degrees:

[Fig. courtesy of Choset, Dodds, Manocha]

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?
$\left(c_{x}, c_{y}, c_{z}, q_{\text {rot }}\right)$: position + orientation

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?
$\left(c_{x}, c_{y}, c_{z}, q_{\text {rot }}\right)$: position + orientation
Orientation Representations

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?
$\left(c_{x}, c_{y}, c_{z}, q_{\text {rot }}\right)$: position + orientation
Orientation Representations
■ Rotation about x-axis, y-axis, z-axis

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?

$$
\left(c_{x}, c_{y}, c_{z}, q_{\mathrm{rot}}\right): \text { position }+ \text { orientation }
$$

Orientation Representations

■ Rotation about x-axis, y-axis, z-axis

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?

$$
\left(c_{x}, c_{y}, c_{z}, q_{\mathrm{rot}}\right): \text { position }+ \text { orientation }
$$

Orientation Representations

■ Rotation about x-axis, y-axis, z-axis

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

■ Euler angles, e.g., $\boldsymbol{q}_{\text {rot }}=(\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?

$$
\left(c_{x}, c_{y}, c_{z}, q_{\mathrm{rot}}\right): \text { position }+ \text { orientation }
$$

Orientation Representations

■ Rotation about x-axis, y-axis, z-axis

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

■ Euler angles, e.g., $\boldsymbol{q}_{\text {rot }}=(\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is $R_{x}(\gamma) R_{y}(\beta) R_{z}(\alpha)$

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?

$$
\left(c_{x}, c_{y}, c_{z}, q_{\mathrm{rot}}\right): \text { position }+ \text { orientation }
$$

Orientation Representations

■ Rotation about x-axis, y-axis, z-axis

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- Euler angles, e.g., $\boldsymbol{q}_{\mathrm{rot}}=(\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is $R_{x}(\gamma) R_{y}(\beta) R_{z}(\alpha)$

■ Axis-angle, e.g., $q_{\mathrm{rot}}=\left(u_{x}, u_{y}, u_{z}, \theta\right)$

$$
\begin{gathered}
R(u, \theta)=I \cos \theta+(\sin \theta)[u]_{\times}+(1-\cos \theta) u \otimes u \\
{[u]_{\times}=\left(\begin{array}{ccc}
0 & -u_{z} & u_{y} \\
u_{z} & 0 & -u_{x} \\
-u_{y} & u_{x} & 0
\end{array}\right) u \otimes u=\left(\begin{array}{lll}
u_{x} u_{x} & u_{x} u_{y} & u_{x} u_{z} \\
u_{y} u_{x} & u_{y} u_{y} & u_{y} u_{z} \\
u_{z} u_{x} & u_{z} u_{y} & u_{z} u_{z}
\end{array}\right)}
\end{gathered}
$$

Examples of Configuration Spaces

rigid body P that can translate and rotate in 3D:

- How can the configuration be represented?

$$
\left(c_{x}, c_{y}, c_{z}, q_{\mathrm{rot}}\right): \text { position }+ \text { orientation }
$$

Orientation Representations

■ Rotation about x-axis, y-axis, z-axis

$$
\begin{gathered}
R_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right) \quad R_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \\
R_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

■ Euler angles, e.g., $\boldsymbol{q}_{\mathrm{rot}}=(\alpha, \beta, \gamma)$ (yaw-pitch-roll), so rotation is $R_{x}(\gamma) R_{y}(\beta) R_{z}(\alpha)$
■ Axis-angle, e.g., $q_{\mathrm{rot}}=\left(u_{x}, u_{y}, u_{z}, \theta\right)$

$$
\begin{gathered}
R(u, \theta)=I \cos \theta+(\sin \theta)[u]_{\times}+(1-\cos \theta) u \otimes u \\
{[u]_{\times}=\left(\begin{array}{ccc}
0 & -u_{z} & u_{y} \\
u_{z} & 0 & -u_{x} \\
-u_{y} & u_{x} & 0
\end{array}\right) u \otimes u=\left(\begin{array}{lll}
u_{x} u_{x} & u_{x} u_{y} & u_{x} u_{z} \\
u_{y} u_{x} & u_{y} u_{y} & u_{y} u_{z} \\
u_{z} u_{x} & u_{z} u_{y} & u_{z} u_{z}
\end{array}\right)}
\end{gathered}
$$

- Quaternions

Examples of Configuration Spaces

manipulator with revolute joints:
■ How can the configuration be represented?

Examples of Configuration Spaces

manipulator with revolute joints:

- How can the configuration be represented?
$\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)$: vector of joint values

Examples of Configuration Spaces

manipulator with revolute joints:
■ How can the configuration be represented?

$$
\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): \text { vector of joint values }
$$

- How can the points on the robot be expressed as a function of its configuration?

Examples of Configuration Spaces

manipulator with revolute joints:

- How can the configuration be represented?

$$
\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): \text { vector of joint values }
$$

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)

Examples of Configuration Spaces

manipulator with revolute joints:

- How can the configuration be represented?

$$
\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): \text { vector of joint values }
$$

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)
- What is the configuration space Q ?

$$
Q=\overbrace{S^{1} \times S^{1} \ldots \times S^{1}}^{n}\left(S^{1} \text { refers to the unit circle }\right)
$$

Examples of Configuration Spaces

manipulator with revolute joints:

- How can the configuration be represented?

$$
\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): \text { vector of joint values }
$$

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)
- What is the configuration space Q ?

$$
Q=\overbrace{S^{1} \times S^{1} \ldots \times S^{1}}^{n}\left(S^{1} \text { refers to the unit circle }\right)
$$

- What is the free configuration space $Q_{\text {free }}$?

Examples of Configuration Spaces

manipulator with revolute joints:

- How can the configuration be represented?

$$
\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right): \text { vector of joint values }
$$

- How can the points on the robot be expressed as a function of its configuration? forward kinematics (more later in the course)
- What is the configuration space Q ?

$$
Q=\overbrace{S^{1} \times S^{1} \ldots \times S^{1}}^{n}\left(S^{1}\right. \text { refers to the unit circle) }
$$

- What is the free configuration space $Q_{\text {free }}$?

■ How would you compute $Q_{\text {free }}$?

Examples of Configuration Spaces

Two-link Path

- The Minkowski sum of two sets A and B, denoted by $A \oplus B$, is defined as

$$
A \oplus B=\{a+b: a \in A, b \in B\}
$$

- The Minkowski difference of two sets A and B, denoted by $A \ominus B$, is defined as

$$
A \ominus B=\{a-b: a \in A, b \in B\}
$$

How does it relate to path planning?

- Recall the definition of the configuration-space obstacle

$$
Q_{\text {obstacle }}=\{q: q \in Q \text { and } \operatorname{Robot}(q) \cap 0 \text { bstacle } \neq \emptyset\}
$$

(set of all robot configurations that collide with the obstacle)

- Classical result shown by Lozano-Perez and Wesley 1979
for polygons and polyhedra: $Q_{\text {obstacle }}=$ Obstacle \ominus Robot

- ㅁ (Fig. sourtesy of Manochal
- Minkowski sum of two convex sets is convex
- Minkowski sum of two convex polygons A and B with m and n vertices...
- ... is a convex polygon with $m+n$ vertices
- ... vertices of $A \oplus B$ are "sums" of vertices of A and B
- ... $A \oplus B$ can be computed in linear time and space $O(n+m)$

Algorithm

- sort edges according to angle between x-axis and edge normal

- let the sorted edges be $e_{1}, e_{2}, \ldots, e_{n+m}$
- attach edges one after the other so that edge e_{i+1} starts where edge e_{i} ends
[Fig. courtesy of Manocha]
- Minkowski sum for nonconvex polygons
- Decompose into convex polygons (e.g., triangles, trapezoids)
- Compute the minkowski sums of the convex polygons and take their union
- Complexity: $O\left(n^{2} m^{2}\right)$ (4-th order polynomial)
- 3D Minkowski sums: [convex: $O(n m)$ complexity] [nonconvex: $O\left(n^{3} m^{3}\right)$ complexity]

Path Planning: From Point Robots to Robots with Geometric Shapes

- We have seen path-planning algorithms when a robot is a point
- How can we plan a collision-free path when the robot has a geometric shape?
... a key concept in path planning is the notion of a configuration space

- reduce robot to a point in the configuration space
- compute configuration-space obstacles (difficult to do in general)
- search for a path for the point robot in the free configuration space

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

Why study it?

- Extend results from one configuration space to another

■ Design specialized algorithms that take advantage of certain topologies What about the topology?

- Topology is the "intrinsic character" of a space

Why study it?

- Extend results from one configuration space to another

■ Design specialized algorithms that take advantage of certain topologies What about the topology?

- Topology is the "intrinsic character" of a space
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures - if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)

Why study it?

- Extend results from one configuration space to another

■ Design specialized algorithms that take advantage of certain topologies What about the topology?

- Topology is the "intrinsic character" of a space
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures - if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism

$$
f: X \rightarrow Y \text { is called a homeomorphism iff }
$$

- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of f) is continuous

Topology of Configuration Spaces

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

What about the topology?

- Topology is the "intrinsic character" of a space
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures - if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism $f: X \rightarrow Y$ is called a homeomorphism iff
- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of f) is continuous
examples of homeomorphisms: [disc to square]; [$(-1,1)$ to \mathbb{R}]
X is diffeomorphic to Y iff exists $f: X \rightarrow Y$ such that
- f is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist)

Topology of Configuration Spaces

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

What about the topology?

- Topology is the "intrinsic character" of a space
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures - if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism $f: X \rightarrow Y$ is called a homeomorphism iff
- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of f) is continuous
examples of homeomorphisms: [disc to square]; [$(-1,1)$ to \mathbb{R}]
X is diffeomorphic to Y iff exists $f: X \rightarrow Y$ such that
- f is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist) example of diffeomorphism: circle to ellipse

Topology of Configuration Spaces

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

What about the topology?

- Topology is the "intrinsic character" of a space
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures - if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism $f: X \rightarrow Y$ is called a homeomorphism iff
- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of f) is continuous
examples of homeomorphisms: [disc to square]; [$(-1,1)$ to $\mathbb{R}]$
X is diffeomorphic to Y iff exists $f: X \rightarrow Y$ such that
- f is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist)
example of diffeomorphism: circle to ellipse
- An n-dimensional configuration space Q is a manifold if it locally looks like \mathbb{R}^{n}, i.e., every $q \in Q$ has a neighborhood homeomorphic to \mathbb{R}^{n}

Topology of Configuration Spaces

Why study it?

- Extend results from one configuration space to another
- Design specialized algorithms that take advantage of certain topologies

What about the topology?

- Topology is the "intrinsic character" of a space
- Two spaces have different topologies if cutting and pasting is required to make them the same (think of rubber figures - if we can stretch and reshape "continuously" without tearing, one into the other, they have the same topology)
- Mathematical mechanisms for talking about topology: homeomorphism/diffeomorphism $f: X \rightarrow Y$ is called a homeomorphism iff
- f is a bijection (one-to-one and onto)
- f is continuous
- f^{-1} (the inverse of f) is continuous
examples of homeomorphisms: [disc to square]; [$(-1,1)$ to $\mathbb{R}]$
X is diffeomorphic to Y iff exists $f: X \rightarrow Y$ such that
- f is a homeomorphism where f and f^{-1} are smooth (derivatives of all orders exist) example of diffeomorphism: circle to ellipse
- An n-dimensional configuration space Q is a manifold if it locally looks like \mathbb{R}^{n}, i.e., every $q \in Q$ has a neighborhood homeomorphic to \mathbb{R}^{n}
- A manifold is path-connected if there is a path between any two points

[Fig. courtesy of Choset, Dodds, Manocha]

