
Planning Motions of Robots A. Shehu – CS689

Forward and Inverse Kinematics

February 17, 2014

   Kinematics = 

   Study of movement, motion independent of 
the underlying forces that cause them

      Today’s Lecture: Forward and Inverse 

                                    Kinematics



Planning Motions of Robots A. Shehu – CS689

Forward and Inverse Kinematics

February 17, 2014

   Preliminaries:

      On transformation matrices



Planning Motions of Robots A. Shehu – CS689

Kinematics of Simple Systems

Triangle translating and rotating in 2D 



Planning Motions of Robots A. Shehu – CS689

Kinematics of Simple Systems

Triangle translating and rotating in 2D 

What are the degrees of freedom of this system?
What is its configurational space?



Planning Motions of Robots A. Shehu – CS689

Serial linkage in a 2D workspace (obstacles in gray)

Kinematics of Interesting Systems



Planning Motions of Robots A. Shehu – CS689

Kinematics of Complex Systems

Serial linkage with many links (many dofs)
    serpentine robots
    protein backbone chains 



Planning Motions of Robots A. Shehu – CS689

Rigid-Body Transformation

x

z

y

x

T

T(x)

Preserves Euclidean distances 
between points in a rigid body 

T(y)

y

||T(y) – T(x)|| = ||y-x||

A rigid-body transformation consists of:
            rotation and translation



Planning Motions of Robots A. Shehu – CS689

Rigid-body Transformation in 2D

x

y



Planning Motions of Robots A. Shehu – CS689

x

y

x

Rigid-body Transformation in 2D



Planning Motions of Robots A. Shehu – CS689

x

y

x

y

Rigid-body Transformation in 2D



Planning Motions of Robots A. Shehu – CS689

x

y

Rigid-body Transformation in 2D



Planning Motions of Robots A. Shehu – CS689

x

y

Rigid-body Transformation in 2D



Planning Motions of Robots A. Shehu – CS689

x

y

Rigid-body Transformation in 2D



Planning Motions of Robots A. Shehu – CS689

x

y

x

y

tx

ty

θ

Rigid-body Transformation in 2D

cos θ  -sin θ
sin θ    cos θ

Rotation matrix:

ij

Translation component:

tx 
ty

Why?



Planning Motions of Robots A. Shehu – CS689

x

y

x

y

tx

ty

θ
ij

Rigid-body Transformation in 2D

i1  j1
i2    j2

Rotation matrix:

Vector (i1,i2) is new 
unit vector, with 
what coordinates in 
old world frame?
What about (j1,j2) ?



Planning Motions of Robots A. Shehu – CS689

x

y

x

y

tx

ty

θ

a

b

a
b

v

a’
b’ =

θ
α

α

a’

b’

i1  j1
i2    j2

Rotation matrix:

ij

Transformation of a point?

Rigid-body Transformation in 2D



Planning Motions of Robots A. Shehu – CS689

x

y

x

y

tx

ty

θ

x’

y’

y

x

Homogeneous Coordinate Matrix in 2D

The rotation and translation can 
be combined together in a 
homogeneous coordinate matrix 

What is a homogeneous 
coordinate matrix?

Is translation a linear 
transformation? 



Planning Motions of Robots A. Shehu – CS689

             i1  j1  tx

          i2  j2  ty

          0     0      1

x’          cos θ   -sin θ   tx         x             tx + x cos θ - y sin θ
y’     =   sin θ    cos θ   ty        y      =      ty + x sin θ + y cos θ  
1            0          0        1          1                             1

x

y

x

y

tx

ty

θ

x’

y’

y

x

 T = (t,R)
 T(x) = t + Rx

Homogeneous Coordinate Matrix in 2D



Planning Motions of Robots A. Shehu – CS689

θ1

θ2

?

Rigid-body Transformations in 3D



Planning Motions of Robots A. Shehu – CS689

                        i1     j1     k1  tx

          i2     j2     k2    ty

          i3     j3     k3    tz

        0    0    0  1

with: 
▆ i12 + i22 + i32  = 1
▆ i1j1 + i2j2 + i3j3 = 0
▆ det(R) = +1
▆ R-1 = RT

x

z

y x
y

z j
i

k

R

Homogeneous Coordinate Matrix in 3D

Why?

Why?

Why?

Why?



Planning Motions of Robots A. Shehu – CS689

                        i1     j1     k1   tx

              i2     j2     k2    ty

              i3     j3     k3    tz

        0    0    0    1

with: 
▆ i12 + i22 + i32  = 1
▆ i1j1 + i2j2 + i3j3 = 0
▆ det(R) = +1
▆ R-1 = RT

x

z

y x
y

z j
i

k

R

Homogeneous Coordinate Matrix in 3D

Why?

Why?

Why?

Why?



Planning Motions of Robots A. Shehu – CS689

x

z

y

θ

      cos θ 0 sin θ tx

      0       1 0       ty

      -sin θ 0 cos θ tz

      0       0 0       1

Rotations around Axes Plus Translation in 3D

x

z

y

Rotation by θ around y axis:

      1       0 0       tx

      0  cos θ -sin θ     ty

      0  sin θ cos θ tz

      0       0 0       1

Rotation by θ around x axis:

ccw rotation

      cos θ   -sin θ    0     tx

      sin θ cos θ   0      ty

      0       0      1 tz

      0       0      0 1

Rotation by θ around z axis:



Planning Motions of Robots A. Shehu – CS689

Rotation Around Arbitrary Vector v in 3D 

R(v,θ) = ?
▆ Step 1. Translate v to origin to obtain vector k 
▆ Step 2. Rotate around centered vector k
▆ Step 3. Translate back

k

θ

v

Step 1.

Step 2.

Step 3.

How does one rotate around
 a centered vector?



Planning Motions of Robots A. Shehu – CS689

Rotation Around Centered Vector k in 3D 

R(k,θ) =

kxkxvθ+ cθ    kxkyvθ- kzsθ kxkzvθ+ kysθ

kxkyvθ+ kzsθ    kykyvθ+ cθ kykzvθ- kxsθ

kxkzvθ- kysθ    kykzvθ+ kxsθ kzkzvθ+ cθ

where:
▆ k = (kx ky kz)T

▆ sθ = sinθ
▆ cθ = cosθ
▆ vθ = 1-cosθ

k

θ



Planning Motions of Robots A. Shehu – CS689

Rotation Around Centered Vector k in 3D 

How is R(k,θ) obtained?
▆ 1. Rotate k so that the rotation axis is aligned with one 
       of the principle x, y, z coordinate axes
▆ 2. Perform rotation of object about coordinate axis
▆ 3. Perform inverse rotation of 1

▆ Details at 
http://www.siggraph.org/education/materials/HyperGr
aph/modeling/mod_tran/3drota.htm

http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm


Planning Motions of Robots A. Shehu – CS689

x

z

y x
y

z j
i

k

x’        i1   j1     k1  tx       x
y’        i2     j2     k2  ty       y
z’        i3   j3     k3  tz       z
1        0   0     0  1       1

=(x,y,z)

(x’,y’,z’)

Composition of two transforms represented 
by matrices T1 and T2 : T2 ×T1

Homogeneous Coordinate Matrix in 3D

Which one is applied first ?



Planning Motions of Robots A. Shehu – CS689

A Serial Linkage Model



Planning Motions of Robots A. Shehu – CS689

 Rotating around ai by angle θ affects positions of following
   joints ai+2, ai+3, and others down the chain
 Rotation is about arbitrary vector bi (rotational axis shown) 
   by specified/desired angle θ

Rotations in the Serial Linkage Model



Planning Motions of Robots A. Shehu – CS689

 Anchor: First joint placed at origin of coordinate system
 Link bi defined from joint ai to ai+1

 Rotating around ai by angle θ affects positions of following 
   joints ai+2, ai+3, and others down the chain

Joint rotation in the Serial Linkage Model



Planning Motions of Robots A. Shehu – CS689

 R(bi, θ) = Translate(ai) * R(axis, θ) * Translate(-ai)

Rotating a Bond in the Serial Linkage Model



Planning Motions of Robots A. Shehu – CS689

Chaining Rotations in a Serial Linkage

Two rotations need to be applied at the same time: one around 
joint 3 by 30 deg, another around joint 5 by 15 degrees.

But the joints after bond 5 are updated by:

Joints between bonds 3 to 5 updated by:



Planning Motions of Robots A. Shehu – CS689

x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=

 Accumulation of computing errors along a serial linkage 
    and repeated computation

Drawbacks of Homogeneous Coordinate Matrix



Planning Motions of Robots A. Shehu – CS689

x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=

Drawbacks of Homogeneous Coordinate Matrix

Why 3-parameters for representing rotations?

 Rotation representation in rotation matrices is redundant 

 Only 3 parameters are actually needed



Planning Motions of Robots A. Shehu – CS689

A rotation representation expresses the orientation of a rigid body (or 
coordinate frame) relative to a reference frame. 

Rotation representation in homogeneous coordinate matrix is the matrix 
consisting of new axes i,j,k in the rotated coordinate frame.

Rotation matrix is often called the Direction Cosine Matrix (DCM), as the new 
axes can be described in terms of their coordinates relative to the reference 
axes (recall our derivation of the rotation in 2D). 

Drawbacks of Homogeneous Coordinate Matrix

x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=



Planning Motions of Robots A. Shehu – CS689

A rotation representation expresses the orientation of a rigid body (or 
coordinate frame) relative to a reference frame. 

Euler’s rotation theorem: 
  (1) The displacement of a rigid body (or coordinate frame) with one point 
        fixed is described by a rotation about some axis. 
  (2) Such a rotation may be uniquely described by a minimum of 3 dofs.

Drawbacks of Homogeneous Coordinate Matrix

x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=

Rotation matrix has a total of 9 parameters that are not independent
Orthonormality specifies 6 constraints (3 for normality, 3 for orthogonality)
A total of 9-6 = 3 independent parameters represent the rotation



Planning Motions of Robots A. Shehu – CS689

 Rotation representation in rotation matrices is redundant 

 Euler angles are an example of non-redundant 3-parameters 
    representations of rotations

 Non-redundant 3-parameter representations of rotations like    
     Euler angles have many problems: 
      No simple algebra: composing rotations is not straightforward 
      Singularities: many points map to same point in another representations
        

 The unit quaternion is a less redundant rotation representation

       that uses four parameters

Goal: Less Redundant Rotation Representations

Rotation representations: 
          Rotation matrix, Euler angles, Axis-angle, Unit Quaternions



Planning Motions of Robots A. Shehu – CS689

Representations of Rotations

A brief summary of rotation representations:
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)#Rotation
_matrix_.28or_direction_cosine_matrix.2C_DCM.29

http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)


Planning Motions of Robots A. Shehu – CS689

Quaternion: p = (a, bi, cj, dk)    - 4 parameters

 Extensions of complex numbers
    i2 = j2 = k2 = jk = -1   ij = k; jk = i; ki = j ji = -k; kj = -i; 
ik = -j

Convenient to describe them as scalar plus vector: 
            p = a + v, or p = (a,  v) 
            where vector v = <b c d>

Unit quaternion: p2 = 1
      a,b,c,d can be defined so that p represents    
      rotation around unit vector by a certain angle

Unit Quaternion (for Rotations in 3D)



Planning Motions of Robots A. Shehu – CS689

Allows compact representation of rotation R(r, θ)  around 
vector r by angle θ

    R(r,θ) = (cos θ/2, r1 sin θ/2, r2 sin θ/2, r3 sin θ/2)

              = (cos θ/2, r sin θ/2)

R(r,θ)

R(-r, 2π−θ)

Space of unit quaternions:
Unit 3-sphere in 4-D space
with antipodal points identified

Unit Quaternion (for Rotations in 3D)

Same rotation can be encoded in two ways 
      
      (cos θ/2,         r sin θ/2) or
      (cos (π − θ/2), -r sin (π − θ/2)



Planning Motions of Robots A. Shehu – CS689

P  = p0 + p  (scalar part is p0,vector part is p)

Q = q0 + q  (different operations can be defined)

Product PQ is more interesting - it can be 
represented as another quaternion R = r0 + r = PQ

    where r0 = p0q0 – p.q (“.” denotes inner product)

   and    r  = p0q + q0p + p×q (“×” denotes outer product)

Conjugate of P is another quaternion P* = p0 - p

Operations on Quaternions



Planning Motions of Robots A. Shehu – CS689

Vector u = (x,y,z) can be represented as a quaternion 0 + x

We want to rotate u around unit centered vector n by angle θ

Let rotation R(n,θ) be represented by a quaternion PR(n,θ) 

Let P* be the conjugate of P

Rotation of x yields x’ : 0 + x’ = PR(n,θ) (0 + x) P*R(n,θ)

Rotation of a Vector u Using Unit Quaternions 



Planning Motions of Robots A. Shehu – CS689

Forward and Inverse Kinematics

February 17, 2014

   Some more examples:

      Forward Kinematics on manipulators



Planning Motions of Robots A. Shehu – CS689

FK for Two-Linkage Chain

l1

l2

θ1

θ2

(x,y)

x = l1 cos θ1 + l2 cos(θ1+θ2)
y  = l1  sin θ1  + l2 sin(θ1+θ2)



Planning Motions of Robots A. Shehu – CS689

FK for Two-Linkage Chain

l1

l2

θ1

θ2

(x,y)

x = l1 cos θ1 + l2 cos(θ1+θ2)
y  = l1  sin θ1  + l2 sin(θ1+θ2)

x = x1 + x2

x1  = l1  cos θ1

x2 = l2 cos(α) = l2 cos(-α)
 
α  = π - θ1 – (θ2 - π) = 
     -(θ1 + θ2)
-α = θ1 + θ2

→ x2 = l2 cos(θ1 + θ2)

x1 x2

x2

α

y = y1 - y2

y1  = l1  sin θ1

y2 = l2 sin(α) = -l2 sin(-α)
    = l2 sin(θ1 + θ2)
→ y = l1  sin θ1 + l2 sin(θ1 + θ2)

y1

y2

θ1

θ2-π



Planning Motions of Robots A. Shehu – CS689

Linkage (Internal Coordinate) Model

T?

T?

anchor joint



Planning Motions of Robots A. Shehu – CS689

i

k

Tk
(i) = Tk … Ti+2 Ti+1 

     position of joint k in frame of joint i

Ti+1 Tk
i+1

k-1Ti+2

Relative Position of Two Joints

joint i
joint k



Planning Motions of Robots A. Shehu – CS689

i

k

Tk
(i) = Tj

(i) Tj+1 Tk
(j+1)

   joint j between i and k

Ti+1 Tk
i+1

k-1Ti+2

Relative Position of Two Joints

joint i
joint kjoint j



Planning Motions of Robots A. Shehu – CS689

 Tk
(i) = Tk … Ti+2 Ti+1

 Joint j between i and k
 Tk

(i) = Tj
(i) Tj+1 Tk

(j+1)

 A parameter between j and j+1 is 
changed

 Tj+1  Tj+1

 Tk
(i)  Tk

(i) = Tj
(i) Tj+1 Tk

(j+1)

Update in a Serial Linkage

 Why is this important ?



Planning Motions of Robots A. Shehu – CS689

Optional Reading (youtube video explains in detail):

Denavit-Hartenberg Model derivation based on J.J. Craig. 
Introduction to Robotics. Addison Wesley, reading, MA, 1989.

Research article :
Zhang, M. and Kavraki, L. E.. A New Method for Fast and 
Accurate Derivation of Molecular Conformations. Journal of 
Chemical Information and Computer Sciences, 42(1):64–70, 
2002.
http://www.cs.rice.edu/CS/Robotics/papers/zhang2002fast-comp-
mole-conform.pdf
 

http://www.cs.rice.edu/CS/Robotics/papers/zhang2002fast-comp-mole-conform.pdf
http://www.cs.rice.edu/CS/Robotics/papers/zhang2002fast-comp-mole-conform.pdf


Planning Motions of Robots A. Shehu – CS689

Forward and Inverse Kinematics

February 17, 2014

   Inverse Kinematics



Planning Motions of Robots A. Shehu – CS689

Solve for the dofs in order to satisfy spatial constraints on end 
effectors

Extra

IK In Robotics



Planning Motions of Robots A. Shehu – CS689

Extra

IK In Robotics



Planning Motions of Robots A. Shehu – CS689

Extra

IK In Computer Graphics, Games, Virtual Reality

Real-Time Joint Coupling of the Spine for Inverse Kinematics 
Raunhardt, Boulic JVRB 2008



Planning Motions of Robots A. Shehu – CS689

Extra

IK In Computational Biology

Filling gaps in structure determination by X-ray crystallography

Lotan, Bedem, Latombe 2004-2005



Planning Motions of Robots A. Shehu – CS689

Extra

IK In Computational Biology

Computing conformational ensembles of loops in proteins

Shehu, Proteins 2006



Planning Motions of Robots A. Shehu – CS689

Solving the IK Problem for Two-Linkage Chain

l1

l2
(x,y)

θ2 = cos-1
x2 + y2 – l12 – l22

2d1d2

-x(l2sinθ2) + y(l1 + d2cosθ2)

y(l2sinθ2) + x(l1 + l2cosθ2)
θ1 =

Two solutions



Planning Motions of Robots A. Shehu – CS689

Solving the IK Problem for Two-Linkage Chain

l1

l2
(x,y)

Two solutions

θ2

θ1



Planning Motions of Robots A. Shehu – CS689

A More Complicated Example

d1

d2

θ1

θ2

d3

θ3

Finite number of solutions

(x,y,φ)

dθ3
dθ2

dθ1
(θ1,θ2,θ3)



Planning Motions of Robots A. Shehu – CS689

General Results for the IK Problem

6-joint chain in 3-D space:
 NDOF=0
 At most 16 distinct IK solutions

q1

q2

q3

q4

q5

q6

Target pose for end effector

Why?



Planning Motions of Robots A. Shehu – CS689

General Results for the IK Problem

6-joint chain in 3-D space:
 NDOF=0
 At most 16 distinct IK solutions

q1

q2

q3

q4

q5

q6
End effector target pose

Why?

6-joint chain  6 dofs
Target pose  3 translation and 3 
orientation constraints

So: 6 – 6 = 0 free dofs
      IK solutions can be enumerated



Planning Motions of Robots A. Shehu – CS689

Analytical or Exact IK Methods

Can solve only for 6 joints
 Write forward kinematics in the form of polynomial 

equations (use t = tan(θ/2) 

 Solve



Geometric Algorithms for Bioinformatics A. Shehu – CS795 (002)

IK Methods/Solvers

Computer Science
▆ Exact IK solvers

[Manocha, Canny ’94]

[Manocha et al. ’95] [Zhang, Kavraki ’02] 

[Zhang, White, Wang, Goldman, Kavraki ’04]

▆ Optimization IK solvers

[Wang, Chen ’91] 

▆ Applications for protein loops
▆ [Han, Amato ’00]

▆ [Xie, Amato ’03]

▆ [Cortes, Simeon, Laumond ’02]

▆ [Cortes et al. ’04]

▆ [Shehu et al. ‘06-’07]

Biology/Crystallography
▆ Exact IK solvers 

[Go, Scheraga ’70]

[Wedemeyer, Scheraga ’99]

[Coutsias et al. ’04]

▆ Optimization IK solvers

[Fine et al. ’86] [Shenkin et al. ’87] 

Cyclic Coordinate Descent:

    [Canutescu, Dunbrack ’03]



Planning Motions of Robots A. Shehu – CS689

Basic Idea of Iterative IK Methods

Can solve only for arbitrary number of joints
 1. Compute error e = target pose – current pose

 2. Find changes ∆θ to joint values θ that minimize |e|2

 3. Apply ∆θ through forward kinematics

 4. Repeat 1. – 3. until |e|2 is below a threshold or we 
run out of patience for more iterations



Planning Motions of Robots A. Shehu – CS689

IK as an Optimization (Minimization) Problem

 Q = (q1 q2 … qn):    n-vector of dofs

 θ  = (θ1 θ2 … θn):   n-vector of values to dofs

 k end effectors with current poses denoted s1 … sk

 Target poses for end effectors:                    t1 … tk  

 Two fundamental observations:
 s1 … sk depend on (θ1 θ2 … θn) through forward kinematics function:

     written as: s = s(θ)

 IK problem is to find values for θ1 θ2 … θn so that ti = si(θ) for all i



Planning Motions of Robots A. Shehu – CS689

IK as an Optimization (Minimization) Problem

 There may be no closed-form solution to ti = si(θ)

 Iterative methods approximate a good solution

 A solution is sought only for the first-order approximation to 
the Taylor expansion of ti = si(θ)

 That is, we try to solve t = s(0 + θ) + ds(θ)/dt 

 Using chain rule: ds(θ)/dt =  ∂s/∂(θ) * dθ/dt



Planning Motions of Robots A. Shehu – CS689

IK as an Optimization (Minimization) Problem

 Let J(θ) = ∂s/∂(θ)        -- J is called the Jacobian matrix

    Note that J can be viewed as a kxn mxn matrix (m = 3k)

 Then: ds(θ)/dt = J(θ) * dθ/dt

∂s1(θ1)/∂θ1  ∂s1(θ2)/∂θ2 …  ∂s1(θn)/∂θn

∂s2(θ1)/∂θ1  ∂s2(θ2)/∂θ2     …  ∂s2(θn)/∂θn

 …                                    …

 …                                    …

∂s6(θ1)/∂θ1  ∂s6(θ2)/∂θ2 …  ∂s6(θn)/∂θn



Planning Motions of Robots A. Shehu – CS689

IK as an Optimization (Minimization) Problem

 So: ds(θ)/dt = J(θ) * dθ/dt

 J(θ) = ∂s/∂(θ) leads to an iterative way of solving ti = si(θ):
 Given current values for θ, s, t, compute J(θ)

 Find an update dθ s.t. the change ds = J(θ) dθ updates s to reach t

      In other words, find dθ s.t. 0 = e(θ + dθ) = t – s(θ + dθ) = J(θ) dθ

 Iterative methods fall in two categories:
 (all in one):find values dθ by which to update all angles

 (one at a time). find dθi to increment θi, update s, then continue to θi+1



Planning Motions of Robots A. Shehu – CS689

Computing the Jacobian

 Jacobian entries ∂s/∂(θ) are usually not hard to calculate 

 For rotational joints (see Buss review for other types of dofs)
 ∂si/∂(θj) = vj x (si - pj)  

     where vj is unit vector along the rotational axis for θj   

     and pj is the position of the joint 

 Intuition: si - pj  , vj form a plane perpendicular to circle followed 
by link i in rotation around vj  (forms basis of cyclic coordinate 

                                              descent method)



Planning Motions of Robots A. Shehu – CS689

How to Compute Inverse of Jacobian

 We want inverse of J, not J itself, because we want to find dθ
 ds/dt = J(θ) dθ  J-1(θ) ds/dt = J-1(θ) J(θ) dθ = dθ
 So, by finding J-1(θ), we find dθ



Planning Motions of Robots A. Shehu – CS689

 J is an 6×n matrix. Assume rank(J) = 6

 Find dθ s.t. e = J(θ) dθ would mean dθ = J-1 e

 May not have rank 6, which means inverse may not exist

 Transpose or pseudo inverse are often used for J-1

 Transpose of J approaches        (easiest to implement)

 Pseudo inverse of J approaches (allows introducing null space of J)

 Damped least squares (see Buss review, most stable but slow)

Finding Inverse of Jacobian is Not Trival



Planning Motions of Robots A. Shehu – CS689

 Find dθ s.t. e = J(θ) dθ would mean dθ = J-1 e

 Transpose JT : dθ = α JT e
 scalar α needs to be small to reduce magnitude of error e

 Transpose always exists, but often produces poor quality solutions

Jacobian Transpose Approach



Planning Motions of Robots A. Shehu – CS689

 Find dθ s.t. e = J(θ) dθ would mean dθ = J-1 e

 Pseudo inverse J+ : dθ = J+ e
 J+ also called Moore-Penrose inverse

 Gives best solution to J dθ = e in sense of least squares

 Has instability issues near singularities

 A singular value decomposition (SVD) of J gives an easy way 
to compute J+

Jacobian Pseudo Inverse Approach



Planning Motions of Robots A. Shehu – CS689

 J+ has an additional property: I - J J+ performs a projection onto 
the null space of J (self-motion manifold)

 Null space is space of vectors θ such that ds = 0

 { dθ | J dθ = 0} has dim = n – 6

 Any vector ϕ of values to joint dofs that minimizes some other 
objective function (e.g. potential energy of a protein chain) can 
be projected onto the null space and obtain a vector that 
minimizes energy and keeps the end effectors in their place 

Jacobian Pseudo Inverse Approach



Planning Motions of Robots A. Shehu – CS689

Computation of J+ from SVD of J

1. SVD decomposition  J = U Σ VT where: 
- U in an 6×6 square orthonormal matrix
- V is an n×6 square orthonormal matrix
- Σ is of the form diag[σi]:

1. J+ = V Σ+ UT where Σ+=diag[1/σi]

     Can verify that JJ+ = (U Σ VT) (V Σ+ UT) = I

σ1
σ2

σ6

0



Planning Motions of Robots A. Shehu – CS689

dX U6×6 VT
6×n dQΣ6×6 

=

J

 SVD of J Yields Null Space of J



Planning Motions of Robots A. Shehu – CS689

dX U6×6 VT
n×n dQΣ6×n 

0=

 SVD of J Yields Null Space of J

J

Gram-Schmidt orthogonalization

Some singular values will be 0
Corresponding vectors in VT 
form null space



Planning Motions of Robots A. Shehu – CS689

dX U6×6 VT
n×n dQΣ6×n 

0

(n-6) basis N of null space

=

J

NT

 SVD of J Yields Null Space of J



Planning Motions of Robots A. Shehu – CS689

Minimization of  Objective Function with Closure

Input: Chain with ends at target poses
Repeat
1. Compute Jacobian matrix J at current q
2. Compute null-space basis N using SVD of J 
3. Compute gradient ∇T(θ) and y=-∇T(θ)
4. Move along projection NNTy until minimum of T is 

reached or closure is broken

I. Lotan, H. van den Bedem, A.M. Deacon and J.-C Latombe. 
Computing Protein Structures from Electron Density Maps: The M
issing Loop Problem
. 
 Proc. 6th Workshop on Algorithmic Foundations of Robotics (WAFR `04) 

http://robotics.stanford.edu/~itayl/wafr.pdf
http://robotics.stanford.edu/~itayl/wafr.pdf
http://robotics.stanford.edu/~itayl/wafr.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

