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Forward and Inverse Kinematics

February 17, 2014

   Kinematics = 

   Study of movement, motion independent of 
the underlying forces that cause them

      Today’s Lecture: Forward and Inverse 

                                    Kinematics
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February 17, 2014

   Preliminaries:

      On transformation matrices
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Kinematics of Simple Systems

Triangle translating and rotating in 2D 
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Kinematics of Simple Systems

Triangle translating and rotating in 2D 

What are the degrees of freedom of this system?
What is its configurational space?
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Serial linkage in a 2D workspace (obstacles in gray)

Kinematics of Interesting Systems
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Kinematics of Complex Systems

Serial linkage with many links (many dofs)
    serpentine robots
    protein backbone chains 
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Rigid-Body Transformation

x

z

y

x

T

T(x)

Preserves Euclidean distances 
between points in a rigid body 

T(y)

y

||T(y) – T(x)|| = ||y-x||

A rigid-body transformation consists of:
            rotation and translation
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Rigid-body Transformation in 2D

x

y
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Rigid-body Transformation in 2D
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Rigid-body Transformation in 2D
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Rigid-body Transformation in 2D
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Rigid-body Transformation in 2D
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x

y

Rigid-body Transformation in 2D
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x

y

x

y

tx

ty

θ

Rigid-body Transformation in 2D

cos θ  -sin θ
sin θ    cos θ

Rotation matrix:

ij

Translation component:

tx 
ty

Why?
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x

y

x

y

tx

ty

θ
ij

Rigid-body Transformation in 2D

i1  j1
i2    j2

Rotation matrix:

Vector (i1,i2) is new 
unit vector, with 
what coordinates in 
old world frame?
What about (j1,j2) ?



Planning Motions of Robots A. Shehu – CS689

x

y

x

y

tx

ty

θ

a

b

a
b

v

a’
b’ =

θ
α

α

a’

b’

i1  j1
i2    j2

Rotation matrix:

ij

Transformation of a point?

Rigid-body Transformation in 2D
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x

y

x

y

tx

ty

θ

x’

y’

y

x

Homogeneous Coordinate Matrix in 2D

The rotation and translation can 
be combined together in a 
homogeneous coordinate matrix 

What is a homogeneous 
coordinate matrix?

Is translation a linear 
transformation? 
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             i1  j1  tx

          i2  j2  ty

          0     0      1

x’          cos θ   -sin θ   tx         x             tx + x cos θ - y sin θ
y’     =   sin θ    cos θ   ty        y      =      ty + x sin θ + y cos θ  
1            0          0        1          1                             1

x

y

x

y

tx

ty

θ

x’

y’

y

x

 T = (t,R)
 T(x) = t + Rx

Homogeneous Coordinate Matrix in 2D
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θ1

θ2

?

Rigid-body Transformations in 3D
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                        i1     j1     k1  tx

          i2     j2     k2    ty

          i3     j3     k3    tz

        0    0    0  1

with: 
▆ i12 + i22 + i32  = 1
▆ i1j1 + i2j2 + i3j3 = 0
▆ det(R) = +1
▆ R-1 = RT

x

z

y x
y

z j
i

k

R

Homogeneous Coordinate Matrix in 3D

Why?

Why?

Why?

Why?
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                        i1     j1     k1   tx

              i2     j2     k2    ty

              i3     j3     k3    tz

        0    0    0    1

with: 
▆ i12 + i22 + i32  = 1
▆ i1j1 + i2j2 + i3j3 = 0
▆ det(R) = +1
▆ R-1 = RT

x

z

y x
y

z j
i

k

R

Homogeneous Coordinate Matrix in 3D

Why?

Why?

Why?

Why?
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x

z

y

θ

      cos θ 0 sin θ tx

      0       1 0       ty

      -sin θ 0 cos θ tz

      0       0 0       1

Rotations around Axes Plus Translation in 3D

x

z

y

Rotation by θ around y axis:

      1       0 0       tx

      0  cos θ -sin θ     ty

      0  sin θ cos θ tz

      0       0 0       1

Rotation by θ around x axis:

ccw rotation

      cos θ   -sin θ    0     tx

      sin θ cos θ   0      ty

      0       0      1 tz

      0       0      0 1

Rotation by θ around z axis:
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Rotation Around Arbitrary Vector v in 3D 

R(v,θ) = ?
▆ Step 1. Translate v to origin to obtain vector k 
▆ Step 2. Rotate around centered vector k
▆ Step 3. Translate back

k

θ

v

Step 1.

Step 2.

Step 3.

How does one rotate around
 a centered vector?
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Rotation Around Centered Vector k in 3D 

R(k,θ) =

kxkxvθ+ cθ    kxkyvθ- kzsθ kxkzvθ+ kysθ

kxkyvθ+ kzsθ    kykyvθ+ cθ kykzvθ- kxsθ

kxkzvθ- kysθ    kykzvθ+ kxsθ kzkzvθ+ cθ

where:
▆ k = (kx ky kz)T

▆ sθ = sinθ
▆ cθ = cosθ
▆ vθ = 1-cosθ

k

θ
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Rotation Around Centered Vector k in 3D 

How is R(k,θ) obtained?
▆ 1. Rotate k so that the rotation axis is aligned with one 
       of the principle x, y, z coordinate axes
▆ 2. Perform rotation of object about coordinate axis
▆ 3. Perform inverse rotation of 1

▆ Details at 
http://www.siggraph.org/education/materials/HyperGr
aph/modeling/mod_tran/3drota.htm

http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
http://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/3drota.htm
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x

z

y x
y

z j
i

k

x’        i1   j1     k1  tx       x
y’        i2     j2     k2  ty       y
z’        i3   j3     k3  tz       z
1        0   0     0  1       1

=(x,y,z)

(x’,y’,z’)

Composition of two transforms represented 
by matrices T1 and T2 : T2 ×T1

Homogeneous Coordinate Matrix in 3D

Which one is applied first ?
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A Serial Linkage Model
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 Rotating around ai by angle θ affects positions of following
   joints ai+2, ai+3, and others down the chain
 Rotation is about arbitrary vector bi (rotational axis shown) 
   by specified/desired angle θ

Rotations in the Serial Linkage Model
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 Anchor: First joint placed at origin of coordinate system
 Link bi defined from joint ai to ai+1

 Rotating around ai by angle θ affects positions of following 
   joints ai+2, ai+3, and others down the chain

Joint rotation in the Serial Linkage Model
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 R(bi, θ) = Translate(ai) * R(axis, θ) * Translate(-ai)

Rotating a Bond in the Serial Linkage Model
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Chaining Rotations in a Serial Linkage

Two rotations need to be applied at the same time: one around 
joint 3 by 30 deg, another around joint 5 by 15 degrees.

But the joints after bond 5 are updated by:

Joints between bonds 3 to 5 updated by:
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x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=

 Accumulation of computing errors along a serial linkage 
    and repeated computation

Drawbacks of Homogeneous Coordinate Matrix
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x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=

Drawbacks of Homogeneous Coordinate Matrix

Why 3-parameters for representing rotations?

 Rotation representation in rotation matrices is redundant 

 Only 3 parameters are actually needed
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A rotation representation expresses the orientation of a rigid body (or 
coordinate frame) relative to a reference frame. 

Rotation representation in homogeneous coordinate matrix is the matrix 
consisting of new axes i,j,k in the rotated coordinate frame.

Rotation matrix is often called the Direction Cosine Matrix (DCM), as the new 
axes can be described in terms of their coordinates relative to the reference 
axes (recall our derivation of the rotation in 2D). 

Drawbacks of Homogeneous Coordinate Matrix

x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=
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A rotation representation expresses the orientation of a rigid body (or 
coordinate frame) relative to a reference frame. 

Euler’s rotation theorem: 
  (1) The displacement of a rigid body (or coordinate frame) with one point 
        fixed is described by a rotation about some axis. 
  (2) Such a rotation may be uniquely described by a minimum of 3 dofs.

Drawbacks of Homogeneous Coordinate Matrix

x’        i1 j1 k1 tx       x
y’        i2 j2 k2 ty       y
z’        i3 j3 k3 tz       z
1        0 0 0 1       1

=

Rotation matrix has a total of 9 parameters that are not independent
Orthonormality specifies 6 constraints (3 for normality, 3 for orthogonality)
A total of 9-6 = 3 independent parameters represent the rotation
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 Rotation representation in rotation matrices is redundant 

 Euler angles are an example of non-redundant 3-parameters 
    representations of rotations

 Non-redundant 3-parameter representations of rotations like    
     Euler angles have many problems: 
      No simple algebra: composing rotations is not straightforward 
      Singularities: many points map to same point in another representations
        

 The unit quaternion is a less redundant rotation representation

       that uses four parameters

Goal: Less Redundant Rotation Representations

Rotation representations: 
          Rotation matrix, Euler angles, Axis-angle, Unit Quaternions
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Representations of Rotations

A brief summary of rotation representations:
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)#Rotation
_matrix_.28or_direction_cosine_matrix.2C_DCM.29

http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)
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Quaternion: p = (a, bi, cj, dk)    - 4 parameters

 Extensions of complex numbers
    i2 = j2 = k2 = jk = -1   ij = k; jk = i; ki = j ji = -k; kj = -i; 
ik = -j

Convenient to describe them as scalar plus vector: 
            p = a + v, or p = (a,  v) 
            where vector v = <b c d>

Unit quaternion: p2 = 1
      a,b,c,d can be defined so that p represents    
      rotation around unit vector by a certain angle

Unit Quaternion (for Rotations in 3D)
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Allows compact representation of rotation R(r, θ)  around 
vector r by angle θ

    R(r,θ) = (cos θ/2, r1 sin θ/2, r2 sin θ/2, r3 sin θ/2)

              = (cos θ/2, r sin θ/2)

R(r,θ)

R(-r, 2π−θ)

Space of unit quaternions:
Unit 3-sphere in 4-D space
with antipodal points identified

Unit Quaternion (for Rotations in 3D)

Same rotation can be encoded in two ways 
      
      (cos θ/2,         r sin θ/2) or
      (cos (π − θ/2), -r sin (π − θ/2)
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P  = p0 + p  (scalar part is p0,vector part is p)

Q = q0 + q  (different operations can be defined)

Product PQ is more interesting - it can be 
represented as another quaternion R = r0 + r = PQ

    where r0 = p0q0 – p.q (“.” denotes inner product)

   and    r  = p0q + q0p + p×q (“×” denotes outer product)

Conjugate of P is another quaternion P* = p0 - p

Operations on Quaternions
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Vector u = (x,y,z) can be represented as a quaternion 0 + x

We want to rotate u around unit centered vector n by angle θ

Let rotation R(n,θ) be represented by a quaternion PR(n,θ) 

Let P* be the conjugate of P

Rotation of x yields x’ : 0 + x’ = PR(n,θ) (0 + x) P*R(n,θ)

Rotation of a Vector u Using Unit Quaternions 
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Forward and Inverse Kinematics

February 17, 2014

   Some more examples:

      Forward Kinematics on manipulators
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FK for Two-Linkage Chain

l1

l2

θ1

θ2

(x,y)

x = l1 cos θ1 + l2 cos(θ1+θ2)
y  = l1  sin θ1  + l2 sin(θ1+θ2)
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FK for Two-Linkage Chain

l1

l2

θ1

θ2

(x,y)

x = l1 cos θ1 + l2 cos(θ1+θ2)
y  = l1  sin θ1  + l2 sin(θ1+θ2)

x = x1 + x2

x1  = l1  cos θ1

x2 = l2 cos(α) = l2 cos(-α)
 
α  = π - θ1 – (θ2 - π) = 
     -(θ1 + θ2)
-α = θ1 + θ2

→ x2 = l2 cos(θ1 + θ2)

x1 x2

x2

α

y = y1 - y2

y1  = l1  sin θ1

y2 = l2 sin(α) = -l2 sin(-α)
    = l2 sin(θ1 + θ2)
→ y = l1  sin θ1 + l2 sin(θ1 + θ2)

y1

y2

θ1

θ2-π
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Linkage (Internal Coordinate) Model

T?

T?

anchor joint
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i

k

Tk
(i) = Tk … Ti+2 Ti+1 

     position of joint k in frame of joint i

Ti+1 Tk
i+1

k-1Ti+2

Relative Position of Two Joints

joint i
joint k
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i

k

Tk
(i) = Tj

(i) Tj+1 Tk
(j+1)

   joint j between i and k

Ti+1 Tk
i+1

k-1Ti+2

Relative Position of Two Joints

joint i
joint kjoint j
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 Tk
(i) = Tk … Ti+2 Ti+1

 Joint j between i and k
 Tk

(i) = Tj
(i) Tj+1 Tk

(j+1)

 A parameter between j and j+1 is 
changed

 Tj+1  Tj+1

 Tk
(i)  Tk

(i) = Tj
(i) Tj+1 Tk

(j+1)

Update in a Serial Linkage

 Why is this important ?
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Optional Reading (youtube video explains in detail):

Denavit-Hartenberg Model derivation based on J.J. Craig. 
Introduction to Robotics. Addison Wesley, reading, MA, 1989.

Research article :
Zhang, M. and Kavraki, L. E.. A New Method for Fast and 
Accurate Derivation of Molecular Conformations. Journal of 
Chemical Information and Computer Sciences, 42(1):64–70, 
2002.
http://www.cs.rice.edu/CS/Robotics/papers/zhang2002fast-comp-
mole-conform.pdf
 

http://www.cs.rice.edu/CS/Robotics/papers/zhang2002fast-comp-mole-conform.pdf
http://www.cs.rice.edu/CS/Robotics/papers/zhang2002fast-comp-mole-conform.pdf
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Forward and Inverse Kinematics

February 17, 2014

   Inverse Kinematics
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Solve for the dofs in order to satisfy spatial constraints on end 
effectors

Extra

IK In Robotics
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Extra

IK In Robotics
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Extra

IK In Computer Graphics, Games, Virtual Reality

Real-Time Joint Coupling of the Spine for Inverse Kinematics 
Raunhardt, Boulic JVRB 2008
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Extra

IK In Computational Biology

Filling gaps in structure determination by X-ray crystallography

Lotan, Bedem, Latombe 2004-2005
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Extra

IK In Computational Biology

Computing conformational ensembles of loops in proteins

Shehu, Proteins 2006
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Solving the IK Problem for Two-Linkage Chain

l1

l2
(x,y)

θ2 = cos-1
x2 + y2 – l12 – l22

2d1d2

-x(l2sinθ2) + y(l1 + d2cosθ2)

y(l2sinθ2) + x(l1 + l2cosθ2)
θ1 =

Two solutions
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Solving the IK Problem for Two-Linkage Chain

l1

l2
(x,y)

Two solutions

θ2

θ1
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A More Complicated Example

d1

d2

θ1

θ2

d3

θ3

Finite number of solutions

(x,y,φ)

dθ3
dθ2

dθ1
(θ1,θ2,θ3)
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General Results for the IK Problem

6-joint chain in 3-D space:
 NDOF=0
 At most 16 distinct IK solutions

q1

q2

q3

q4

q5

q6

Target pose for end effector

Why?
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General Results for the IK Problem

6-joint chain in 3-D space:
 NDOF=0
 At most 16 distinct IK solutions

q1

q2

q3

q4

q5

q6
End effector target pose

Why?

6-joint chain  6 dofs
Target pose  3 translation and 3 
orientation constraints

So: 6 – 6 = 0 free dofs
      IK solutions can be enumerated
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Analytical or Exact IK Methods

Can solve only for 6 joints
 Write forward kinematics in the form of polynomial 

equations (use t = tan(θ/2) 

 Solve
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IK Methods/Solvers

Computer Science
▆ Exact IK solvers

[Manocha, Canny ’94]

[Manocha et al. ’95] [Zhang, Kavraki ’02] 

[Zhang, White, Wang, Goldman, Kavraki ’04]

▆ Optimization IK solvers

[Wang, Chen ’91] 

▆ Applications for protein loops
▆ [Han, Amato ’00]

▆ [Xie, Amato ’03]

▆ [Cortes, Simeon, Laumond ’02]

▆ [Cortes et al. ’04]

▆ [Shehu et al. ‘06-’07]

Biology/Crystallography
▆ Exact IK solvers 

[Go, Scheraga ’70]

[Wedemeyer, Scheraga ’99]

[Coutsias et al. ’04]

▆ Optimization IK solvers

[Fine et al. ’86] [Shenkin et al. ’87] 

Cyclic Coordinate Descent:

    [Canutescu, Dunbrack ’03]
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Basic Idea of Iterative IK Methods

Can solve only for arbitrary number of joints
 1. Compute error e = target pose – current pose

 2. Find changes ∆θ to joint values θ that minimize |e|2

 3. Apply ∆θ through forward kinematics

 4. Repeat 1. – 3. until |e|2 is below a threshold or we 
run out of patience for more iterations
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IK as an Optimization (Minimization) Problem

 Q = (q1 q2 … qn):    n-vector of dofs

 θ  = (θ1 θ2 … θn):   n-vector of values to dofs

 k end effectors with current poses denoted s1 … sk

 Target poses for end effectors:                    t1 … tk  

 Two fundamental observations:
 s1 … sk depend on (θ1 θ2 … θn) through forward kinematics function:

     written as: s = s(θ)

 IK problem is to find values for θ1 θ2 … θn so that ti = si(θ) for all i
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IK as an Optimization (Minimization) Problem

 There may be no closed-form solution to ti = si(θ)

 Iterative methods approximate a good solution

 A solution is sought only for the first-order approximation to 
the Taylor expansion of ti = si(θ)

 That is, we try to solve t = s(0 + θ) + ds(θ)/dt 

 Using chain rule: ds(θ)/dt =  ∂s/∂(θ) * dθ/dt
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IK as an Optimization (Minimization) Problem

 Let J(θ) = ∂s/∂(θ)        -- J is called the Jacobian matrix

    Note that J can be viewed as a kxn mxn matrix (m = 3k)

 Then: ds(θ)/dt = J(θ) * dθ/dt

∂s1(θ1)/∂θ1  ∂s1(θ2)/∂θ2 …  ∂s1(θn)/∂θn

∂s2(θ1)/∂θ1  ∂s2(θ2)/∂θ2     …  ∂s2(θn)/∂θn

 …                                    …

 …                                    …

∂s6(θ1)/∂θ1  ∂s6(θ2)/∂θ2 …  ∂s6(θn)/∂θn
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IK as an Optimization (Minimization) Problem

 So: ds(θ)/dt = J(θ) * dθ/dt

 J(θ) = ∂s/∂(θ) leads to an iterative way of solving ti = si(θ):
 Given current values for θ, s, t, compute J(θ)

 Find an update dθ s.t. the change ds = J(θ) dθ updates s to reach t

      In other words, find dθ s.t. 0 = e(θ + dθ) = t – s(θ + dθ) = J(θ) dθ

 Iterative methods fall in two categories:
 (all in one):find values dθ by which to update all angles

 (one at a time). find dθi to increment θi, update s, then continue to θi+1
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Computing the Jacobian

 Jacobian entries ∂s/∂(θ) are usually not hard to calculate 

 For rotational joints (see Buss review for other types of dofs)
 ∂si/∂(θj) = vj x (si - pj)  

     where vj is unit vector along the rotational axis for θj   

     and pj is the position of the joint 

 Intuition: si - pj  , vj form a plane perpendicular to circle followed 
by link i in rotation around vj  (forms basis of cyclic coordinate 

                                              descent method)
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How to Compute Inverse of Jacobian

 We want inverse of J, not J itself, because we want to find dθ
 ds/dt = J(θ) dθ  J-1(θ) ds/dt = J-1(θ) J(θ) dθ = dθ
 So, by finding J-1(θ), we find dθ
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 J is an 6×n matrix. Assume rank(J) = 6

 Find dθ s.t. e = J(θ) dθ would mean dθ = J-1 e

 May not have rank 6, which means inverse may not exist

 Transpose or pseudo inverse are often used for J-1

 Transpose of J approaches        (easiest to implement)

 Pseudo inverse of J approaches (allows introducing null space of J)

 Damped least squares (see Buss review, most stable but slow)

Finding Inverse of Jacobian is Not Trival
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 Find dθ s.t. e = J(θ) dθ would mean dθ = J-1 e

 Transpose JT : dθ = α JT e
 scalar α needs to be small to reduce magnitude of error e

 Transpose always exists, but often produces poor quality solutions

Jacobian Transpose Approach
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 Find dθ s.t. e = J(θ) dθ would mean dθ = J-1 e

 Pseudo inverse J+ : dθ = J+ e
 J+ also called Moore-Penrose inverse

 Gives best solution to J dθ = e in sense of least squares

 Has instability issues near singularities

 A singular value decomposition (SVD) of J gives an easy way 
to compute J+

Jacobian Pseudo Inverse Approach
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 J+ has an additional property: I - J J+ performs a projection onto 
the null space of J (self-motion manifold)

 Null space is space of vectors θ such that ds = 0

 { dθ | J dθ = 0} has dim = n – 6

 Any vector ϕ of values to joint dofs that minimizes some other 
objective function (e.g. potential energy of a protein chain) can 
be projected onto the null space and obtain a vector that 
minimizes energy and keeps the end effectors in their place 

Jacobian Pseudo Inverse Approach
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Computation of J+ from SVD of J

1. SVD decomposition  J = U Σ VT where: 
- U in an 6×6 square orthonormal matrix
- V is an n×6 square orthonormal matrix
- Σ is of the form diag[σi]:

1. J+ = V Σ+ UT where Σ+=diag[1/σi]

     Can verify that JJ+ = (U Σ VT) (V Σ+ UT) = I

σ1
σ2

σ6

0
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dX U6×6 VT
6×n dQΣ6×6 

=

J

 SVD of J Yields Null Space of J
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dX U6×6 VT
n×n dQΣ6×n 

0=

 SVD of J Yields Null Space of J

J

Gram-Schmidt orthogonalization

Some singular values will be 0
Corresponding vectors in VT 
form null space
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dX U6×6 VT
n×n dQΣ6×n 

0

(n-6) basis N of null space

=

J

NT

 SVD of J Yields Null Space of J
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Minimization of  Objective Function with Closure

Input: Chain with ends at target poses
Repeat
1. Compute Jacobian matrix J at current q
2. Compute null-space basis N using SVD of J 
3. Compute gradient ∇T(θ) and y=-∇T(θ)
4. Move along projection NNTy until minimum of T is 

reached or closure is broken

I. Lotan, H. van den Bedem, A.M. Deacon and J.-C Latombe. 
Computing Protein Structures from Electron Density Maps: The M
issing Loop Problem
. 
 Proc. 6th Workshop on Algorithmic Foundations of Robotics (WAFR `04) 

http://robotics.stanford.edu/~itayl/wafr.pdf
http://robotics.stanford.edu/~itayl/wafr.pdf
http://robotics.stanford.edu/~itayl/wafr.pdf
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