Forward and Inverse Kinematics

Kinematics =
Study of movement, motion independent of the underlying forces that cause them

Today's Lecture: Forward and Inverse Kinematics

Forward and Inverse Kinematics

Preliminaries:

On transformation matrices

Kinematics of Simple Systems

Triangle translating and rotating in 2D

Kinematics of Simple Systems

What are the degrees of freedom of this system? What is its configurational space?

Triangle translating and rotating in 2D

Kinematics of Interesting Systems

Kinematics of Complex Systems

Rigid-Body Transformation

Preserves Euclidean distances
 between points in a rigid body

A rigid-body transformation consists of: rotation and translation

Rigid-body Transformation in 2D

Planning Motions of Robots

Rigid-body Transformation in 2D

Planning Motions of Robots

Rigid-body Transformation in 2D

Planning Motions of Robots
Rigid-body Transformation in 2D

Planning Motions of Robots

A. Shehu - CS689

Rigid-body Transformation in 2D

Planning Motions of Robots

A. Shehu - CS689

Rigid-body Transformation in 2D

Planning Motions of Robots
A. Shehu - CS689

Rigid-body Transformation in 2D

Rigid-body Transformation in 2D

Rigid-body Transformation in 2D

Is translation a linear transformation?

Planning Motions of Robots

Homogeneous Coordinate Matrix' in 2D

$\left[\begin{array}{ccc}\mathrm{i}_{1} & \mathrm{j}_{1} & \mathrm{t}_{x} \\ \mathrm{i}_{2} & \mathrm{j}_{2} & \mathrm{t}_{\mathrm{y}} \\ 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
t_{x}+x \cos \theta-y \sin \theta \\
t_{y}+x \sin \theta+y \cos \theta \\
1
\end{array}\right]
$$

Rigid-body Transformations in 3D

Homogeneous Coordinate Matrix in 3D

with:

- $\mathrm{i}_{1}{ }^{2}+\mathrm{i}_{2}{ }^{2}+\mathrm{i}_{3}{ }^{2}=1$ Why?
- $\mathrm{i}_{1} \mathrm{j}_{1}+\mathrm{i}_{2} \mathrm{j}_{2}+\mathrm{i}_{3} \mathrm{j}_{3}=0^{\text {Why }}$?
- $\operatorname{det}(\mathrm{R})=+1$
- $\mathrm{R}^{-1}=\mathrm{R}^{\top}$

Homogeneous Coordinate Matrix in 3D

with:

- $\mathrm{i}_{1}{ }^{2}+\mathrm{i}_{2}{ }^{2}+\mathrm{i}_{3}{ }^{2}=1$ Why?
- $\mathrm{i}_{1} \mathrm{j}_{1}+\mathrm{i}_{2} \mathrm{j}_{2}+\mathrm{i}_{3} \mathrm{j}_{3}=0^{\text {Why }}$?
- $\operatorname{det}(\mathrm{R})=+1$
- $\mathrm{R}^{-1}=\mathrm{R}^{\top}$

Rotations around Axes Plus Translation in 3D

Rotation by θ around y axis:

Rotation by θ around x axis:
Rotation by θ around z axis:
$\longrightarrow\left(\begin{array}{llll}\cos \theta & -\sin \theta & 0 & t_{x} \\ \sin \theta & \cos \theta & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right) \longrightarrow\left(\begin{array}{cccc}1 & 0 & 0 & t_{x} \\ 0 & \cos \theta & -\sin \theta & t_{y} \\ 0 & \sin \theta & \cos \theta & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$

Rotation Around Arbitrary Vector v in 3D

$\mathrm{R}(\boldsymbol{v}, \theta)=$?
$■$ Step 1. Translate \boldsymbol{v} to origin to obtain vector \boldsymbol{k}

- Step 2. Rotate around centered vector $\mathrm{k}, \dot{\prime}$

■ Step 3. Translate back

How does one rotate around a centered vector?

Rotation Around Centered Vector k in 3D

$\mathrm{R}(\boldsymbol{k}, \theta)=$
$\left[\begin{array}{lll}k_{x} k_{x} v \theta+c \theta & k_{x} k_{y} \mathrm{v} \theta-k_{z} s \theta & k_{x} k_{z} \mathrm{v} \theta+k_{y} \mathrm{~s} \theta\end{array}\right.$
$k_{x} k_{y} \mathrm{v} \theta+k_{z} \mathrm{~s} \theta \quad k_{y} k_{y} \mathrm{v} \theta+\mathrm{c} \theta$
$k_{y} k_{z} v \theta-k_{x} s \theta$
$k_{x} k_{z} \mathrm{v} \theta-k_{y} \mathrm{~s} \theta \quad k_{y} k_{z} \mathrm{v} \theta+k_{x} s \theta \quad k_{z} k_{z} \mathrm{v} \theta+\mathrm{c} \theta$
where:
■ $\boldsymbol{k}=\left(k_{x} k_{y} k_{z}\right)^{\top}$
■ $\mathrm{s} \theta=\sin \theta$
■ $\mathrm{c} \theta=\cos \theta$
■ $\mathrm{v} \theta=1-\cos \theta$

Rotation Around Centered Vector k in 3D

How is $\mathrm{R}(\boldsymbol{k}, \theta)$ obtained?

- 1. Rotate k so that the rotation axis is aligned with one of the principle x, y, z coordinate axes
■ 2. Perform rotation of object about coordinate axis
■ 3. Perform inverse rotation of 1
- Details at http://www.siggraph.org/education/materials/HyperGr aph/modeling/mod_tran/3drota.htm

Homogeneous Coordinate Matrix in 3D

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
i_{1} & j_{1} & k_{1} & t_{x} \\
i_{2} & j_{2} & k_{2} & t_{y} \\
i_{3} & j_{3} & k_{3} & t_{2} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Composition of two transforms represented by matrices T_{1} and $T_{2}: T_{2} \times T_{1}$

Which one is applied first ?

A Serial Linkage Model

Rotations in the Serial Linkage Model

- Rotating around a_{i} by angle θ affects positions of following joints $\mathrm{a}_{\mathrm{i}+2}, \mathrm{a}_{\mathrm{i}+3}$, and others down the chain
- Rotation is about arbitrary vector b_{i} (rotational axis shown) by specified/desired angle θ

Joint rotation in the Serial Linkage Model

- Anchor: First joint placed at origin of coordinate system
- Link b_{i} defined from joint a_{i} to a_{i+1}
- Rotating around a_{i} by angle θ affects positions of following joints $\mathrm{a}_{\mathrm{i}+2}, \mathrm{a}_{\mathrm{i}+3}$, and others down the chain

Rotating a Bond in the Serial Linkage Model

- $R\left(b_{i}, \theta\right)=\operatorname{Translate}\left(a_{i}\right) * R($ axis, $\theta)$ * Translate $\left(-a_{i}\right)$

Chaining Rotations in a Serial Linkage

Two rotations need to be applied at the same time: one around joint 3 by 30 deg, another around joint 5 by 15 degrees.
Joints between bonds 3 to 5 updated by:

$$
\left[x^{\prime}, y^{\prime}, z^{\prime}, 1\right]^{T}=R\left(\text { bond }_{3}, 30\right) \cdot[x, y, z, 1]^{T}
$$

But the joints after bond 5 are updated by:

$$
\left[x^{\prime}, y^{\prime}, z^{\prime}, 1\right]^{T}=R\left(\text { bond }_{7}, 15\right) \cdot R\left(\text { bond }_{3}, 30\right) \cdot[x, y, z, 1]^{T}
$$

Drawbacks of Homogeneous Coordinate Matrix

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
i 1 & j 1 & k 1 & \text { tx } \\
i 2 & j 2 & k 2 & \text { ty } \\
i 3 & j 3 & k 3 & t z \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

\rightarrow Accumulation of computing errors along a serial linkage and repeated computation

Drawbacks of Homogeneous Coordinate Matrix

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
i 1 & j 1 & k 1 & t x \\
i 2 & j 2 & k 2 & \text { ty } \\
i 3 & j 3 & \text { k3 } & \text { tz } \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

\rightarrow Rotation representation in rotation matrices is redundant
\rightarrow Only 3 parameters are actually needed

Why 3-parameters for representing rotations?

Drawbacks of Homogeneous Coordinate Matrix

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
i 1 & j 1 & k 1 & \mathrm{tx} \\
i 2 & j 2 & k 2 & \text { ty } \\
i 3 & j 3 & k 3 & \text { tz } \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

A rotation representation expresses the orientation of a rigid body (or coordinate frame) relative to a reference frame.

Rotation representation in homogeneous coordinate matrix is the matrix consisting of new axes $\mathrm{i}, \mathrm{j}, \mathrm{k}$ in the rotated coordinate frame.

Rotation matrix is often called the Direction Cosine Matrix (DCM), as the new axes can be described in terms of their coordinates relative to the reference axes (recall our derivation of the rotation in 2D).

Drawbacks of Homogeneous Coordinate Matrix

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc|c}
\mathrm{i} 1 & j 1 & k 1 & t x \\
\mathrm{i} 2 & j 2 & k 2 & \text { ty } \\
i 3 & j 3 & k 3 & \text { tz } \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

A rotation representation expresses the orientation of a rigid body (or coordinate frame) relative to a reference frame.

Euler's rotation theorem:
(1) The displacement of a rigid body (or coordinate frame) with one point fixed is described by a rotation about some axis.
(2) Such a rotation may be uniquely described by a minimum of 3 dofs.

Rotation matrix has a total of 9 parameters that are not independent Orthonormality specifies 6 constraints (3 for normality, 3 for orthogonality) A total of 9-6 $=3$ independent parameters represent the rotation

Goal: Less Redundant Rotation Representations

Rotation representations:
Rotation matrix, Euler angles, Axis-angle, Unit Quaternions
\rightarrow Rotation representation in rotation matrices is redundant
\rightarrow Euler angles are an example of non-redundant 3-parameters representations of rotations
\rightarrow Non-redundant 3-parameter representations of rotations like Euler angles have many problems:
No simple algebra: composing rotations is not straightforward Singularities: many points map to same point in another representations
\rightarrow The unit quaternion is a less redundant rotation representation that uses four parameters

Representations of Rotations

A brief summary of rotation representations:
http://en.wikipedia.org/wiki/Rotation_representation_(mathematics)\#Rotation _matrix_.28or_direction_cosine_matrix.2C_DCM. 29

Unit Quaternion (for Rotations in 3D)

Quaternion: $\mathrm{p}=(\mathrm{a}, \mathrm{bi}, \mathrm{cj}, \mathrm{dk})$ - 4 parameters
Extensions of complex numbers
$i^{2}=j^{2}=k^{2}=j k=-1 \quad i j=k ; j k=i ; k i=j j i=-k ; k j=-i ;$
$i k=-j$
Convenient to describe them as scalar plus vector:

$$
\begin{aligned}
& p=a+\mathbf{v}, \text { or } p=(a, \mathbf{v}) \\
& \text { where vector } \mathbf{v}=<b c d>
\end{aligned}
$$

Unit quaternion: $\mathrm{p}^{2}=1$
a, b, c, d can be defined so that p represents rotation around unit vector by a certain angle

Unit Quaternion (for Rotations in 3D)

Allows compact representation of rotation $\mathrm{R}(\mathbf{r}, \theta)$ around vector r by angle θ

$$
\begin{aligned}
R(\mathbf{r}, \theta) & =\left(\cos \theta / 2, r_{1} \sin \theta / 2, r_{2} \sin \theta / 2, r_{3} \sin \theta / 2\right) \\
& =(\cos \theta / 2, \mathbf{r} \sin \theta / 2)
\end{aligned}
$$

Same rotation can be encoded in two ways

$(\cos \theta / 2, \quad r \sin \theta / 2)$ or
$(\cos (\pi-\theta / 2),-r \sin (\pi-\theta / 2)$
Space of unit quaternions:
Unit 3-sphere in 4-D space with antipodal points identified

Operations on Quaternions

$P=p_{0}+\mathbf{p}$ (scalar part is p_{0}, vector part is \mathbf{p})
$\mathrm{Q}=\mathrm{q}_{0}+\mathbf{q}$ (different operations can be defined)

Product PQ is more interesting - it can be represented as another quaternion $R=r_{0}+r=P Q$
where $r_{0}=p_{0} q_{0}-\mathbf{p . q} \quad$ ("." denotes inner product)
and $\quad \mathbf{r}=\mathrm{p}_{0} \mathbf{q}+\mathrm{q}_{0} \mathbf{p}+\mathbf{p} \times \mathbf{q} \quad(" \times$ " denotes outer product)

Conjugate of P is another quaternion $P^{*}=p_{0}-\mathbf{p}$

Rotation of a Vector u Using Unit Quaternions

Vector $\mathbf{u}=(x, y, z)$ can be represented as a quaternion $0+\mathbf{x}$

We want to rotate \mathbf{u} around unit centered vector \mathbf{n} by angle θ

Let rotation $R(\mathbf{n}, \theta)$ be represented by a quaternion $P_{R(\mathbf{n}, \boldsymbol{\theta})}$

Let P^{*} be the conjugate of P

Rotation of \mathbf{X} yields $\mathbf{X}^{\prime}: 0+\mathbf{X}^{\prime}=P_{R(\mathbf{n}, \theta)}(0+\mathbf{X}) \mathrm{P}_{\mathrm{R}(\mathbf{n}, \theta)}^{*}$

Forward and Inverse Kinematics

Some more examples:
 Forward Kinematics on manipulators

FK for Two-Linkage Chain

$$
\begin{aligned}
& x=I_{1} \cos \theta_{1}+I_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y=I_{1} \sin \theta_{1}+I_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

FK for Two-Linkage Chain

$$
\begin{aligned}
& x=I_{1} \cos \theta_{1}+I_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y=I_{1} / \sin \theta_{1}+I_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
& \mathrm{x}=\mathrm{x}_{1}+\mathrm{x}_{2} \\
& x_{1}=I_{1} \cos \theta_{1} \\
& x_{2}=I_{2} \cos (\alpha)=I_{2} \cos (-\alpha) \\
& \alpha=\pi-\theta_{1}-\left(\theta_{2}-\pi\right)= \\
& -\left(\theta_{1}+\theta_{2}\right) \\
& -\alpha=\theta_{1}+\theta_{2} \\
& \rightarrow x_{2}=I_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& \rightarrow \mathrm{y}=\mathrm{y}_{1}-\mathrm{y}_{2} \\
& y_{1}=I_{1} \sin \theta_{1} \\
& y_{2}=I_{2} \sin (\alpha)=-I_{2} \sin (-\alpha) \\
& =I_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
& \rightarrow y=I_{1} \sin \theta_{1}+12 \sin (\theta 1+\theta 2)
\end{aligned}
$$

Linkage (Internal Coordinate) Model

Relative Position of Two Joints

Relative Position of Two Joints

Update in a Serial Linkage

- $\mathrm{T}_{\mathrm{k}}{ }^{(\mathrm{i})}=\mathrm{T}_{\mathrm{k}} \ldots \mathrm{T}_{\mathrm{i}+2} \mathrm{~T}_{\mathrm{i}+1}$
- Joint j between i and k
- $\mathrm{T}_{\mathrm{k}}{ }^{(\mathrm{i})}=\mathrm{T}_{\mathrm{j}}{ }^{(\mathrm{i})} \mathrm{T}_{\mathrm{j}+1} \mathrm{~T}_{\mathrm{k}}{ }^{(\mathrm{j}+1)}$
- A parameter between j and $\mathrm{j}+1$ is changed
\leftarrow Why is this important?
${ }^{-} \mathrm{T}_{\mathrm{j}+1} \rightarrow \mathrm{~T}_{\mathrm{j}+1}$
- $\mathrm{T}_{\mathrm{k}}{ }^{(\mathrm{i})} \rightarrow \mathrm{T}_{\mathrm{k}}{ }^{(\mathrm{i})}=\mathrm{T}_{\mathrm{j}}{ }^{(\mathrm{i})} \mathrm{T}_{\mathrm{j}+1} \mathrm{~T}_{\mathrm{k}}{ }^{(\mathrm{j}+1)}$

Optional Reading (youtube video explains in detail):

Denavit-Hartenberg Model derivation based on J.J. Craig. Introduction to Robotics. Addison Wesley, reading, MA, 1989.

Research article :
Zhang, M. and Kavraki, L. E.. A New Method for Fast and Accurate Derivation of Molecular Conformations. Journal of Chemical Information and Computer Sciences, 42(1):64-70, 2002.

Forward and Inverse Kinematics

Inverse Kinematics

Planning Motions of Robots

IK In Robotics

Solve for the dofs in order to satisfy spatial constraints on end effectors

Planning Motions of Robots

IK In Robotics

IK In Computer Graphics, Games, Virtual Reality

Real-Time Joint Coupling of the Spine for Inverse Kinematics Raunhardt, Boulic JVRB 2008

IK In Computational Biology

Filling gaps in structure determination by X-ray crystallography

Lotan, Bedem, Latombe 2004-2005

IK In Computational Biology

Computing conformational ensembles of loops in proteins

Shehu, Proteins 2006

Solving the IK Problem for Two-Linkage Chain

$$
\begin{aligned}
& \theta_{2}=\cos ^{-1}\left(\frac{x^{2}+y^{2}-I_{1}^{2}-I_{2}^{2}}{2 d_{1} d_{2}}\right) \\
& \theta_{1}=\frac{-x\left(l_{2} \sin \theta_{2}\right)+y\left(I_{1}+d_{2} \cos \theta_{2}\right)}{y\left(l_{2} \sin \theta_{2}\right)+x\left(I_{1}+I_{2} \cos \theta_{2}\right)}
\end{aligned}
$$

Two solutions

Solving the IK Problem for Two-Linkage Chain

Two solutions

$$
\begin{aligned}
x & =l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
y & =l_{1} \sin \left(\theta_{1}\right)+l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
x^{2} & +y^{2}=l_{1}^{2}+l_{2}^{2}+2 l_{1} l_{2} \cos \left(\theta_{2}\right)
\end{aligned}
$$

$$
\cos \left(\theta_{2}\right)=\frac{x^{2}+y^{2}-l_{1}^{2}-l_{2}^{2}}{2 l_{1} l_{2}}
$$

$$
x=l_{1} \cos \left(\theta_{1}\right)+l_{2}\left(\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)\right)
$$

$$
x=\cos \left(\theta_{1}\right)\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right)-\sin \left(\theta_{1}\right)\left(l_{2} \sin \left(\theta_{2}\right)\right)
$$

$$
y=\cos \left(\theta_{1}\right)\left(l_{2} \sin \left(\theta_{2}\right)\right)+\sin \left(\theta_{1}\right)\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right)
$$

$$
\cos \left(\theta_{1}\right)=\frac{x+\sin \left(\theta_{1}\right) l_{2} \sin \left(\theta_{2}\right)}{l_{1}+l_{2} \cos \left(\theta_{2}\right)}
$$

$$
\sin \left(\theta_{1}\right)=\frac{\left(l_{1}+l_{2} \cos \left(\theta_{2}\right)\right) y-l_{2} \sin \left(\theta_{2}\right) x}{l_{1}^{2}+l_{2}^{2}+2 l_{1} l_{2} \cos \left(\theta_{2}\right)}
$$

A More Complicated Example

-Finite number of solutions

General Results for the IK Problem

6-joint chain in 3-D space:

- $\mathrm{N}_{\text {DOF }}=0$ Why?
- At most 16 distinct IK solutions

General Results for the IK Problem

6-joint chain in 3-D space:

- $\mathrm{N}_{\text {Dof }}=0$ why?
- At most 16 distinct IK solutions

Analytical or Exact IK Methods

- Can solve only for 6 joints
- Write forward kinematics in the form of polynomial equations (use $t=\tan (\theta / 2)$
- Solve

IK Methods/Solvers

Computer Science

■ Exact IK solvers
[Manocha, Canny '94]
[Manocha et al. '95] [Zhang, Kavraki '02]
[Zhang, White, Wang, Goldman, Kavraki '04]

- Optimization IK solvers [Wang, Chen '91]
- Applications for protein loops
- [Han, Amato '00]
- [Xie, Amato '03]
- [Cortes, Simeon, Laumond '02]
- [Cortes et al. '04]
- [Shehu et al. ‘06-'07]

Biology/Crystallography

■ Exact IK solvers
[Go, Scheraga '70]
[Wedemeyer, Scheraga '99]
[Coutsias et al. '04]

- Optimization IK solvers
[Fine et al. '86] [Shenkin et al. '87]
Cyclic Coordinate Descent:
[Canutescu, Dunbrack '03]

Basic Idea of Iterative IK Methods

- Can solve only for arbitrary number of joints
- 1. Compute error e = target pose - current pose
- 2. Find changes $\Delta \theta$ to joint values θ that minimize $|\mathbf{e}|^{2}$
- 3. Apply $\Delta \theta$ through forward kinematics
- 4. Repeat 1. - 3. until $|\mathbf{e}|^{2}$ is below a threshold or we run out of patience for more iterations

IK as an Optimization (Minimization) Problem

- $Q=\left(q_{1} q_{2} \ldots q_{n}\right)$: n-vector of dofs
- $\theta=\left(\theta_{1} \theta_{2} \ldots \theta_{n}\right)$: n-vector of values to dofs
- k end effectors with current poses denoted $\mathrm{s}_{1} \ldots \mathrm{~s}_{\mathrm{k}}$
- Target poses for end effectors:
$\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{k}}$
- Two fundamental observations:
- $\mathrm{S}_{1} \ldots \mathrm{~S}_{\mathrm{k}}$ depend on $\left(\theta_{1} \theta_{2} \ldots \theta_{\mathrm{n}}\right)$ through forward kinematics function: written as: $\mathbf{s}=\mathbf{s}(\theta)$
- IK problem is to find values for $\theta_{1} \theta_{2} \ldots \theta_{n}$ so that $t_{i}=\mathbf{s}_{i}(\theta)$ for all i

IK as an Optimization (Minimization) Problem

- There may be no closed-form solution to $\mathrm{t}_{\mathrm{i}}=\mathbf{s}_{\mathrm{i}}(\theta)$
- Iterative methods approximate a good solution
- A solution is sought only for the first-order approximation to the Taylor expansion of $\mathrm{t}_{\mathrm{i}}=\mathbf{s}_{\mathbf{i}}(\theta)$
- That is, we try to solve $t=\mathbf{s}(0+\theta)+d s(\theta) / d t$
- Using chain rule: $\mathrm{ds}(\theta) / \mathrm{dt}=\partial \mathrm{s} / \partial(\theta)$ * $\mathrm{d} \theta / \mathrm{dt}$

IK as an Optimization (Minimization) Problem

- Let $\mathrm{J}(\theta)=\partial \mathrm{s} / \partial(\theta) \quad--\mathrm{J}$ is called the Jacobian matrix Note that J can be viewed as a kxn mxn matrix ($\mathrm{m}=3 \mathrm{k}$)
- Then: $\mathrm{ds}(\theta) / \mathrm{dt}=\mathrm{J}(\theta)$ * $\mathrm{d} \theta / \mathrm{dt}$

$$
\left(\begin{array}{llll}
\partial \mathrm{S}_{1}\left(\theta_{1}\right) / \partial \theta_{1} & \partial \mathrm{~S}_{1}\left(\theta_{2}\right) / \partial \theta_{2} & \ldots & \partial \mathrm{~S}_{1}\left(\theta_{\mathrm{n}}\right) / \partial \theta_{\mathrm{n}} \\
\partial \mathrm{~s}_{2}\left(\theta_{1}\right) / \partial \theta_{1} & \partial \mathrm{~S}_{2}\left(\theta_{2}\right) / \partial \theta_{2} & \ldots & \partial \mathrm{~S}_{2}\left(\theta_{\mathrm{n}}\right) / \partial \theta_{\mathrm{n}} \\
\ldots & & \ldots \\
\ldots & & \cdots \\
\partial \mathrm{~S}_{6}\left(\theta_{1}\right) / \partial \theta_{1} & \partial \mathrm{~S}_{6}\left(\theta_{2}\right) / \partial \theta_{2} \ldots & \partial \mathrm{~S}_{6}\left(\theta_{\mathrm{n}}\right) / \partial \theta_{\mathrm{n}}
\end{array}\right.
$$

IK as an Optimization (Minimization) Problem

- So: $d s(\theta) / d t=J(\theta)$ * $d \theta / d t$
- $J(\theta)=\partial s / \partial(\theta)$ leads to an iterative way of solving $t_{i}=\mathbf{s}_{i}(\theta)$:
- Given current values for $\theta, \mathrm{s}, \mathrm{t}$, compute $\mathrm{J}(\theta)$
- Find an update $\mathrm{d} \theta$ s.t. the change $\mathrm{ds}=\mathrm{J}(\theta) \mathrm{d} \theta$ updates s to reach t In other words, find $d \theta$ s.t. $0=\mathbf{e}(\theta+d \theta)=\mathbf{t}-\mathbf{s}(\theta+d \theta)=J(\theta) d \theta$
- Iterative methods fall in two categories:
- (all in one):find values $\mathrm{d} \theta$ by which to update all angles
- (one at a time). find $d \theta_{i}$ to increment θ_{i}, update s, then continue to θ_{i+1}

Computing the Jacobian

- Jacobian entries $\partial \mathrm{s} / \partial(\theta)$ are usually not hard to calculate
- For rotational joints (see Buss review for other types of dofs)
- $\partial s_{i} / \partial\left(\theta_{j}\right)=v_{j} \times\left(s_{i}-p_{j}\right)$
where v_{j} is unit vector along the rotational axis for θ_{j} and p_{j} is the position of the joint
- Intuition: $\mathrm{s}_{\mathrm{i}}-\mathrm{p}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}}$ form a plane perpendicular to circle followed by link i in rotation around v_{j} (forms basis of cyclic coordinate descent method)

How to Compute Inverse of Jacobian

- We want inverse of J , not J itself, because we want to find $\mathrm{d} \theta$
- $\mathrm{ds} / \mathrm{dt}=\mathrm{J}(\theta) \mathrm{d} \theta \rightarrow \mathrm{J}^{-1}(\theta) \mathrm{ds} / \mathrm{dt}=\mathrm{J}^{-1}(\theta) \mathrm{J}(\theta) \mathrm{d} \theta=\mathrm{d} \theta$
- So, by finding $\mathrm{J}^{-1}(\theta)$, we find $\mathrm{d} \theta$

Finding Inverse of Jacobian is Not Trival

- J is an $6 \times n$ matrix. Assume $\operatorname{rank}(\mathrm{J})=6$
- Find $\mathrm{d} \theta$ s.t. $\mathbf{e}=\mathrm{J}(\theta) \mathrm{d} \theta$ would mean $\mathrm{d} \theta=\mathrm{J}^{-1} \mathbf{e}$
- May not have rank 6, which means inverse may not exist
- Transpose or pseudo inverse are often used for J^{-1}
- Transpose of J approaches (easiest to implement)
- Pseudo inverse of J approaches (allows introducing null space of J)
- Damped least squares (see Buss review, most stable but slow)

Jacobian Transpose Approach

- Find $d \theta$ s.t. $\mathbf{e}=\mathrm{J}(\theta) \mathrm{d} \theta$ would mean $\mathrm{d} \theta=\mathrm{J}^{-1} \mathbf{e}$
- Transpose ${ }^{\mathrm{J}}$: $\mathrm{d} \theta=\alpha \mathrm{J}^{\mathrm{T}} \mathbf{e}$
- scalar α needs to be small to reduce magnitude of error \mathbf{e}
- Transpose always exists, but often produces poor quality solutions

Jacobian Pseudo Inverse Approach

- Find d θ s.t. $\mathbf{e}=\mathrm{J}(\theta) \mathrm{d} \theta$ would mean $\mathrm{d} \theta=\mathrm{J}^{-1} \mathbf{e}$
- Pseudo inverse ${ }^{+}$: $\mathrm{d} \theta=\mathrm{J}^{+} \mathbf{e}$
- J+ also called Moore-Penrose inverse
- Gives best solution to $\mathrm{J} \mathrm{d} \theta=\mathbf{e}$ in sense of least squares
- Has instability issues near singularities
- A singular value decomposition (SVD) of J gives an easy way to compute J^{+}

Jacobian Pseudo Inverse Approach

- J+ has an additional property: I- J J+ performs a projection onto the null space of J (self-motion manifold)
- Null space is space of vectors θ such that ds $=0$
- $\{d \theta \mid \mathrm{Jd} \theta=0\}$ has $\operatorname{dim}=\mathrm{n}-6$
- Any vector φ of values to joint dofs that minimizes some other objective function (e.g. potential energy of a protein chain) can be projected onto the null space and obtain a vector that minimizes energy and keeps the end effectors in their place

Computation of J+ from SVD of J

1. SVD decomposition $\rightarrow \mathrm{J}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ where:

- U in an 6×6 square orthonormal matrix
$-V$ is an $n \times 6$ square orthonormal matrix
$-\Sigma$ is of the form diag[$\left.\sigma_{\mathrm{i}}\right]$:

1. $\mathrm{J}^{+}=\mathrm{V} \Sigma^{+} \mathrm{U}^{\top}$ where $\Sigma^{+}=\operatorname{diag}\left[1 / \sigma_{\mathrm{i}}\right]$

Can verify that $\mathrm{JJ}^{+}=\left(\mathrm{U} \Sigma \mathrm{V}^{\top}\right)\left(\mathrm{V} \Sigma^{+} \mathrm{U}^{\top}\right)=\mathrm{I}$

SVD of J Yields Null Space of J

SVD of J Yields Null Space of J

Gram-Schmidt orthogonalization

SVD of J Yields Null Space of J

Minimization of Objective Function with Closure

Input: Chain with ends at target poses
Repeat

1. Compute Jacobian matrix J at current q
2. Compute null-space basis N using SVD of J
3. Compute gradient $\nabla \mathrm{T}(\theta)$ and $\mathrm{y}=-\mathrm{\nabla T}(\theta)$
4. Move along projection $\mathrm{NN}^{\top} \mathrm{y}$ until minimum of T is reached or closure is broken
```
I. Lotan, H. van den Bedem, A.M. Deacon and J.-C Latombe.
Computing Protein Structures from Electron Density Maps: The M
issing Loop Problem
Proc.6th WVorkshop on Algorithmic Foundations ot Robotics (WVAFR U4)
```

