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1 Maximum Flow and Minimum Cut Problem
Flow Networks
Minimum Cut
Of Cuts and Flows
Maximum Flow
Weak Duality
Strong Duality
Maximum Flow Algorithm: Ford-Fulkerson
Improving Ford-Fulkerson: Capacity Scaling

2 Graph Applications
Bipartite Matching: Max Flow Application
Clustering: MST Application
Motion Planning: Shortest Path Application
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Max Flow and Min Cut

Exhibition:

Very rich algorithmic problems

Cornerstones in combinatorial optimization

Exhibit mathematical duality

Applications

Data mining

Project selection

Airline scheduling

Bipartite matching

Baseball elimination

Image segmentation

Network connectivity

Threading hydrophobic/hydrophilic
residues in a protein 3D conformation

Network reliability

Distributed computing

Egalitarian stable matching

Security of statistical data

Network intrusion detection

Multi-camera scene reconstruction
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Some History: Soviet Rail Network, 1955

Figure: On the history of transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91:3, 2002
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Flow Networks

Network flow is an advanced branch of graph theory

A weighted directed graph with two special vertices

The source vertex, which has no incoming edges

The sink vertex, which has no outgoing edges

These are respectively labeled s and t
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Flow Networks
Flow network:

G = (V ,E) is a directed graph with no parallel edges

Nodes are junctions and edges are pipes

A pipe allows water/material to flow only one way

c(e) is the capacity associated with an edge e
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Finding Maximum Flow in a Flow Network

Pour an infinite amount of water/material in source

Goal: find maximum flow, the maximum amount of material/water that
will reach the sink

Max flow and min cut are dual concepts

Setup for Ford-Fulkerson method to find max flow
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Talking About Cuts

Definition: An s − t cut is a partition (A,B) of V with s ∈ A and t ∈ B

Definition: The capacity cap(A,B) =
∑
{e=(u,v):u∈A,v∈B} c(e)
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Another Valid s − t Cut

Definition: An s − t cut is a partition (A,B) of V with s ∈ A and t ∈ B

Definition: The capacity cap(A,B) =
∑
{e=(u,v):u∈A,v∈B} c(e)
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The Minimum Cut Problem

Min s − t Cut Problem: Find an s − t cut of minimum capacity
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From an s − t Cut to an s − t Flow
Definition: An s − t flow is a function f : E →R that satisfies:

∀e ∈ E : 0 ≤ f (e) ≤ c(e) [flow cannot exceed capacity]

∀v ∈ V − {s, t}:
∑

e=(∗,v) f (e) =
∑

e=(v,∗) f (e) [conservation]

Definition: The value of a flow f is: ν(f ) =
∑

e=(s,∗) f (e)
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The Maximum Flow Problem

Max Flow Problem: Find s − t flow f of maximum flow value ν(f )
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Net Flow Across a Cut

Let (A,B) be any s − t cut. The net flow sent across the cut is:∑
e out of A

f (e)−
∑

e in toA

f (e)
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Flow and Cut Duality

Flow value lemma: Let f be any s − t flow, and let (A,B) be any s − t cut.
Then, the net flow sent across the cut is equal the amount ν(f ) leaving s:∑

e out of A

f (e)−
∑

e in toA

f (e) = ν(f )

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)1



Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Flow Networks
Minimum Cut
Of Cuts and Flows
Maximum Flow
Weak Duality
Strong Duality
Maximum Flow Algorithm: Ford-Fulkerson
Improving Ford-Fulkerson: Capacity Scaling

Flow and Cut Duality

Flow value lemma: Let f be any s − t flow, and let (A,B) be any s − t cut.
Then, the net flow sent across the cut is equal the amount ν(f ) leaving s:∑

e out of A

f (e)−
∑

e in toA

f (e) = ν(f )

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)1



Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Flow Networks
Minimum Cut
Of Cuts and Flows
Maximum Flow
Weak Duality
Strong Duality
Maximum Flow Algorithm: Ford-Fulkerson
Improving Ford-Fulkerson: Capacity Scaling

Flow and Cut Duality

Flow value lemma: Let f be any s − t flow, and let (A,B) be any s − t cut.
Then, the net flow sent across the cut is equal the amount ν(f ) leaving s:∑

e out of A

f (e)−
∑

e in toA

f (e) = ν(f )

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)1



Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Flow Networks
Minimum Cut
Of Cuts and Flows
Maximum Flow
Weak Duality
Strong Duality
Maximum Flow Algorithm: Ford-Fulkerson
Improving Ford-Fulkerson: Capacity Scaling

Proof of Flow Cut Duality

Flow value lemma: Let f be any s − t flow, and let (A,B) be any s − t cut.
Then, the net flow sent across the cut is equal the amount ν(f ) leaving s:∑

e out of A

f (e)−
∑

e in toA

f (e) = ν(f )

Proof: Due to flow conservation,
∑
{e=(v,∗)} f (e) =

∑
{e=(∗,v)} f (e) for all

vertices v ∈ V − {s, t}. So:∑
v∈V−{s,t}

[
∑

{e=(v,∗)}

f (e)−
∑

{e=(∗,v)}

f (e)] = 0

By definition, ν(f ) =
∑

e=(s,∗) f (e). Adding 0 to both sides yields:

ν(f ) =
∑

e=(s,∗) f (e) + 0

=
∑

e=(s,∗) f (e) +
∑

v∈V−{s,t}[
∑
{e=(v,∗)} f (e)−

∑
{e=(∗,v)} f (e)]
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Proof of Flow Cut Duality Continued

So, at this point we are summing up the net flow of vertices v ∈ V − {t}.∑
e=(s,∗)

f (e) +
∑

v∈V−{s,t}

[
∑

{e=(v,∗)}

f (e)−
∑

{e=(∗,v)}

f (e)]

Let’s define an arbitrary cut (A,B). The vertices v ∈ V − {t} will be split into
those with both in and out edges either complete inside A or completely inside
B, and those with edges connecting A to B.

Due to flow of conservation, summing up the net flow over vertices with both
in and out edges completely in A or completely in B will give 0.

So, in the above equation we are left with summing up only the net flow over
vertices that have edges connecting A to B:

ν(f ) =
∑

e=(s,∗) f (e) +
∑

v∈V−{s,t}[
∑
{e=(v,∗)} f (e)−

∑
{e=(∗,v)} f (e)]

=
∑

e out of A f (e)−
∑

e in toA f (e)
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Reflecting on the Implications of the Flow Cut Duality

The previous proof says: Given any valid flow and any valid
cut, the flow value is equal to the net flow sent across the cut

So, over all possible flows f and all possible cuts (A,B)
ν(f ) =

∑
e out of A f (e)−

∑
e in toA f (e)

What is the maximum flow value that can be achieved?

There is a cut (among all possible valid cuts that can be
defined) that limits the maximum flow
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Flows and Cuts: Weak Duality

Weak Duality: Let f be any s − t flow, and let (A,B) be any s − t cut. Then
the value ν(f ) of the flow is at most the capacity cap(A,B) of the cut:
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Flows and Cuts: Weak Duality

Weak Duality: Let f be any s-t flow. For any s-t cut (A,B), ν(f ) ≤ cap(A,B)

Proof:
ν(f ) =

∑
e out of A f (e)−

∑
e in toA f (e)

≤
∑

e out of A f (e)

≤
∑

e out of A c(e)

= cap(A,B)

Implications: Max flow is the dual of
the min cut problem.
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Certificate of Optimality

Corollary: Let f be any s − t flow, and let (A,B) be any cut. If
ν(f ) = cap(A,B), then f is a max flow and (A,B) is a min cut.
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Designing a Max Flow Algorithm

Greedy Algorithm

Start with f (e) = 0 for every edge e ∈ E

Find an s − t path P where each edge has f (e) < c(e)

Augment flow along path P

Repeat until stuck

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)1



Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Flow Networks
Minimum Cut
Of Cuts and Flows
Maximum Flow
Weak Duality
Strong Duality
Maximum Flow Algorithm: Ford-Fulkerson
Improving Ford-Fulkerson: Capacity Scaling

Designing a Max Flow Algorithm

Greedy Algorithm

Start with f (e) = 0 for every edge e ∈ E

Find an s − t path P where each edge has f (e) < c(e)

Augment flow along path P

Repeat until stuck

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)1



Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Flow Networks
Minimum Cut
Of Cuts and Flows
Maximum Flow
Weak Duality
Strong Duality
Maximum Flow Algorithm: Ford-Fulkerson
Improving Ford-Fulkerson: Capacity Scaling

Designing a Max Flow Algorithm

Greedy Algorithm

Start with f (e) = 0 for every edge e ∈ E

Find an s − t path P where each edge has f (e) < c(e)

Augment flow along path P

Repeat until stuck (locally optimal is not globally optimal)
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Order of Paths is Important

We cannot guarantee which path we will find first

If we pick wrong path first, whole algorithm goes wrong

Key now is idea of pushing back flow

If we have x units of water flowing in the pipe (u, v), then we
can pretend there is a pipe (v , u) with capacity x when we are
trying to find a path from s to t

This is maintained through a residual graph
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Residual Graph

A residual graph Gf allows to keep track of
which paths remain from s to t along which
one can push more flow.

The idea of “can push more flow” is kept
through residual capacities in Gf .

Gf in the beginning is a copy of the given
input graph G = (V ,E)

When a flow f (e) is pushed along e = (u, v),

Gf contains two edges:

(u, v) with residual capacity c(e)− f (e)
(v , u) with residual capacity f (e)
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Residual Graph

Residual graph: Gf = (V ,Ef )

Ef = {e : f (e) < c(e)} ∪ {eR : f (e) > 0}
Associate residual capacity cf (e) > 0

∀e = (u, v) ∈ E(G) with c(e), f (e):{
e, cf (e) = c(e)− f (e) if f (e) < c(e)
eR , cf (e) = f (e) else

Gf tracks edges of G can admit more flow

A path P = s  t in Gf is an augmenting
path in G with respect to f

ν(f ) can be increased by cf (P) =
mine∈P cf (e) [cf (P) is bottleneck of P]
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Ford-Fulkerson: An Augmenting Path Algorithm
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Max-Flow Min-Cut Theorem

Augmenting Path Theorem: f is a max flow iff there are no augmenting paths

Max-flow Min-cut Theorem: The value of the max flow is equal to the value of
the min cut [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

Proof: Both simultaneously by showing:

(i) There exists a cut (A,B) such that ν(f ) = cap(A,B)

(ii) Flow f is a max flow

(iii) There is no augmenting path relative to f

(i) ⇒ (ii): From weak duality lemma

(ii) ⇒ (iii): Let f be a flow. If there is an augmenting path, then f can be
improved by sending flow along path.
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Max-Flow Min-Cut Theorem (Continued)

(iii) ⇒ (i):

Let f be a flow with no augmenting paths

Let A be set of vertices reachable from s in residual graph

s ∈ A by definition of A

t 6∈ A, otherwise t would be reachable from s in Gf

Since there are no augmenting paths in
Gf , the residual capacities cf (e) = 0 for
all edges out of A.

That is, ∀e out of A, f (e) = c(e).

Since the flow of each edge out of A is
the capacity of that edge, then
ν(f ) = cap(A,B)
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Ford-Fulkerson: Correctness and Analysis

Assumption: All capacities are integers between 1 and C

Invariant: Every f (e) and cf (e) remains an integer throughout the execution

Theorem: The algorithm runs in O(|E | · f ∗), where f ∗ is the maximum flow

Proof: Since each augmentation increases value by at least 1, the algorithm
iterates over at most f ∗ augmentations. At each augmentation, the flow is
pushed over at most |E | edges (|Ef | ≤ 2 · |E |).

Integrality Theorem: If all capacities are integers, then there exists a max flow
for which every flow value f (e) is an integer

Proof: Follows from invariant, given that the algorithm terminates
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Ford-Fulkerson: Correctness and Analysis

If maximum capacity is C , the algorithm takes C iterations in the worst case.
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Choosing Good Augmenting Paths

Choose good augmenting paths

Some choices lead to exponential algorithms

Clever choices lead to polynomial algorithms

If capacities are irrational, algorithm not guaranteed to terminate

Choose augmenting paths that:

Can be found efficiently

Result in few iterations

Such paths have: [Edmunds-Karp 1972, Dinitz 1970]

Max bottleneck capacity

Sufficiently large bottleneck capacity

Fewest number of edges
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Edmunds-Karp

Ford-Fulkerson is more of a template than an algorithm

When capacities are integers, Ford-Fulkerson guaranteed to
terminate in O(|E | · f ) time, where f is max flow value

With irrational flow values, algorithm may never terminate

Edmunds-Karp: a variation of the Ford-Fulkerson’s algorithm
with guaranteed termination and a O(|V | · |E |2) runtime
independent of the maximum flow value
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Bipartite Matching

Matching a set of machines L with a set of tasks R that need to be
performed simultaneously

An edge (u, v) denotes machine u can execute task v

Goal is to maximize number of tasks
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Bipartite Matching

Given a bipartite graph G = (L ∪ R,E), find a maximal matching, a

subset of the edges, no two of which share an endpoint

Dating agency, matching women L with men R
An edge (u, v) indicates u is compatible with v
Goal is to maximize number of matches
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Bipartite Matching Reduces to Maximum Flow

Add a source s, edges (s, l) for l ∈ L, capacity 1

Add a sink t, edges (r , t) for r ∈ R, capacity 1

Direct edges in G from L to R, capacity 1

Integral flows correspond to matchings

Ford-Fulkerson takes time O(|V | · |E |) since f ≤ |V |
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Clustering: Kruskal’s Application

Clustering: Given a set U of n objects labeled p1, p2, . . . , pn,
classify them into coherent groups (objects are photos, documents,
micro-organisms, gene expression data, events, etc.)

Distance function: Measures “closeness” of two objects

Figure: Outbreak of cholera deaths in London in 1850s (HP Labs)
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Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Bipartite Matching: Max Flow Application
Clustering: MST Application
Motion Planning: Shortest Path Application

Clustering of Maximum Spacing

k-clustering: divide objects into k non-empty groups

Distance function: satisfies some properties (metric)

d(pi , pj) = 0 iff pi = pj (identity)

d(pi , pj ≥ 0) (non-negative)

d(pi , pj) = d(pj , pi ) (symmetry)
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Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Bipartite Matching: Max Flow Application
Clustering: MST Application
Motion Planning: Shortest Path Application

K-Clustering of Maximum Spacing

Spacing: min distance between any pair of points in different
clusters

Clustering of maximum spacing: Given an integer k , find a
k-clustering of maximum spacing
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Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Bipartite Matching: Max Flow Application
Clustering: MST Application
Motion Planning: Shortest Path Application

Kruskal-like Algorithm

Single-link k-clustering algorithm

Form a graph G = (U, ∅) corresponding to |U| = n clusters

Find closest pair of objects s.t. each object is in a different
cluster, and add an edge between them

Repeat n − k times until there are exactly k clusters

Key observation: Kruskal-like, except that it stops when there are
k connected components

Remark: equivalent to finding an MST and deleting its k − 1 most
expensive edges
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Outline of Today’s Class
Maximum Flow and Minimum Cut Problem

Graph Applications

Bipartite Matching: Max Flow Application
Clustering: MST Application
Motion Planning: Shortest Path Application

Motion Planning: Dijkstra’s Application

Goal: plan motions of a robot in a cluttered workspace

Build roadmap/graph of free configuration space of the robot

Query roadmap for shortest, smoothest paths that allow a robot to get
from a start to a goal configuration

Figure: Erion Plaku at Catholic University is developing algorithms that
plan paths for car-like robots in cluttered environments. c©E. Plaku.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 002)1


	Maximum Flow and Minimum Cut Problem
	Flow Networks
	Minimum Cut
	Of Cuts and Flows
	Maximum Flow
	Weak Duality
	Strong Duality
	Maximum Flow Algorithm: Ford-Fulkerson
	Improving Ford-Fulkerson: Capacity Scaling

	Graph Applications
	Bipartite Matching: Max Flow Application
	Clustering: MST Application
	Motion Planning: Shortest Path Application


