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What is the Spanning Tree of a Graph?

If G = (V ,E ) is a graph, then any subgraph of G that (i) contains
all vertices V of G and (ii) is a tree is a spanning tree of G .

Figure: Graph
G = (V ,E)

Figure: Spanning tree

T = (V ,E
′
) of graph G

Figure: Another spanning
tree of graph G
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Some Spanning Trees are Better than Others

A weighted (connected) undirected graph G = (V ,E )

Weight function w : E → R associates a weight with an edge

The weight w(T ) of a tree T is
∑

(u,v)∈T w(u, v)

A minimum spanning tree (MST) has the minimum w(T )
over all spanning trees T of a graph G

Figure: Weighted graph Figure: MST: w(T ) = 50
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Finding MSTs is Useful in Diverse Applications

Network design

Phone, electric, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems

Traveling Salesman Problem, Steiner trees

Other (indirect) applications

Maximum bottleneck paths
LDPC codes for error correction
Image registration with Renyi entropy
Learn features for real-time face verification
Reduce data storage in sequencing amino acids in a protein
Model locality of particle interactions in turbulent fluid flows
Autoconfig protocol for Ethernet bridging to avoid cycles
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Finding MSTs: Problem Statement

Problem: Given a weighted (connected) undirected graph
G = (V ,E ), find an MST of G .

Input: A connected, undirected graph G = (V ,E ) with weight
function w : E → R

Output: A spanning tree T of G that is of minimum weight
w(T ) =

∑
(u,v)∈T w(u, v)
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Algorithms to Find MSTs

There’s the history:

Boruvka [Otakar Boruvka 1926]

Wanted to minimize the cost of electric coverage of Moravia

Jarnik [V. Jarnik 1930]

Kruskal [Joseph B. Kruskal 1956]

Prim [Run C. Prim 1957]

Chazelle [Bernard Chazelle 2000]

And then there’s us:

Brute-force approach

Something smarter?
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Finding MSTs: Brute-force Approach

Enumerating spanning trees of a graph

Denote the number of spanning trees of a graph G by t(G )

t(G ) is easy to compute for special graphs

Caylee’s formula gives t(G ) for a complete graph on n
vertices: t(G ) = nn−2 for n > 1

Example: in a complete graph on 4 vertices, t(G ) = 16

For any graph G , t(G ) can be computed with Kirchhoff’s
matrix-free theorem: t(G ) = 1

nλ1 · . . . · λn−1, where λi are the
non-zero eigenvalues of the Laplacian matrix of G

Bottom line: Too many spanning trees to enumerate to find
MST through a brute-force approach
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Algorithms to Find an MST

Brute-force Approach: terribly inefficient

Greedy Approach:

Find a key property of the MST to help determine whether an
edge of G is part of the MST

Then build up the MST one step (edge/vertex) at a time
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Greedy Algorithms to Find the MST of a Graph

Kruskal’s Algorithm
Heuristic: Select best edge for insertion
Approach: (i) Start with T = ∅. (ii) Consider edges in
ascending order of weight/cost. (iii) Insert edge e in T unless
doing so creates a cycle.

Reverse-Delete Algorithm
Heuristic: Select worst edge for deletion
Approach: (i) Start with T = E . (ii) Consider edges in
descending order of weight/cost. (iii) Delete edge e from T
unless doing so disconnects T

Prim’s Algorithm
Heuristic: Select best vertex
Approach: (i) Start with some vertex s as root node. (ii)
Greedily grow T from s outward. (iii) At each step, add
cheapest edge e to T that has exactly one endpoint in T .
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A Generic Algorithmic Template for Finding MSTs

Generic-MST(G, w)
1: T ← {}
2: while T does not form a spanning tree do
3: find an edge in E that is safe for T
4: T ← T ∪ {u, v}
5: return T

Taking care of some implementation and correctness details:

line 2: when do we know T forms a spanning tree?

line 3: what does it mean to add a safe edge to T?

lines 3-4: safeness has to address both low cost and no cycles
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Cycles and Cuts

Cycle: Set of edges
{(v1, v2), . . . , (vk , v1)}

Figure: Cycle C = {(1, 2), . . . , (6, 1)}

Cut: A subset S of vertices V
Cutset: Subset D of edges with
exactly one endpoint in S

Figure: Cut S = (4, 5, 8). Cutset
D = {(5, 6), . . . , (7, 8)}
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Greedy Algorithms for MSTs Exploit Certain Properties

Simplifying assumption: All edge costs/weights are distinct

Cut property: Let S be any subset of vertices V in the graph
G = (V ,E ). Let e ∈ E be the minimum weight edge with
exactly one endpoint in S . Then, the MST of G contains e.

Cycle property: Let C be any cycle, and let f be the maximum
weight edge in C . Then, the MST does not contain f .

Figure: e is in the MST
Figure: f is not in the MST
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Cycle-Cut Intersection

Lemma: A cycle and a cutset intersect in an even number of edges

Cycle C = {(1, 2), (2, 3), . . . , (6, 1)}
Cutset D = {(3, 4), (3, 5), . . . , (7, 8)}
Intersection I = {(3, 4), (5, 6)}

Proof: Argument built from picture below
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Cut Property: Proof

Cut Property Lemma: Let S be any
subset of vertices V of G = (V ,E).
Let e ∈ E be the minimum weight edge
with exactly one endpoint in S . Then,
the MST T ∗ of G contains e.

Proof: (cut-and-paste argument)

Suppose e 6∈ E(T ∗). We are given that e = (u, v), where u ∈ S and
v ∈ V − S . So, e ∈ D, the cutset corresponding to S .

As a spanning tree, T ∗ contains a unique path from u to v without e in it

Adding e to T ∗ would create a cycle C in T ∗. So, e ∈ C ∩ D.

Since C ∩ D contains an even number of edges, ∃f ∈ C ∩ D.

Create T
′

= T ∗ ∪ {e} − {f }. Since w(e) < w(f )⇒ w(T
′
) < w(T ∗)

T
′

is more optimal than T ∗ ⇒ proof achieved by contradiction.
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Cycle Property: Proof

Cycle Property Lemma: Let C be any
cycle in G = (V ,E). Let f be the
maximum weight edge in C . Then, the
MST T ∗ of G does not contain f .

Proof: (cut-and-paste argument)

Suppose f ∈ E(T ∗). Deleting f from T ∗ creates a cut S in T ∗. So
f ∈ D, the cutset corresponding to S .

Edge f ∈ C as well, so f ∈ C ∩ D

Since C ∩ D contains an even number of edges, ∃e ∈ C ∩ D.

Create T
′

= T ∗ ∪ {e} − {f }. Since w(e) < w(f )⇒ w(T
′
) < w(T ∗)

T
′

is more optimal than T ∗ ⇒ proof achieved by contradiction.
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Kruskal’s Algorithm: One Edge at a Time

Kruskal’s Algorithm [Kruskal, 1956]

Start with E(T )← ∅
Consider edges in E(G) in ascending order of weight

Case 1: If adding e to E(T ) creates a cycle, discard e (cycle property)

Case 2: Else, insert e = (u, v) in E(T ), where S is the set of vertices in
u′s connected component (cut property)
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Kruskal’s Algorithm: Implementation and Analysis

Kruskal-MST(G = (V, E), w)

1: sort the edges of G in ascending order of weights
2: V (T )← V (G ), E (T )← ∅
3: for each edge e = (u, v) ∈ E in sorted order do
4: if u and v are in different connected components then
5: E (T )← E (T ) ∪ {e}
6: return T

Analysis:
Sorting ⇒ O(|E | · lg(|E |)) time in the worst-case

For loop iterates over all |E | edges in sorted order

Potentially, line 4 could be slow. How can one find quickly whether the
endpoints of e are disconnected in S?

Line 4 can be performed in O(1) time through the union-find operation
on a disjoint-set data structure

Short detour...
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Disjoint-set Data Structure

Maintains a collection of disjoint dynamic sets {S1, . . . ,Sk}
Each Si can be represented as a linked list or tree

The unique “key” of a set can be stored at root

Operations:

Make-Set(x): create {x}
Find-Set(x): find set that
contains x

Union(x,y): merge sets that
contain x and y

A sequence of O(m) Union and
Find-Set operations on m
elements can be performed in
O(m · lgm) time.
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Back to Kruskal’s Algorithm: Implementation and Analysis

Kruskal-MST(G, w)

1: S ← {}
2: for each vertex v ∈ V (G ) do
3: Make-Set(v)
4: sort the edges of G in ascending order of weights
5: for each edge e = (u, v) in sorted order do
6: if Find-Set(u) 6= Find-Set(v) then
7: S ← S ∪ {(u, v)}
8: Union(u,v)
9: return S

Analysis: Lines 5-8 contain O(E ) Find-Set and Union operations.
Along with |V | Make-Set, these take O((V + E ) · α(V )), where α
is a slowly growing function. Total running time is O(E · lg(E )),
since E ≥ |V | − 1 in a connected graph (equiv. O(E · lg(V ))).
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Prim’s Algorithm: One Vertex at a Time

Prim’s Algorithm [Jarnik 1930, Dijkstra 1957, Prim 1959]

Initialize S to be any vertex of G

Apply cut property to S

Add minimum weight edge e = (u, v) in cutset D corresponding to S to
the growing MST and add new v to S
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Prim’s Algorithm

Prim-MST(G, w)

1: let T contain first an arbitrary vertex s ∈ V
2: while T has fewer than |V | vertices do
3: find the lightest edge connecting T to G − T
4: add it to T
5: return T

Maintain set of explored vertices (that are already nodes in the tree) in S

For each unexplored vertex v ∈ V − S , maintain the attachment cost
d [v ] = weight of lightest edge connecting v to a node in S

Key to a fast implementation: maintain V − S as a priority queue, where
the key of each unexplored vertex is the attachment cost, the weight of
the lightest edge connecting v to S
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Implementing Prim’s Algorithm

Remember: Maintain V −S as a priority queue Q. The key of each
vertex v in Q is the weight of the lightest edge connecting v to S

Prim-MST(G, w)

1: Q ← V
2: key[v] ←∞ and π[v ]←∞ for all v ∈ V
3: key[s] ← 0 for an arbitrary s ∈ V
4: while Q 6= ∅ do
5: u ← Extract-Min(Q)
6: for each v ∈ Adj(u) do
7: if v ∈ Q and w(u, v) < key[v] then
8: key[v]← w(u, v)
9: π(v)← u

10: return (v , π(v)) as the MST in the end
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Analysis of Prim’s Algorithm

Time = θ(V ) · T (Extract−Min) + θ(E) · T(Decrease−Key)

Q T (Extract-Min) T (Decrease-Key) Total

array O(V ) O(1) O(V 2)
binary heap O(1) O(lgV ) O(E · lgV )
Fibonacci heap O(lgV ) O(1) O(E + V · lgV )
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