Lecture: Analysis of Algorithms (CS583 - 004)*

Amarda Shehu

Spring 2019

!Some material adapted from Kevin Wayne's Algorithm Class @ Princeton

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Outline of Today’s Class

@ Finding Minimum Spanning Trees
@ Enumerating Spanning Trees
@ Minimum Spanning Trees
@ Kruskal's Algorithm
@ Prim’s Algorithm

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

What is the Spanning Tree of a Graph?

If G =(V,E) is a graph, then any subgraph of G that (i) contains
all vertices V of G and (ii) is a tree is a spanning tree of G.

Lty

Figure: Graph Figure: Spanning tree Figure: Another spanning
G=(V,E) T =(V,E) of graph G tree of graph G

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Some Spanning Trees are Better than Others

A weighted (connected) undirected graph G = (V, E)
Weight function w : E — R associates a weight with an edge
The weight w(T) of a tree T is 3, ,yer w(u, V)

A minimum spanning tree (MST) has the minimum w(T)
over all spanning trees T of a graph G

e S X
Ef\\é d —

Figure: Weighted graph Figure: MST: w(T) =50

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Finding MSTs is Useful in Diverse Applications

o Network design
e Phone, electric, hydraulic, TV cable, computer, road
@ Approximation algorithms for NP-hard problems
e Traveling Salesman Problem, Steiner trees
@ Other (indirect) applications
Maximum bottleneck paths
LDPC codes for error correction
Image registration with Renyi entropy
Learn features for real-time face verification
Reduce data storage in sequencing amino acids in a protein
Model locality of particle interactions in turbulent fluid flows
Autoconfig protocol for Ethernet bridging to avoid cycles

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Finding MSTs: Problem Statement

Problem: Given a weighted (connected) undirected graph
G = (V,E), find an MST of G.

Input: A connected, undirected graph G = (V, E) with weight
function w: E - R

Output: A spanning tree T of G that is of minimum weight
w(T) =2 (uver wlu,v)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Algorithms to Find MSTs

There’s the history:
@ Boruvka [Otakar Boruvka 1926]

e Wanted to minimize the cost of electric coverage of Moravia

e Jarnik [V. Jarnik 1930]
e Kruskal [Joseph B. Kruskal 1956]
@ Prim [Run C. Prim 1957]
@ Chazelle [Bernard Chazelle 2000]
And then there’s us:

@ Brute-force approach

@ Something smarter?

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Finding MSTs: Brute-force Approach

Enumerating spanning trees of a graph
@ Denote the number of spanning trees of a graph G by t(G)
e t(G) is easy to compute for special graphs

o Caylee's formula gives t(G) for a complete graph on n
vertices: t(G) = n""2for n > 1

e Example: in a complete graph on 4 vertices, t(G) = 16

e For any graph G, t(G) can be computed with Kirchhoff's

matrix-free theorem: t(G) = %Al - ...*Ap_1, where)\; are the

non-zero eigenvalues of the Laplacian matrix of G

@ Bottom line: Too many spanning trees to enumerate to find
MST through a brute-force approach

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Algorithms to Find an MST

Brute-force Approach: terribly inefficient

Greedy Approach:

e Find a key property of the MST to help determine whether an
edge of G is part of the MST

@ Then build up the MST one step (edge/vertex) at a time

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees
Minimum Spanning Trees

Finding Minimum Spanning Trees Kruskal’s Algorithm
Prim’s Algorithm

Greedy Algorithms to Find the MST of a Graph

@ Kruskal's Algorithm
Heuristic: Select best edge for insertion
Approach: (i) Start with T = (). (ii) Consider edges in
ascending order of weight/cost. (iii) Insert edge e in T unless
doing so creates a cycle.

@ Reverse-Delete Algorithm
Heuristic: Select worst edge for deletion

e Approach: (i) Start with T = E. (ii) Consider edges in

descending order of weight/cost. (iii) Delete edge e from T
unless doing so disconnects T

@ Prim’s Algorithm
Heuristic: Select best vertex
Approach: (i) Start with some vertex s as root node. (ii)
Greedily grow T from s outward. (iii) At each step, add
cheapest edge e to T that has exactly one endpoint in T.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

A Generic Algorithmic Template for Finding MSTs

Generic-MST(G, w)
1. T+ {}
2. while T does not form a spanning tree do
3: find an edge in E that is safe for T
4 T+ TU{u,v}
5 return T
Taking care of some implementation and correctness details:
@ line 2: when do we know T forms a spanning tree?
@ line 3: what does it mean to add a safe edge to T7

@ lines 3-4: safeness has to address both low cost and no cycles

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees
Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Cycles and Cuts

Cut: A subset S of vertices V
Cycle: Set of edges Cutset: Subset D of edges with
{(vi,w), ..., (vk, 1)} exactly one endpoint in S

Figure: Cycle C = {(1,2),...,(6,1)} Figure: Cut S = (4,5,8). Cutset
D ={(5,6),...,(7,8)}

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Greedy Algorithms for MSTs Exploit Certain Properties

e Simplifying assumption: All edge costs/weights are distinct

o Cut property: Let S be any subset of vertices V in the graph
G = (V,E). Let e € E be the minimum weight edge with
exactly one endpoint in S. Then, the MST of G contains e.

@ Cycle property: Let C be any cycle, and let f be the maximum
weight edge in C. Then, the MST does not contain f.

=<7/

Figure: f is not in the MST

Figure: e is in the MST

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Cycle-Cut Intersection

Lemma: A cycle and a cutset intersect in an even number of edges

,3),...,(6,1)}
3,5),...,(7,8)}
4

Cycle C ={(1,2),(2
7(’)7
):(5,6)}

Cutset D = {(3,4)
Intersection | = {(3,

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Cut Property: Proof

Cut Property Lemma: Let S be any

subset of vertices V of G = (V, E). f
Let e € E be the minimum weight edge S

with exactly one endpoint in S. Then,

the MST T of G contains e.

1*
Proof: (cut-and-paste argument)

@ Suppose e € E(T*). We are given that e = (u, v), where u € S and
veEeV —S. So, e € D, the cutset corresponding to S.

As a spanning tree, T" contains a unique path from u to v without e in it

Adding e to T* would create a cycle Cin T*. So, e€ CND.

o

o

@ Since C N D contains an even number of edges, 3f € CN D.

@ Create T = T*U {e} — {f}. Since w(e) < w(f) = W(T,) <w(T")
o

T' is more optimal than T* = proof achieved by contradiction.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Cycle Property: Proof

Cycle Property Lemma: Let C be any f
cyclein G = (V, E). Let f be the
maximum weight edge in C. Then, the
MST T* of G does not contain f.

‘l‘k
Proof: (cut-and-paste argument)

@ Suppose f € E(T™). Deleting f from T creates a cut Sin T*. So
f € D, the cutset corresponding to S.

Edge f € C as well, so f € CN D
Since C N D contains an even number of edges, de € C N D.
Create T = T* U {e} — {f}. Since w(e) < w(f) = w(T) < w(T*)

T' is more optimal than T* = proof achieved by contradiction.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm: One Edge at a Time

Kruskal's Algorithm [Kruskal, 1956]
@ Start with E(T) < 0
@ Consider edges in E(G) in ascending order of weight
@ Case 1: If adding e to E(T) creates a cycle, discard e (cycle property)
o

Case 2: Else, insert e = (u,v) in E(T), where S is the set of vertices in
u’s connected component (cut property)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm: Implementation and Analysis

Kruskal-MST(G = (V, E), w)

1: sort the edges of G in ascending order of weights
2. V(T)« V(G), E(T)+ 0
3: for each edge e = (u, v) € E in sorted order do
4: if u and v are in different connected components then
5: E(T)« E(T)U{e}
6: return T
Analysis:

@ Sorting = O(|E| - Ig(|E|)) time in the worst-case

@ For loop iterates over all |E| edges in sorted order

@ Potentially, line 4 could be slow. How can one find quickly whether the
endpoints of e are disconnected in 57

@ Line 4 can be performed in O(1) time through the union-find operation
on a disjoint-set data structure

@ Short detour...

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees
Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Disjoint-set Data Structure

e Maintains a collection of disjoint dynamic sets {S1,..., Sk}
@ Each S; can be represented as a linked list or tree
@ The unique “key” of a set can be stored at root
Operations:

o Make-Set(x): create {x}

o Find-Set(x): find set that
contains x

@ Union(x,y): merge sets that
contain x and y

A sequence of O(m) Union and
Find-Set operations on m
elements can be performed in
O(m - Igm) time. 123456 78 910

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Back to Kruskal's Algorithm: Implementation and Analysis

Kruskal-MST (G, w)

1. S« {}

2: for each vertex v € V(G) do

3: Make-Set(v)

4: sort the edges of G in ascending order of weights
5. for each edge e = (u, v) in sorted order do

6: if Find-Set(u) # Find-Set(v) then

7: S+ Su{(uv)}

8: Union(u,v)

9: return S

Analysis: Lines 5-8 contain O(E) Find-Set and Union operations.
Along with |V/| Make-Set, these take O((V + E) - a(V)), where «
is a slowly growing function. Total running time is O(E - Ig(E)),
since E > |V| — 1 in a connected graph (equiv. O(E - Ig(V))).

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Kruskal's Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees
Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim’s Algorithm: One Vertex at a Time

Prim’s Algorithm [Jarnik 1930, Dijkstra 1957, Prim 1959]
@ Initialize S to be any vertex of G
@ Apply cut property to S
@ Add minimum weight edge e = (u, v) in cutset D corresponding to S to
the growing MST and add new v to S

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim’s Algorithm

Prim-MST(G, w)

1: let T contain first an arbitrary vertex s € V

2: while T has fewer than |V/| vertices do

3: find the lightest edge connecting T to G — T
4. additto T

5 return T

@ Maintain set of explored vertices (that are already nodes in the tree) in S

@ For each unexplored vertex v € V — S, maintain the attachment cost
d[v] = weight of lightest edge connecting v to a node in S

@ Key to a fast implementation: maintain V — S as a priority queue, where
the key of each unexplored vertex is the attachment cost, the weight of
the lightest edge connecting v to S

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Implementing Prim’s Algorithm

Remember: Maintain V' — S as a priority queue Q. The key of each
vertex v in @ is the weight of the lightest edge connecting v to S

Prim-MST(G, w)
1. Q+V
. key[v] - o0 and 7[v] - oo for all v € V
. key[s] < 0 for an arbitrary s € V
while Q # () do
u < Extract-Min(Q)
for each v € Adj(u) do
if ve Q and w(u,v) < key[v] then
key[v] « w(u,v)
m(v) < u
10: return (v, 7(v)) as the MST in the end

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

e e NT s LD

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

m Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm
Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Q@ € 4 17
e c -4

10

”@

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Q@ € 4 17
e c -4

10

”@

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Q@ € 4 17
e c -4

10

9
15@

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Prim's Algorithm in Action [explored vertices in A]

Q@ € 4 17
e c -4

10

9
15@

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm

Prim’s Algorithm

Finding Minimum Spanning Trees

Analysis of Prim's Algorithm

Q<7
() key[v] <~ o forallv e V
fotal key|[s] <= 0 for some arbitrary s € J/
e while O = &
do 1 < EXTRACT-MIN(0)
14 J for each v € Adj[u]
times degree(z,{) doif v e O and w(u, v) < key[v]
times then key[v] < w(u, v)

. nv] <

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

Enumerating Spanning Trees

Minimum Spanning Trees
Finding Minimum Spanning Trees Kruskal’s Algorithm

Prim’s Algorithm

Analysis of Prim's Algorithm

Time = 6(V) - T(Extract — Min) + 6(E) - T(Decrease — Key)

Q | T(Extract-Min) T (Decrease-Key) | Total

array o(V) 0(1) O(V?)

binary heap 0(1) O(lgV) O(E - IgV)
Fibonacci heap | O(lgV) 0o(1) O(E+V-IgV)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)*

	Finding Minimum Spanning Trees
	Enumerating Spanning Trees
	Minimum Spanning Trees
	Kruskal's Algorithm
	Prim's Algorithm

