
Outline of Today’s Class
Finding Minimum Spanning Trees

Lecture: Analysis of Algorithms (CS583 - 004)1

Amarda Shehu

Spring 2019

1Some material adapted from Kevin Wayne’s Algorithm Class @ Princeton
Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

1 Finding Minimum Spanning Trees
Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

What is the Spanning Tree of a Graph?

If G = (V ,E) is a graph, then any subgraph of G that (i) contains
all vertices V of G and (ii) is a tree is a spanning tree of G .

Figure: Graph
G = (V ,E)

Figure: Spanning tree

T = (V ,E
′
) of graph G

Figure: Another spanning
tree of graph G

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Some Spanning Trees are Better than Others

A weighted (connected) undirected graph G = (V ,E)

Weight function w : E → R associates a weight with an edge

The weight w(T) of a tree T is
∑

(u,v)∈T w(u, v)

A minimum spanning tree (MST) has the minimum w(T)
over all spanning trees T of a graph G

Figure: Weighted graph Figure: MST: w(T) = 50

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Finding MSTs is Useful in Diverse Applications

Network design

Phone, electric, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems

Traveling Salesman Problem, Steiner trees

Other (indirect) applications

Maximum bottleneck paths
LDPC codes for error correction
Image registration with Renyi entropy
Learn features for real-time face verification
Reduce data storage in sequencing amino acids in a protein
Model locality of particle interactions in turbulent fluid flows
Autoconfig protocol for Ethernet bridging to avoid cycles

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Finding MSTs: Problem Statement

Problem: Given a weighted (connected) undirected graph
G = (V ,E), find an MST of G .

Input: A connected, undirected graph G = (V ,E) with weight
function w : E → R

Output: A spanning tree T of G that is of minimum weight
w(T) =

∑
(u,v)∈T w(u, v)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Algorithms to Find MSTs

There’s the history:

Boruvka [Otakar Boruvka 1926]

Wanted to minimize the cost of electric coverage of Moravia

Jarnik [V. Jarnik 1930]

Kruskal [Joseph B. Kruskal 1956]

Prim [Run C. Prim 1957]

Chazelle [Bernard Chazelle 2000]

And then there’s us:

Brute-force approach

Something smarter?

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Finding MSTs: Brute-force Approach

Enumerating spanning trees of a graph

Denote the number of spanning trees of a graph G by t(G)

t(G) is easy to compute for special graphs

Caylee’s formula gives t(G) for a complete graph on n
vertices: t(G) = nn−2 for n > 1

Example: in a complete graph on 4 vertices, t(G) = 16

For any graph G , t(G) can be computed with Kirchhoff’s
matrix-free theorem: t(G) = 1

nλ1 · . . . · λn−1, where λi are the
non-zero eigenvalues of the Laplacian matrix of G

Bottom line: Too many spanning trees to enumerate to find
MST through a brute-force approach

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Algorithms to Find an MST

Brute-force Approach: terribly inefficient

Greedy Approach:

Find a key property of the MST to help determine whether an
edge of G is part of the MST

Then build up the MST one step (edge/vertex) at a time

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Greedy Algorithms to Find the MST of a Graph

Kruskal’s Algorithm
Heuristic: Select best edge for insertion
Approach: (i) Start with T = ∅. (ii) Consider edges in
ascending order of weight/cost. (iii) Insert edge e in T unless
doing so creates a cycle.

Reverse-Delete Algorithm
Heuristic: Select worst edge for deletion
Approach: (i) Start with T = E . (ii) Consider edges in
descending order of weight/cost. (iii) Delete edge e from T
unless doing so disconnects T

Prim’s Algorithm
Heuristic: Select best vertex
Approach: (i) Start with some vertex s as root node. (ii)
Greedily grow T from s outward. (iii) At each step, add
cheapest edge e to T that has exactly one endpoint in T .

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

A Generic Algorithmic Template for Finding MSTs

Generic-MST(G, w)
1: T ← {}
2: while T does not form a spanning tree do
3: find an edge in E that is safe for T
4: T ← T ∪ {u, v}
5: return T

Taking care of some implementation and correctness details:

line 2: when do we know T forms a spanning tree?

line 3: what does it mean to add a safe edge to T?

lines 3-4: safeness has to address both low cost and no cycles

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Cycles and Cuts

Cycle: Set of edges
{(v1, v2), . . . , (vk , v1)}

Figure: Cycle C = {(1, 2), . . . , (6, 1)}

Cut: A subset S of vertices V
Cutset: Subset D of edges with
exactly one endpoint in S

Figure: Cut S = (4, 5, 8). Cutset
D = {(5, 6), . . . , (7, 8)}

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Greedy Algorithms for MSTs Exploit Certain Properties

Simplifying assumption: All edge costs/weights are distinct

Cut property: Let S be any subset of vertices V in the graph
G = (V ,E). Let e ∈ E be the minimum weight edge with
exactly one endpoint in S . Then, the MST of G contains e.

Cycle property: Let C be any cycle, and let f be the maximum
weight edge in C . Then, the MST does not contain f .

Figure: e is in the MST
Figure: f is not in the MST

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Cycle-Cut Intersection

Lemma: A cycle and a cutset intersect in an even number of edges

Cycle C = {(1, 2), (2, 3), . . . , (6, 1)}
Cutset D = {(3, 4), (3, 5), . . . , (7, 8)}
Intersection I = {(3, 4), (5, 6)}

Proof: Argument built from picture below

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Cut Property: Proof

Cut Property Lemma: Let S be any
subset of vertices V of G = (V ,E).
Let e ∈ E be the minimum weight edge
with exactly one endpoint in S . Then,
the MST T ∗ of G contains e.

Proof: (cut-and-paste argument)

Suppose e 6∈ E(T ∗). We are given that e = (u, v), where u ∈ S and
v ∈ V − S . So, e ∈ D, the cutset corresponding to S .

As a spanning tree, T ∗ contains a unique path from u to v without e in it

Adding e to T ∗ would create a cycle C in T ∗. So, e ∈ C ∩ D.

Since C ∩ D contains an even number of edges, ∃f ∈ C ∩ D.

Create T
′

= T ∗ ∪ {e} − {f }. Since w(e) < w(f)⇒ w(T
′
) < w(T ∗)

T
′

is more optimal than T ∗ ⇒ proof achieved by contradiction.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Cycle Property: Proof

Cycle Property Lemma: Let C be any
cycle in G = (V ,E). Let f be the
maximum weight edge in C . Then, the
MST T ∗ of G does not contain f .

Proof: (cut-and-paste argument)

Suppose f ∈ E(T ∗). Deleting f from T ∗ creates a cut S in T ∗. So
f ∈ D, the cutset corresponding to S .

Edge f ∈ C as well, so f ∈ C ∩ D

Since C ∩ D contains an even number of edges, ∃e ∈ C ∩ D.

Create T
′

= T ∗ ∪ {e} − {f }. Since w(e) < w(f)⇒ w(T
′
) < w(T ∗)

T
′

is more optimal than T ∗ ⇒ proof achieved by contradiction.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm: One Edge at a Time

Kruskal’s Algorithm [Kruskal, 1956]

Start with E(T)← ∅
Consider edges in E(G) in ascending order of weight

Case 1: If adding e to E(T) creates a cycle, discard e (cycle property)

Case 2: Else, insert e = (u, v) in E(T), where S is the set of vertices in
u′s connected component (cut property)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm: Implementation and Analysis

Kruskal-MST(G = (V, E), w)

1: sort the edges of G in ascending order of weights
2: V (T)← V (G), E (T)← ∅
3: for each edge e = (u, v) ∈ E in sorted order do
4: if u and v are in different connected components then
5: E (T)← E (T) ∪ {e}
6: return T

Analysis:
Sorting ⇒ O(|E | · lg(|E |)) time in the worst-case

For loop iterates over all |E | edges in sorted order

Potentially, line 4 could be slow. How can one find quickly whether the
endpoints of e are disconnected in S?

Line 4 can be performed in O(1) time through the union-find operation
on a disjoint-set data structure

Short detour...

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Disjoint-set Data Structure

Maintains a collection of disjoint dynamic sets {S1, . . . ,Sk}
Each Si can be represented as a linked list or tree

The unique “key” of a set can be stored at root

Operations:

Make-Set(x): create {x}
Find-Set(x): find set that
contains x

Union(x,y): merge sets that
contain x and y

A sequence of O(m) Union and
Find-Set operations on m
elements can be performed in
O(m · lgm) time.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Back to Kruskal’s Algorithm: Implementation and Analysis

Kruskal-MST(G, w)

1: S ← {}
2: for each vertex v ∈ V (G) do
3: Make-Set(v)
4: sort the edges of G in ascending order of weights
5: for each edge e = (u, v) in sorted order do
6: if Find-Set(u) 6= Find-Set(v) then
7: S ← S ∪ {(u, v)}
8: Union(u,v)
9: return S

Analysis: Lines 5-8 contain O(E) Find-Set and Union operations.
Along with |V | Make-Set, these take O((V + E) · α(V)), where α
is a slowly growing function. Total running time is O(E · lg(E)),
since E ≥ |V | − 1 in a connected graph (equiv. O(E · lg(V))).

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Kruskal’s Algorithm in Action

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm: One Vertex at a Time

Prim’s Algorithm [Jarnik 1930, Dijkstra 1957, Prim 1959]

Initialize S to be any vertex of G

Apply cut property to S

Add minimum weight edge e = (u, v) in cutset D corresponding to S to
the growing MST and add new v to S

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm

Prim-MST(G, w)

1: let T contain first an arbitrary vertex s ∈ V
2: while T has fewer than |V | vertices do
3: find the lightest edge connecting T to G − T
4: add it to T
5: return T

Maintain set of explored vertices (that are already nodes in the tree) in S

For each unexplored vertex v ∈ V − S , maintain the attachment cost
d [v] = weight of lightest edge connecting v to a node in S

Key to a fast implementation: maintain V − S as a priority queue, where
the key of each unexplored vertex is the attachment cost, the weight of
the lightest edge connecting v to S

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Implementing Prim’s Algorithm

Remember: Maintain V −S as a priority queue Q. The key of each
vertex v in Q is the weight of the lightest edge connecting v to S

Prim-MST(G, w)

1: Q ← V
2: key[v] ←∞ and π[v]←∞ for all v ∈ V
3: key[s] ← 0 for an arbitrary s ∈ V
4: while Q 6= ∅ do
5: u ← Extract-Min(Q)
6: for each v ∈ Adj(u) do
7: if v ∈ Q and w(u, v) < key[v] then
8: key[v]← w(u, v)
9: π(v)← u

10: return (v , π(v)) as the MST in the end

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Prim’s Algorithm in Action [explored vertices in A]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Analysis of Prim’s Algorithm

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

Outline of Today’s Class
Finding Minimum Spanning Trees

Enumerating Spanning Trees
Minimum Spanning Trees
Kruskal’s Algorithm
Prim’s Algorithm

Analysis of Prim’s Algorithm

Time = θ(V) · T (Extract−Min) + θ(E) · T(Decrease−Key)

Q T (Extract-Min) T (Decrease-Key) Total

array O(V) O(1) O(V 2)
binary heap O(1) O(lgV) O(E · lgV)
Fibonacci heap O(lgV) O(1) O(E + V · lgV)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)1

	Finding Minimum Spanning Trees
	Enumerating Spanning Trees
	Minimum Spanning Trees
	Kruskal's Algorithm
	Prim's Algorithm

