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Symbol-table Problem

Consider the following symbol table S containing n records:

Consider basic operations on S:

INSERT(S,x)
DELETE(S, x)
SEARCH(S, k)

Question: How should the data structure S be organized?
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Direct-access Hash Tables

Suppose we have a list of elements S with keys that are drawn
from a set (universe) U ⊆ {0, 1, . . . ,m − 1}
Suppose that keys are distinct at this stage (no two elements
have the same key)

Set up an array T [0, 1, . . . ,m − 1] s.t.:

T [k] =

{
x if x ∈ S and key[x ] = k
NULL otherwise

All the basic operations take θ(1) time

There is a potential problem - the range of keys can be large:

example: 64-bit numbers (18,446,744,073,709,551,616 keys)
example: character strings (even larger)
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Hash Functions

Solution: Use a hash function h to map the universe U of all keys
into {0, 1, . . . ,m − 1}:

As each key is inserted, h maps it to a slot of T .

When a record to be inserted maps to an already occupied
slot in T , a collision occurs.
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Resolving Collisions by Chaining

Link records that hash to same slot into a list

Worst-case Scenario:

Every key hashes to same slot
Access time is θ(n) if |S | = n
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Average-case Analysis of Chaining Collisions

We make the assumption of simple uniform hashing:

Each key k ∈ S is equally likely to be hashed to any slot of
table T , independent of where other keys are hashed.

Let n be number of keys in table, and m be number of slots.

Let load factor α = n/m be average number of keys per slot.

Expected time of an unsuccessful search for a record with a
given key is: (time to apply hash function and get slot) +
(time to search the “collision” list) ∈ θ(1 + α).

Expected search time is θ(1) if α ∈ θ(1) (when n ∈ O(m)).

A successful search has same asymptotic bound (demonstrate
on board).
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Choosing a Hash Function

Can we achieve simple uniform hashing?

Assumption of simple uniform hashing is hard to guarantee.

Common techniques tend to work well in practice as long as
their deficiencies can be avoided.

Desired Property:

A good hash function should distribute the keys uniformly into
the slots of the table.

Regularity in the key distribution should not affect this
uniformity.
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Division Method

Assume all keys are integers, and define h(k) = k mod m.

Deficiency: Do not pick an m that has a small divisor d . A
preponderance of keys that are congruent mod d can
adversely affect uniformity.

Extreme deficiency: If m = 2r , then the hash does not even
depend on all bits of k :

If k = 10110001110110102 and r = 6, then h(k) = 0110102,
which is only last 6 bits of k

Pick m to be: prime, not too close to a power of 2 or 10, and
not otherwise used prominently in the computing environment.

Annoyance: A prime table size may be inconvenient. This
method is popular, although the next one is usually superior.
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Multiplication Method

Assume that all keys are integers, m = 2r , and our computer has
w -bit words. Define:

h(k) = (A · k mod 2w) rsh (w − r),

where rsh is the bitwise right-shift operator, and A is an odd
integer in the range 2w−1 < A < 2w .

Do not pick A too close to 2w−1 or 2w .

Multiplication modulo 2w is fast compared to division.

The rsh operator is fast.
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Example of Multiplication Method

h(k) = (A · k mod 2w) rsh (w − r),

Suppose m = 8 = 23 and that our computer has w = 7-bit words:
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Resolving Collisions by Open Addressing

No storage is used outside of the hash table itself.

Insertion systematically probes table until empty slot is found.

The hash function depends on both the key and probe
number:

h : U × {0, 1, . . . ,m − 1} → {0, 1, . . . ,m − 1}

The probe sequence 〈h(k , 0), h(k , 1), . . . , h(k,m − 1)〉 is a
permutation of {0, 1, . . . ,m − 1}.
Potential hazards:

the table may fill up
deletion is difficult (but not impossible)
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Example of Open Addressing

Search uses the same probe sequence and terminates successfully if
it finds the key; unsuccessfully if it encounters an empty slot.
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Probing Strategies

Linear probing: Given an ordinary hash function h
′
(k), linear

probing uses the hash function h(k , i) = (h
′
(k) + i) mod m.

This method, though simple, suffers from primary clustering, where
long runs of occupied slots build up, increasing the average search
time. Moreover, the long runs of occupied slots tend to get longer.

Double Hashing: Given two ordinary hash functions h1(k) and
h2(k), double hashing uses the hash function
h(k , i) = (h1(k) + i · h2(k)) mod m.
This method generally produces excellent results, provided that
h2(k) is relatively prime to m. One way is to make m power of 2
and design h2(k) to produce only odd numbers.
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Analysis of Open Addressing

We make the assumption of uniform hashing: Each key is equally
likely to have anyone of the m! permutations as its probe sequence.

Theorem: Given an open-addressed hash table with load factor
α = n/m < 1, the expected number of probes in an unsuccessful
search is at most 1/(1− α).
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Proof of Theorem

At least one probe is always necessary.

With probability n/m, the first probe hits an occupied slot,
and a second probe is necessary.

With probability (n − 1)/(m − 1), the second probe hits an
occupied slot, and a third probe is necessary.

With probability (n − 2)/(m − 2), the third probe hits an
occupied slot, and a fourth probe is necessary. (and so on)

So, the expected number of probes is
1 + n

m · (1 + n−1
m−1 · (1 + ...))).

Observe that n−i
m−i ≤

n
m for 1 ≤ i ≤ n.

So, expected number of probes is bounded above by
1 +α(1 +α(1 +α(....))) = 1 +α+α2 + . . . =

∑∞
i=0 α

i = 1
1−α .

A rigorous argument includes successful search in CLRS book.
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Implications of this Theorem

If α is constant, then accessing an open-addressed hash table
takes constant time.

If the table is half full, then the expected number of probes is
1/(1-0.5) = 2.

If the table is 90% full, then the expected number of probes is
1/(1− 0.9) = 10.
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A weakness of hashing

Problem: For any hash function h, a set of keys exists that can
cause the average access time of a hash table to skyrocket.

An adversary can pick all keys from {k ∈ U : h(k) = i} for
some slot i.

Solution: Choose the hash function at random, independently of
the keys.

Even if an adversary can see your code, he or she cannot find
a bad set of keys, since he or she does not know exactly which
hash function will be chosen.
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Universal Hashing

Definition of Universality

Let U be a universe of keys, and let H be a finite collection of
hash functions, each one mapping U to {0, 1, . . . ,m − 1}.
We say that H is universal if ∀x , y ∈ U, where x 6= y , we have
|h ∈ H : h(x) = h(y)| = |H|/m.

This means that the chance of a
collision between x and y is 1/m
if we choose h randomly from H.
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Why is Universality So Important?

Theorem: Let h be a hash function chosen (uniformly) at random
from a universal set H of hash functions. Suppose h is used to
hash n arbitrary keys into the m slots of a table T . Then, for a
given key x , we have E [#collisions with x ] < n/m.

Proof: Let Cx be the random variable indicating the total number
of collisions of keys in T with x , and let

cxy =

{
1 if h(x) = h(y)
0 otherwise

Note: E [cxy ] = 1/m and Cx =
∑

y∈T−{x} cxy .

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Hashing

Direct-access tables
Resolving Collisions by Chaining
Resolving Collisions by Open addressing
Universal Hashing
Perfect Hashing

Continuing Proof that Universality is Important

E [Cx ] = E [
∑

y∈T−{x} cxy ] take E of both sides

=
∑

y∈T−{x} E [cxy ] linearity of expectation

=
∑

y∈T−{x} 1/m E [cxy ] = 1/m

= n−1
m simple Algebra
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Constructing a Set of Universal Hash Functions

Let m be prime. Decompose k into r + 1 digits, each one with
value in the set {0, 1, . . .m − 1}. That is, let k = 〈k0, k1, . . . , kr 〉,
where 0 ≤ ki < m.

Randomized Strategy: Pick a = 〈a0, a1, . . . , ar 〉, where each ai is
chosen uniformly at random from {0, 1, . . . ,m − 1}.

Define ha(k) =
∑r

i=0(aiki ) mod m

Hash functions defined this way are known as dot-product hash
functions

How big is H = {ha}?

|H| = mr+1 - this is important to remember
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Universality of Dot-product Hash Functions

Theorem: The set H = {ha} is universal

Proof: Suppose that x = {x0, x1, . . . , xr} and y = {y0, y1, . . . , yr}
are distinct keys. So, x and y differ in at least one digit position.

Let this digit position be 0. For how many ha ∈ H do x and y
collide?

In case of a collision, we have that ha(x) = ha(y), which implies
that

∑r
i=0 aixi =

∑r
i=0 aiyi (mod m)

Equivalently,
∑r

i=0 ai (xi − yi ) = 0 (mod m)

So, a0(x0 − y0) +
∑r

i=1 ai (xi − yi ) = 0 (mod m), which implies
that a0(x0 − y0) = −

∑r
i=1 ai (xi − yi ) (mod m)
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Continuing Proof with Help of Number Theory

Theorem: Let m be prime. For any z ∈ Zm s. t. z 6= 0, ∃ a
unique z−1 ∈ Zm s.t. z · z−1 = 1 (mod m)

Example: When m = 7, pairs of (z , z−1) are (1, 1), (2, 4), (3, 5),
(4, 2), (5, 3), (6, 6).

Back to our Proof: Since a0(x0 − y0) = −
∑r

i=1 ai (xi − yi ) (mod
m) and x0 6= y0, then ∃ (x0 − y0)−1 and so we have:

a0 = (−
∑r

i=1 ai (xi − yi )) · (x0 − y0)−1 (mod m)

This means that for any choices of a1, a2, . . . , ar , exactly one
choice of a0 causes x and y to collide
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Completing the Proof

Question: How many ha’s cause x and y to collide?

Answer: There are m choices for each of a1, a2, . . . , ar , but once
these are chosen, exactly one choice for a0 causes x and y to
collide. We showed that:

a0 = (−
∑r

i=1 ai (xi − yi )) · (x0 − y0)−1 (mod m)

So we can conclude that the number of ha’s that cause x and y a
to collide is mr · 1 = mr = |H|/m.
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Perfect Hashing

A hash function is perfect for a dictionary S if all lookups involve
O(1) work. There are two methods to construct perfect hash
functions for a given set S .

Technique 1 reguires O(n2) storage, where |S | = n. This means we are
willing to have a hash table whose size is quadratic in the size of S .
Then, a perfect hash function can easily be constructed. Let H be
universal and m = n2. Then just pick a random h from H and try it out.
The claim is there is at least a 50% chance there will be no collisions.

Technique 2 requires O(n) storage. A hash table of size n is first filled
through universal hashing, which may produce some collisions. Each slot
of the table is then rehashed (universal hashing is again employed),
squaring the size of the slot in order to get 0 collisions. This is also called
a two-level scheme.
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Perfect Hashing: O(n2) Storage

Theorem: Let H be a class of universal hash functions for a table
of size m = n2. Then, if we use a random h ∈ H to hash n keys
into the table, the expected number of collisions is at most 1/2.

Proof: By the definition of universality, the probability that 2
given keys in the table collide under h is 1/m = 1/n2. Since there
are
(n
2

)
pairs of keys that can possibly collide, the expected number

of collisions is: (
n

2

)
· 1

n2
=

n · (n − 1)

2
· 1

n2
<

1

2
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Guaranteeing No Collisions in Perfect Hashing

Corollary: The probability of no collisions is at least 1/2.

Proof: Markov’s inequality says that for any nonnegative random
variable X , we have P(X ≥ t) ≤ E [X ]/t.

Applying this inequality with t = 1, we find that the probability of
1 or more collisions is at most 1/2.

This means that just by testing random hash functions in H, we
quickly find one that works. The claim is we do not have to try
more than two.
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Perfect Hashing: O(n) Storage

Given a set of n keys, construct a static hash table of size
m ∈ O(n) s. t. searching for a key takes θ(1) time in the worst
case.

Idea: Two-level scheme
with universal hashing at
both levels.

No collisions at level 2!
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Analysis of Storage in Perfect Hashing

For the level-1 hash table T , choose m = n, and let ni be the
random variable for the number of keys that hash to slot i in T .

By using n2i slots for the level-2 hash table Si , the expected total
storage required for the two-level scheme is:

E [
m−1∑
i=0

θ(n2i )] = θ(n)

The analysis is identical to the analysis of the expected running
time of bucket sort. It can be shown, with some mathematical
manipulations, that E [

∑m−1
i=0 (n2i )] < 2n. Then, Markov’s inequality

gives a probability bound that P(
∑m−1

i=0 θ(n2i ) > 4n) < 1/2.
If we test a few randomly chosen hash functions from the universal family, we
will quickly find one that uses a reasonable amount of storage.
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