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1 (Uninformed and Informed) Graph Search Algorithms
Uninformed Search

Breadth-first Search (BFS)
Depth-first Search (DFS)
Depth-limited Search (DLS)
Iterative Deepening Search (IDS)

Informed Graph Search Algorithms
Dijkstra’s Graph Search Algorithm
A* Search
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General Search Template

Important insight:
Any search algorithm constructs a tree, adding to it vertices of graph G in some order

G = (V ,E) —– look at it as split in two: set S on one side and V − S on the other

search proceeds as vertices are taken from V − S and added to S
search ends when V − S is empty or goal found

First vertex to be taken from V − S and added to S?
Next vertex? (... expansion ...)
Where to keep track of these vertices? (... fringe/frontier ...)

Important ideas:
Fringe (frontier into V − S/border between S and V − S)
Expansion (neighbor generation so can add to fringe)
Exploration strategy (what order to grow S?)

Main question:
which fringe/frontier nodes to explore/expand next?
strategy distinguishes search algorithms from one another
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Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

completeness—does it always find a solution if one exists?

time complexity—number of nodes generated/expanded

space complexity—maximum number of nodes in memory

optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of:

b—maximum branching factor of the search tree

d—depth of the least-cost solution

m—maximum depth of the state space (may be ∞)
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Uninformed Graph Search

Characteristics of Uninformed Graph Search/Traversal:

There is no additional information about states/vertices beyond what is provided in
the problem definition.

All that the search does is generate successors/neighbors and distinguish a goal
state from a non-goal state.

The systematic search “lays out” all paths from initial
vertex; it traverses the search tree of the graph.
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Uninformed Graph Search

F: search data structure (fringe)
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Figure: Graph

Figure: Search Tree of Graph
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Uninformed Search Algorithms

Breadth-first Search (BFS)

Depth-first Search (DFS)

Depth-limited search (DLS)

Iterative Deepening Search (IDS)
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Breadth-first Search (BFS)
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue
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Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Running Time?

Let V and E be vertices and edges in search tree
O(|V |+ |E |) What about in terms of b and m?
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Properties of Breadth-first Search (BFS)

Complete??

Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.
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BFS Summary

Basic Behavior:

Expands all nodes at depth d before those at depth d + 1

The sequence is root, then children, then grandchildren in the search tree.

Problems:

If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.

BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.

BFS is not very popular because time and space complexity are exponential:
O(bd+1) and O(bd+1), respectively.

Memory requirements of BFS are a bigger problem.
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Depth-first Search (DFS)
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Depth-first Search (DFS)
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Running Time?

Let V and E be vertices and edges in search tree
O(|V |+ |E |) What about in terms of b and m?
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Properties of Depth-first Search (DFS)

Complete??

No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No Why?
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DFS Summary

Basic Behavior:

Expands the deepest node in the tree

Backtracks when reaches a non-goal node with no descendants

Problems:

Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex

Hence, DFS is not optimal

If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

Hence, DFS is not complete

Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree

Time complexity is O(bm) and space complexity is O(b ·m)
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BFS vs. DFS

When will BFS outperform DFS?

When will DFS outperform BFS?
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Another Advantage of DFS

RecursiveDFS(v)

1: if v is unmarked then
2: mark v
3: for each edge v , u do
4: RecursiveDFS(u)

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is
discovered, when its neighbors are in the process of being considered, and when all its
neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they
are finished. These start and finish times are useful in various applications of DFS
regarding constraint satisfaction.
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Depth-limited Search (DLS)

Problem with DFS is presence of infinite paths

DLS limits the depth of a path in search tree of DFS

Modifies DFS by using a predetermined depth limit dl

DLS is incomplete if the shallowest goal is beyond the depth limit dl

DLS is not optimal if d < dl

Time complexity is O(bdl ) and space complexity is O(b · dl)
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Depth-limited Search (DLS)

= DFS with depth limit dl [i.e., nodes at depth dl are not expanded]

Recursive implementation:

function Depth-Limited-Search( problem, limit) returns
soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem,
limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem,State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do

result←Recursive-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure
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Iterative Deepening Search (IDS)

Finds the best depth limit by incrementing dl until goal is found at dl = d

Can be viewed as running DLS with consecutive values of dl

IDS combines the benefits of both DFS and BFS

Like DFS, its space complexity is O(b · d)

Like BFS, it is complete when the branching factor is finite, and it is optimal if the
path cost is a non-decreasing function of the depth of the goal node

Its time complexity is O(bd)

IDS is the preferred uninformed search when the state space is large, and the depth
of the solution is not known
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Iterative Deepening Search (IDS)

function Iterative-Deepening-Search( problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←Depth-Limited-Search( problem, depth)
if result 6= cutoff then return result

end
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Iterative Deepening Search (IDS) @ dl = 0
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Iterative Deepening Search (IDS) @ dl = 1
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Iterative Deepening Search (IDS) @ dl = 2

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 41



Iterative Deepening Search (IDS) @ dl = 3
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Summary of Uninformed Search Algorithms

Criterion Breadth- Depth- Depth- Iterative
First First Limited Deepening

Complete? Yes∗ No Yes, if dl ≥ d Yes
Time bd+1 bm bdl bd

Space bd+1 bm bdl bd
Optimal? Yes∗ No No Yes∗
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Uninformed Search Summary

Problem formulation usually requires abstracting away real-world details to define a
state space that can feasibly be explored

Variety of uninformed search strategies

IDS uses only linear space and not much more time than other uninformed
algorithms

Graph search can be exponentially more efficient than tree search

What about least-cost paths with non-uniform state-state costs?
That is next
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Informed Graph Search Algorithms

Make use of costs/weights in state-space graph

Informed/Greedy graph search algorithms:

Dijkstra’s Search [Edsger Dijkstra 1959]
Uniform-cost Search (a variant of Dijkstra’s)
Best-First Search [Judea Pearl 1984]
A* Search [Petter Hart, Nils Nilsson, Bertram Raphael 1968]
B* Search [Hans Berliner 1979]
D* Search [Stenz 1994]
More variants of the above

Other Algorithms:
What to do if weights are negative
Dynamic Programming rather than greedy paradigm
Bellman-Ford’s, Floyd-Warshall’s
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Most popular: Dijkstra and A*

Differences from uninformed search algorithms:

work with weighted graphs

process nodes in order of attachment cost

employ priority queue (min-heap) for this purpose instead of stack or queue

Dijkstra: overkill, finds least-cost path from a given start node to all nodes in graph

A*: works only with given start and goal pair

Dijkstra: attachment cost of a node is current least cost from given start to that
node

A*: adds to this the estimated distance to goal node, where esimation uses an
optimistic heuristic
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

Associate a(n attachment) cost d [v ] with each vertex v

F becomes a priority queue: F keeps frontier vertices, prioritized by d [v ]

Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

v extracted from F @ some iteration is one with lowest cost among all those in F
... so, vertices extracted from F in order of their costs

When v extracted from F :
v has been “removed” from V − S and “added” to S
get to reach/see v ’s neighbors and possibly update their costs

The rest are details, such as:

What should d [v ] be? There are options...
backward cost (cost of s  v)
forward cost (estimate of cost of v  g)
back+for ward cost (estimate of s  g through v)

Which do I choose? This is how to you end up with different search algorithms
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Dijkstra’s Algorithm in Pseudocode

Fringe: F is a priority queue/min-heap
arrays: d stores attachment (backward) costs, π[v ] stores parents
S not really needed, only for clarity below

Dijkstra(G, s, w)

1: F ← s, S ← {}
2: d[v] ←∞ for all v ∈ V
3: d [s]← 0
4: while F 6= { } do
5: u ← Extract-Min(F)
6: S ← S ∪ {u}
7: for each v ∈ Adj(u) do
8: F ← v
9: Relax(u, v ,w)

Relax(u, v ,w)

1: if d [v ] > d [u] + w(u, v) then
2: d [v ]← d [u] + w(u, v)
3: π[v]← u

The process of relaxing tests whether one can improve the shortest-path estimate
d [v ] by going through the vertex u in the shortest path from s to v
If d [u] + w(u, v) < d [v ], then u replaces the predecessor of v
Where would you put an earlier termination to stop when s  g found?
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1: if d [v ] > d [u] + w(u, v) then
2: d [v ]← d [u] + w(u, v)
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in another implementation, F is
initialized with all V, and line 8 is
removed.
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Dijsktra’s Algorithm in Action

Figure: Graph G = (V , E) Figure: Shortest paths from B

Initial Pass1 Pass2 Pass3 Pass4 Pass5 Pass6
Vertex d π d π d π d π d π d π d π

A ∞ 3 B 3 B 3 B 3 B 3 B 3 B
B 0 − 0 − 0 − 0 − 0 − 0 − 0 −
C ∞ 5 B 4 A 4 A 4 A 4 A 4 A
D ∞ ∞ ∞ 6 C 6 C 6 C 6 C
E ∞ ∞ ∞ 8 C 8 C 8 C 8 C
F ∞ ∞ ∞ ∞ 11 D 9 E 9 E
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If not earlier goal termination criterion, Dijkstra’s search tree is spanning tree of shortest
paths from s to any vertex in the graph.
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Take-home Exercise

Initial Pass1 Pass2 Pass3 Pass4 Pass5
Vertex d π d π d π d π d π d π

a 0 −
b ∞
c ∞
d ∞
e ∞
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Correctness of Dijkstra’s Search Algorithm

Dijkstra extracts vertices from fringe (adds to S) in order of their backward costs

Claim: When a vertex v is extracted from fringe F (thus “added” to S), the shortest
path from s to v has been found. ← invariant

Proof: by induction on |S | (Base case |S | = 1 is trivial).
Assume invariant holds for |S | = k ≥ 1.

Let v be vertex about to be extracted from fringe (added to S), so has lowest
backward cost

Last time d [v ] updated when parent u extracted from fringe

When d [v ] is lowest in the fringe, should we extract v or wait?

Could d [v ] get lower later through some other vertex y in fringe?

w(P)≥ w(P
′
)+w(x , y) nonnegative weights

≥ d [x ] + w(x , y) inductive hypothesis
≥ d [y ] definition of d [y ]
≥ d [v ] Dijkstra chose v over y
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Running Time Analysis of Dijkstra’s Algorithm

Updating the heap takes at most O(lg(|V |)) time

The number of updates equals the total number of edges

So, the total running time is O(|E | · lg(|V |))

Running time can be improved depending on the actual implementation of the
priority queue

Time = θ(V ) · T (Extract−Min) + θ(E) · T(Decrease−Key)

F T (Extr.-Min) T (Decr.-Key) Total

Array O(|V |) O(1) O(|V |2)
Binary heap O(1) O(lg |V |) O(|E | · lg |V |)
Fib. heap O(lg |V |) O(1) O(|E |+ |V | · lg |V |)

How does this compare with BFS?
How does BFS get away from a lg(|V |) factor?
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A* Search

Idea: avoid expanding paths that are already expensive

Evaluation function f (v) = g(v) + h(v):
Combines Dijkstra’s/uniform cost with greedy best-first search
g(v) = (actual) cost to reach v from s
h(v) = estimated lowest cost from v to goal
f (v) = estimated lowest cost from s through v to goal

Same implementation as before, but prioritize vertices in min-heap by f [v ]

A* is both complete and optimal provided h satisfies certain conditions:
for searching in a tree: admissible/optimistic
for searching in a graph: consistent (which implies admissibility)
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Admissible Heuristic

What do we want from f [v ]?
not to overestimate cost of path from source to goal that goes through v

Since g [v ] is actual cost from s to v , this “do not overestimate” criterion is for the
forward cost heuristic, h[v ]

A* search uses an admissible/optimistic heuristic
i.e., h(v) ≤ h∗(v) where h∗(v) is the true cost from v
(Also require h(v) ≥ 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal
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What do we want from f [v ]?
not to overestimate cost of path from source to goal that goes through v

Since g [v ] is actual cost from s to v , this “do not overestimate” criterion is for the
forward cost heuristic, h[v ]

A* search uses an admissible/optimistic heuristic
i.e., h(v) ≤ h∗(v) where h∗(v) is the true cost from v
(Also require h(v) ≥ 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal

Let’s see A* with this heuristic in action
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A* Search in Action
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A* Search in Action
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Optimality of A*

Skipping some details, but essentially if heuristic is consistent: A* expands nodes in
order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi , where fi < fi+1

So, why does this guarantee optimality?
First time we see goal will be the time it has lowest f = g (h is 0)
Other occurrences have no lower f (f non-decreasing)
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Summary of A* Search

Complete??

Yes, unless there are infinitely many nodes with f ≤ f (G)

Time?? Exponential in [path length × δ(s,g)−h(s)
δ(s,g)

]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand fi+1 until fi is finished

Optimally efficient for any given consistent heuristic:
A* expands all nodes with f (v) < δ(s, g)
A* expands some nodes with f (v) = δ(s, g)
A* expands no nodes with f (v) > δ(s, g)
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End of Graph Search Algorithms

CS583 additionally considers scenarios where greedy substructure does not lead to
optimality

For instance, how can one modify Dijkstra and the other algorithms to deal with
negative weights?

How does one efficiently find all pairwise shortest/least-cost paths?

Dynamic Programming is the right alternative in these scenarios

More graph exploration and search algorithms considered in CS583
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