Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Graphs

- Definition of a Graph
- Omnipresence of Graphs
(2) Graph Representations
- Adjacency List Representation
- Adjacency Matrix Representation
- Alternative Graph Representations
(3) Solving Problems with Graph Algorithms

What is a Graph?

Graph $G=(V, E)$

- V : set of vertices
- E : set of edges consisting of pairs of vertices from V

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once.
Posed by Leonard Euler [1707-1783].
 modified from wikipedia

What is the minimum number of bridges that need to be added so that there exists a route that crosses each bridge exactly once?

Road Networks as Graphs

Amarda Shehu

Lecture: Analysis of Algorithms (CS583-004)

Airline Routes as Graphs

Figure: http://www.airlineroutemaps.com/

Social Networks as Graphs

Figure: http://hbr.idnet.net/images/

Amarda Shehu

The Internet as a Graph

Figure: Credit: Matt Britt

Visualization of the various

 routes through a portion of the Internet.

Figure: Credit: Young Hyun, CAIDA

Websites as Graphs

Figure: http://www.google.com

```
blue: for links
red: for tables
green: for the DIV tag
violet: for images
            : for forms
orange: for linebreaks and blockquotes
black: the HTML tag, the root node
gray: all other tags
```

Figure: Credit: Marcel Salathe http://www.aharef.info

Figure: http://www.cs.gmu.edu

Figure: http://www.apple.com

Biological Networks as Graphs

Figure: Adapted from A. Barabasi, University of Notre Dame

Applications of Graphs

- Compilers
- Databases
- Neural Networks
- Machine Learning
- Artificial Intelligence
- Robotics
- Computational Biology
- ...

Formal Definition of a Graph

- A graph $G=(V, E)$ is a pair consisting of:
- a set V of vertices (or nodes)
- a set $E \subseteq V \times V$ of edges (or arcs)
- edge $e_{i} \in E$ is a pair (u, v) connecting vertices u and v

A graph $G=(V, E)$ is:

- directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The edges here are often referred to as directed edges or arrows.
- undirected if E is a set of unordered pairs of vertices.
- weighted if there are weights associated with the edges.

Illustrations of Types of Graphs

Figure: undirected graph

Figure: multigraph

Figure: directed graph

Figure: weighted graph

General Definition of a Graph

In a graph $G=(V, E)$:

- E may be a set of unorderered pairs of vertices not necessarily distinct. More than one edge can connect two vertices.
- An edge in E may connect more than two vertices.
- These graphs are referred to as multigraphs or pseudo-graphs.

Focusing on Simple Graphs

Simple Graphs

- A simple graph, or a strict graph, is an unweighted, undirected graph containing no loops or multiple edges
- Given that $E \subseteq V \times V,|E| \in O\left(|V|^{2}\right)$.
- If a graph is connected, $|E| \geq|V|-1$
- Combining the two, show that $\lg (|E|) \in \theta(\lg (|V|))$

More Definitions, Conventions, Nomenclature

- A subgraph H of $G=(V, E)$ is $H=\left(V_{1}, E_{1}\right)$ where $V_{1} \subseteq V$ and $E_{1} \subseteq E$, where $\forall e=(k, j) \in E_{1}, k, j \in V_{1}$.
- A path is a sequence of vertices, where each pair of successive vertices is connected by an edge.
- The length of the path is the number of edges in the path.
- A simple path contains unique vertices.
- A cycle is a simple path with the same first and last vertex.
- Two vertices are adjacent if they are connected by an edge.
- The neighbors of a vertex are all the vertices adjacent to it.
- The degree of a vertex is the number of its neighbors.
- A graph is connected if \exists a path between every pair of vertices.
- A tree is a connected graph with no cycles.

Graph Representations

- A graph can be represented as an adjacency list.
- A graph can be represented as an adjacency matrix.

Adjacency List Representation

Basic Graph Functionality

Function	Adjacency List	
find (v)	$O(\|V\|)$	
hasVertex(v)	$O($ find (v))	
hasEdge(v_{i}, v_{j})	$O\left(\right.$ find $\left.\left(\mathrm{v}_{\mathrm{i}}\right)+\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right)$	
insertVertex(v)	$O(1)$	$\|\operatorname{elist}[\mathrm{v}]\|=\operatorname{degree}(v) .$
insertEdge(v_{i}, v_{j})	$O\left(\right.$ find $\left.\left(\mathrm{v}_{\mathrm{i}}\right)\right)$	
removeVertex (v)	$O(\|V\|+\|E\|)$	In digraphs:
removeEdge(v_{i}, v_{j})	$O\left(\right.$ find $\left.\left(\mathrm{v}_{\mathrm{i}}\right)+\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right)$	$\|\operatorname{list}[\mathrm{v}]\|=$ out-degree(v).
outEdges(v)	$O($ find $(\mathrm{v})+\operatorname{deg}(\mathrm{v}))$	
inEdges(v)	$O(\|V\|+\|E\|)$	
overall memory	$O(\|V\|+\|E\|)$	

Handshaking Lemma: $\sum_{v \in V}|\operatorname{elist}(\mathrm{v})|=2|\mathrm{E}|$ for undirected graphs. $O(|V|+|E|)$ storage \Rightarrow sparse representation.

More on Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list The list of vertices themselves can be implemented using:

- A linked list
- A binary search tree
- A hash table

In a standard implementation, each edge list has two fields, a data field and a pointer:

- The data field contains adjacent vertex name and edge information
- The pointer points to next adjacent vertex

Adjacency Matrix Representation

$M[i][j]=1 \quad$ iff $\quad\left(v_{i}, v_{j}\right) \in E$

M	V_{0}	V_{1}	V_{2}	V_{3}	V_{4}		M	V_{0}	V_{1}	V_{2}	V_{3}	V_{4}
V_{0}	0	1	0	1	0		V_{0}	0	1	1	0	1
v_{1}		0	1	0	1	bool **M;	V_{1}	0	1	0	0	0
V_{2}			1	0	0		V_{2}	0	1	0	1	0
V_{3}				0	0	using namespace std;	v_{3}	0	0	0	0	1
V_{4}					1	$\begin{aligned} & \text { vector < vector<bool\gg } \\ & \mathrm{M} \text {; } \end{aligned}$	v_{4}	1	0	1	1	0

Basic Graph Functionality

Function	Adjacency Matrix
find (v)	$O(1)$
hasVertex (v)	$O(1)$
hasEdge($\left(v_{i}, v_{j}\right)$	$O(1)$
insertVertex (v)	$O\left(\|V\|^{2}\right)$
insertEdge $\left(v_{i}, v_{j}\right)$	$O(1)$
removeVertex (v)	$O\left(\|V\|^{2}\right)$
removeddge $\left(v_{i}, v_{j}\right)$	$O(1)$
outEdges (v)	$O(\|V\|)$
inEdges (v)	$O(\|V\|)$
overall memory	$O\left(\|V\|^{2}\right)$

$O\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Comparing The Two Representations

Function	Adjacency List	Adjacency Matrix
find (v)	$O(\|V\|)$	$O(1)$
hasVertex (v)	$O($ find $(\mathrm{v}))$	$O(1)$
hasEdge $\left(v_{i}, v_{j}\right)$	$O\left(\right.$ find $\left.\left(\mathrm{v}_{\mathrm{i}}\right)+\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right)$	$O(1)$
insertVertex (v)	$O(1)$	$O\left(\|V\|^{2}\right)$
insertEdge $\left(v_{i}, v_{j}\right)$	$O\left(\right.$ find $\left.\left(\mathrm{v}_{\mathrm{i}}\right)\right)$	$O(1)$
removeVertex (v)	$O(\|V\|+\|E\|)$	$O\left(\|V\|^{2}\right)$
removeEdge $\left(v_{i}, v_{j}\right)$	$O\left(\operatorname{find}\left(\mathrm{v}_{\mathrm{i}}\right)+\operatorname{deg}\left(\mathrm{v}_{\mathrm{i}}\right)\right)$	$O(1)$
outEdges (v)	$O($ find $(\mathrm{v})+\operatorname{deg}(\mathrm{v}))$	$O(\|V\|)$
inEdges (v)	$O(\|V\|+\|E\|)$	$O(\|V\|)$
overall memory	$O(\|V\|+\|E\|)$	$O\left(\|V\|^{2}\right)$

Alternative Graph Representations

HashMap

Fast to query [hasVertex, hasEdge]
Fast to scan [outEdges]
$O(|V|)$
Fast to insert [insertVertex, insertEdge]
O (1)
Fast to remove [removeEdge]
O (1)

Graph Representation: Hash Map

- Vertex set as a hash map
- key: vertex
- data: outgoing edges
- Outgoing edges of each vertex as a hash set

Comparing The Three Representations

Function	Adj. List	Adj. Matrix	Hash Map
find (v)	$O(\|V\|)$	$O(1)$	$O(1)$
hasVertex (v)	$O(\|V\|)$	$O(1)$	$O(1)$
hasEdge($\left(v_{i}, v_{j}\right)$	$O\left(\|V\|+\operatorname{deg}\left(v_{i}\right)\right)$	$O(1)$	$O(1)$
insertVertex (v)	$O(1)$	$O\left(\|V\|^{2}\right)$	$O(1)$
insertEdge $\left(v_{i}, v_{j}\right)$	$O(\|V\|)$	$O(1)$	$O(1)$
removeVertex (v)	$O(\|V\|+\|E\|)$	$O\left(\|V\|^{2}\right)$	$O(\|V\|)$
removeEdge $\left(v_{i}, v_{j}\right)$	$O\left(\|V\|+\operatorname{deg}\left(v_{i}\right)\right)$	$O(1)$	$O(1)$
outEdges (v)	$O(\|V\|+\operatorname{deg}(v))$	$O(\|V\|)$	$O(\operatorname{deg}(v))$
inEdges (v)	$O(\|V\|+\|E\|)$	$O(\|V\|)$	$O(\|V\|)$
overall memory	$O(\|V\|+\|E\|)$	$O\left(\|V\|^{2}\right)$	linear-quadratic

Graph modeling: Problem Solving with Graph Algorithms

- Identify the vertices and the edges in your problem formulation
- Identify the objective of the problem
- State this objective in graph terms
- Implementation:
- Construct the graph from the input instance
- Run the suitable graph algorithm on the graph
- Convert the output into a suitable/required format

