Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class

© Graphs
@ Definition of a Graph

@ Omnipresence of Graphs

© Graph Representations
@ Adjacency List Representation
@ Adjacency Matrix Representation
@ Alternative Graph Representations

© Solving Problems with Graph Algorithms

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

What is a Graph?

Graph G = (V,E)
@ V : set of vertices

@ E : set of edges consisting of pairs of vertices from V

Vi

V ={w,v1,v2, 3,4}
Ve Ve E = {(v0,v1), (v, v3), (v1, v2), (v1, va) }

Vs Vz

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once.
Posed by Leonard Euler [1707 - 1783)].

Vo Va

Vz

modified from wikipedia

What is the minimum number of bridges that need to be added so
that there exists a route that crosses each bridge exactly once? }

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Road Networks as Graphs

Park
Hill Country
Village Wetmiore Schertz
Shorts
535> Cothar et Live Qak-Universal
P e 2 Gity
e San Antonio <
Oakland
o | W castieHis Uit Aport Pl - N Rt
%) Longniom AFB
% i Windcrest
i Converse

%
o)
5 — (€D
Leon Valley w Alamo

Balcones Heights
Helghts
Olmos Park | \Terel Hills
— Kirby
Fort Sam &L i
Houston >
i 1104
Uy A%
L. [
San Antonio RED)
— CEDy
w china
Rigsby Ave | L Eme,, Grove <
"By,
Phoeni == aD Moy,
Lackiand w M
Training Annex]
\ ® @ q
; ol
e Terrall]
Calaveras %
Lake) Py
Von iy Sauthton O 2
g
F7TEm 181 =

Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Graphs Definition of a Graph
Omnipresence of Graphs

Airline Routes as Graphs

i

pAciFre
0GEAN.

Domestic Routes

by T / =
Arsns. amume v =
B = e
(o T Ve Loy
B | -

gx'«’é.l» o

Figure: http://www.airlineroutemaps.com/

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Social Networks as Graphs

Figure: http://hbr.idnet.net/images/

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

The Internet as a Graph

Visualization of the various
routes through a portion of the
Internet.

Figure: Credit: Matt Britt

Figure: Credit: Young Hyun, CAIDA

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Websites as Graphs

N

M
\ %

N

Figure: http://www.google.com

blue: for links
red: for tables
green: forthe DIV tag
violet: for images

for forms

for linebreaks and blockquotes
black: the HTML tag, the root node

: all other tags

Figure: Credit: Marcel Salathe e

http:/ /www.aharef.info Figure: http://wWw.appIe.com

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Biological Networks as Graphs

150%-300X
expansion
in plants.

i - ¥,

Figure: Adapted from A. Barabasi, University of Notre Dame

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Applications of Graphs

o Compilers

@ Databases

@ Neural Networks

@ Machine Learning

@ Artificial Intelligence

@ Robotics

@ Computational Biology
° .

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Formal Definition of a Graph

@ A graph G = (V,E) is a pair consisting of:
@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)
o edge e; € E is a pair (u, v) connecting vertices u and v

A graph G = (V,E) is:

o directed (referred to as a digraph) if E is a set of ordered
pairs of vertices. The edges here are often referred to as
directed edges or arrows.

@ undirected if E is a set of unordered pairs of vertices.

@ weighted if there are weights associated with the edges.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

[llustrations of Types of Graphs

Vi

v Ve Vo

Ve
2 vz "
Figure: undirected graph Ve
v, Figure: directed graph
Vo V2

Figure: multigraph Figure: weighted graph

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

General Definition of a Graph

In a graph G = (V, E):
@ E may be a set of unorderered pairs of vertices not necessarily
distinct. More than one edge can connect two vertices.

@ An edge in E may connect more than two vertices.
@ These graphs are referred to as multigraphs or pseudo-graphs.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Focusing on Simple Graphs

Simple Graphs

@ A simple graph, or a strict graph, is an unweighted,
undirected graph containing no loops or multiple edges

e Given that EC V x V, |[E| € O(|V|?).
o If a graph is connected, |E| > |V|—1
o Combining the two, show that Ig(|E|) € 0(lg(|V]))

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graphs Definition of a Graph
Omnipresence of Graphs

Definitions, Conventions, Nomenclature

A subgraph H of G = (V,E) is H = (V4, E1) where V4 C V
and E; C E, where Ve = (k,j) € E1, k,j € V5.

@ A path is a sequence of vertices, where each pair of successive
vertices is connected by an edge.

The length of the path is the number of edges in the path.
A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.
Two vertices are adjacent if they are connected by an edge.
The neighbors of a vertex are all the vertices adjacent to it.
The degree of a vertex is the number of its neighbors.

A graph is connected if 3 a path between every pair of
vertices.

@ A tree is a connected graph with no cycles.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph Representation 5)
aph Representations Alternative Graph Representations

Graph Representations

@ A graph can be represented as an adjacency list.

@ A graph can be represented as an adjacency matrix.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
. Adjacency Matrix Representation
Graph Representations Alternative Graph Representations

Adjacency List Representation

Vs
Vs Ve
struct elist

R R R AR AR
@—)@—)@—)@—)& struct. 'gNIimsA; *next; @—)ﬁ@

-~

@3—)@_@»% s;ruct vlist [:Y‘{g_)@_>$3
[:‘Z]"@"% { v @—)ﬁ@

int v;

@R | o redges Cg@@%
s

struct vlist *next;

b

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph Representation 5)
aph Representations Alternative Graph Representations

Basic Graph Functionality

Function Adjacency List
find(v) o(|V))

hasVertex(v) O(find(v))
hasEdge(v;, vj) O(find(vi) + deg(vi))

In undirected graphs:

insertVertex(v) o(1) lelist[v]| = degree(v).

insertEdge(v;, v;) | O(find(vi))

removeVertex(v) Oo(|V|+ |E]) In digraphs:
removeEdge(v;, vj) | O(find(vi) + deg(vi)) |elist[v]| = out-degree(v).
outEdges(v) O(find(v) + deg(v))

inEdges(v) o(v| + |E))

overall memory o(|V| + |E))

Handshaking Lemma: } _, |elist(v)| = 2|E| for undirected
graphs. O(|V/|+ |E|) storage = sparse representation.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

h R i . .
Graph Representations Alternative Graph Representations

More on Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list
The list of vertices themselves can be implemented using:

@ A linked list
@ A binary search tree
@ A hash table

In a standard implementation, each edge list has two fields, a data
field and a pointer:

@ The data field contains adjacent vertex name and edge
information

@ The pointer points to next adjacent vertex

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph R i : .
raph Representations Alternative Graph Representations

Adjacency Matrix Representation

Vi

é ! 2]
Vo v
2
Vo Va v
2
Vs
Vs 14

(M[ijji=1 itf (v, v)€E)

Vo Vi Vo V. | Vo Vi Vo Vs V.
I o 1 2 £ |,bw0wQV| M[n][n], | I 0 1 2 5 4
w|0o 1 0 1 0 Voo 1 1 0 1
v; o 1 o 1 |b,ggi M, | vilo 1 o o o
Ve 1 0 o0 - v.l0o 1 o 1 o
using namespace std;
Vs 0 o0 v,2]0o o o o 1
Vs 1 vector < vector<bool>>| v, |1 0 1 1 0
M;

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph Representation 5 3
aph Representations Alternative Graph Representations

Basic Graph Functionality

Function Adjacency Matrix
find(v) Oo(1)
hasVertex(v) 0(1)
hasEdge(v;, vj) 0(1)
insertVertex(v) o(|V?)
insertEdge(v;, v;) | O(1)
removeVertex(v) | O(|V[?)
removeEdge(v;, v;) | O(1)
outEdges(v) o(|V))
inEdges(v) o(|V))
overall memory o(|V|?)

O(|V|?) storage = dense representation.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph Representation 5 3
aph Representations Alternative Graph Representations

Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) o(|V)) Oo(1)
hasVertex(v) O(find(v)) 0(1)
hasEdge(v;, vj) O(find(v;) + deg(vi)) | O(1)
insertVertex(v) 0(1) o(|V|?)
insertEdge(v;, v;) | O(find(vi)) Oo(1)
removeVertex(v) o(|V|+1EJ) o(|V|?)
removeEdge(v;, v;) | O(find(v;) 4 deg(vi)) | O(1)
outEdges(v) O(find(v) + deg(v)) | O(|V])
inEdges(v) Oo(|V| + [E]) o(lV])
overall memory O(|V|+ |E]) o(|V|?)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph Representations Alternative Graph Representations

Alternative Graph Representations

HashMap

Fast to query [hasVertex, hasEdge] 0o(1)
Fast to scan [outEdges] o(|V))
Fast to insert [insertVertex, insertEdge] 0o(1)

Fast to remove [removeEdge] 0o(1)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Adjacency List Representation
Adjacency Matrix Representation

Graph Representations Alternative Graph Representations

Graph Representation: Hash Map

o Vertex set as a hash map Vi
o key: vertex Vo
o data: outgoing edges

@ Outgoing edges of each Vi

vertex as a hash set "
3

v, | hash_set: vy, v, v,]

using namespace std_ext; v, |hash_set: v,]
hash_map<key, hash_set<key> 3 TR

U
v v hash_set: v, |

vertex outgoing edges “

. | hash_set: vo, vs, v |

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Graph Representations

Adjacency List Representation

Adjacency Matrix Representation
Alternative Graph Representations

Comparing The Three Representations

Function Adj. List Adj. Matrix | Hash Map
find(v) o(|V)) 0(1) 0(1)
hasVertex(v) o(|V)) 0(1) 0(1)
hasEdge(vi, v;) O(| V[+ deg(vi)) | O(1) O(1)
insertVertex(v) 0o(1) o(|V|?) Oo(1)
insertEdge(v;, v;) | O(|V]) O(1) Oo(1)
removeVertex(v) Oo(|V|+ |E]) o(|V|?) o(|V|)
removeEdge(v;, v;) | O(| V] + deg(vi)) | O(1) O(1)
outEdges(v) O(|V| +deg(v)) | O(|V]) O(deg(v))
inEdges(v) Oo(|V| + [E]) o(|V]) o(v])
overall memory O(|V|+ |E]) o(|V|?) linear-quadratic

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Solving Problems with Graph Algorithms

Graph modeling: Problem Solving with Graph Algorithms

Identify the vertices and the edges in your problem formulation
Identify the objective of the problem
State this objective in graph terms

Implementation:

o Construct the graph from the input instance
e Run the suitable graph algorithm on the graph
o Convert the output into a suitable/required format

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

	Graphs
	Definition of a Graph
	Omnipresence of Graphs

	Graph Representations
	Adjacency List Representation
	Adjacency Matrix Representation
	Alternative Graph Representations

	Solving Problems with Graph Algorithms

