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What is a Graph?

Graph G = (V ,E )

V : set of vertices

E : set of edges consisting of pairs of vertices from V

V = {v0, v1, v2, v3, v4}
E = {(v0, v1), (v0, v3), (v1, v2), (v1, v4)}
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once.
Posed by Leonard Euler [1707 - 1783].

modified from wikipedia

What is the minimum number of bridges that need to be added so
that there exists a route that crosses each bridge exactly once?

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Graphs

Graph Representations
Solving Problems with Graph Algorithms

Definition of a Graph
Omnipresence of Graphs

Road Networks as Graphs

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Graphs

Graph Representations
Solving Problems with Graph Algorithms

Definition of a Graph
Omnipresence of Graphs

Airline Routes as Graphs

Figure: http://www.airlineroutemaps.com/
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Social Networks as Graphs

Figure: http://hbr.idnet.net/images/
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The Internet as a Graph

Figure: Credit: Matt Britt

Visualization of the various
routes through a portion of the
Internet.

Figure: Credit: Young Hyun, CAIDA
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Websites as Graphs

Figure: http://www.google.com

Figure: Credit: Marcel Salathe
http://www.aharef.info

Figure: http://www.cs.gmu.edu

Figure: http://www.apple.com
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Biological Networks as Graphs

Figure: Adapted from A. Barabasi, University of Notre Dame
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Applications of Graphs

Compilers

Databases

Neural Networks

Machine Learning

Artificial Intelligence

Robotics

Computational Biology

...
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Formal Definition of a Graph

A graph G = (V ,E ) is a pair consisting of:

a set V of vertices (or nodes)

a set E ⊆ V × V of edges (or arcs)

edge ei ∈ E is a pair (u, v) connecting vertices u and v

A graph G = (V ,E ) is:

directed (referred to as a digraph) if E is a set of ordered
pairs of vertices. The edges here are often referred to as
directed edges or arrows.

undirected if E is a set of unordered pairs of vertices.

weighted if there are weights associated with the edges.
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Illustrations of Types of Graphs

Figure: undirected graph

Figure: multigraph

Figure: directed graph

Figure: weighted graph
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General Definition of a Graph

In a graph G = (V ,E ):

E may be a set of unorderered pairs of vertices not necessarily
distinct. More than one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.
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Focusing on Simple Graphs

Simple Graphs

A simple graph, or a strict graph, is an unweighted,
undirected graph containing no loops or multiple edges

Given that E ⊆ V × V , |E | ∈ O(|V |2).

If a graph is connected, |E | ≥ |V | − 1

Combining the two, show that lg(|E |) ∈ θ(lg(|V |))
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More Definitions, Conventions, Nomenclature

A subgraph H of G = (V ,E ) is H = (V1,E1) where V1 ⊆ V
and E1 ⊆ E , where ∀e = (k , j) ∈ E1, k, j ∈ V1.

A path is a sequence of vertices, where each pair of successive
vertices is connected by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

Two vertices are adjacent if they are connected by an edge.

The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

A graph is connected if ∃ a path between every pair of
vertices.

A tree is a connected graph with no cycles.
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Graph Representations

A graph can be represented as an adjacency list.

A graph can be represented as an adjacency matrix.
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Basic Graph Functionality

Function Adjacency List

find(v) O(|V |)
hasVertex(v) O(find(v))
hasEdge(vi , vj) O(find(vi) + deg(vi))
insertVertex(v) O(1)
insertEdge(vi , vj) O(find(vi))
removeVertex(v) O(|V |+ |E |)
removeEdge(vi , vj) O(find(vi) + deg(vi))
outEdges(v) O(find(v) + deg(v))
inEdges(v) O(|V |+ |E |)
overall memory O(|V |+ |E |)

In undirected graphs:
|elist[v]| = degree(v).

In digraphs:
|elist[v]| = out-degree(v).

Handshaking Lemma:
∑

v∈V |elist(v)| = 2|E| for undirected
graphs. O(|V |+ |E |) storage ⇒ sparse representation.
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More on Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list
The list of vertices themselves can be implemented using:

A linked list

A binary search tree

A hash table

In a standard implementation, each edge list has two fields, a data
field and a pointer:

The data field contains adjacent vertex name and edge
information

The pointer points to next adjacent vertex
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Basic Graph Functionality

Function Adjacency Matrix

find(v) O(1)
hasVertex(v) O(1)
hasEdge(vi , vj) O(1)
insertVertex(v) O(|V |2)
insertEdge(vi , vj) O(1)
removeVertex(v) O(|V |2)
removeEdge(vi , vj) O(1)
outEdges(v) O(|V |)
inEdges(v) O(|V |)
overall memory O(|V |2)

O(|V |2) storage ⇒ dense representation.
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Comparing The Two Representations

Function Adjacency List Adjacency Matrix

find(v) O(|V |) O(1)
hasVertex(v) O(find(v)) O(1)
hasEdge(vi , vj) O(find(vi) + deg(vi)) O(1)
insertVertex(v) O(1) O(|V |2)
insertEdge(vi , vj) O(find(vi)) O(1)
removeVertex(v) O(|V |+ |E |) O(|V |2)
removeEdge(vi , vj) O(find(vi) + deg(vi)) O(1)
outEdges(v) O(find(v) + deg(v)) O(|V |)
inEdges(v) O(|V |+ |E |) O(|V |)
overall memory O(|V |+ |E |) O(|V |2)
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Alternative Graph Representations

HashMap

Fast to query [hasVertex, hasEdge] O(1)

Fast to scan [outEdges] O(|V |)

Fast to insert [insertVertex, insertEdge] O(1)

Fast to remove [removeEdge] O(1)
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Graph Representation: Hash Map

Vertex set as a hash map

key: vertex
data: outgoing edges

Outgoing edges of each
vertex as a hash set
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Comparing The Three Representations

Function Adj. List Adj. Matrix Hash Map

find(v) O(|V |) O(1) O(1)
hasVertex(v) O(|V |) O(1) O(1)
hasEdge(vi , vj) O(|V |+ deg(vi)) O(1) O(1)
insertVertex(v) O(1) O(|V |2) O(1)
insertEdge(vi , vj) O(|V |) O(1) O(1)
removeVertex(v) O(|V |+ |E |) O(|V |2) O(|V |)
removeEdge(vi , vj) O(|V |+ deg(vi)) O(1) O(1)
outEdges(v) O(|V |+ deg(v)) O(|V |) O(deg(v))
inEdges(v) O(|V |+ |E |) O(|V |) O(|V |)
overall memory O(|V |+ |E |) O(|V |2) linear-quadratic
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Graph modeling: Problem Solving with Graph Algorithms

Identify the vertices and the edges in your problem formulation

Identify the objective of the problem

State this objective in graph terms

Implementation:

Construct the graph from the input instance
Run the suitable graph algorithm on the graph
Convert the output into a suitable/required format
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