Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

1 Graphs

- Definition of a Graph
- Omnipresence of Graphs

2 Graph Representations

- Adjacency List Representation
- Adjacency Matrix Representation
- Alternative Graph Representations

3 Solving Problems with Graph Algorithms

Definition of a Graph Omnipresence of Graphs

What is a Graph?

Graph G = (V, E)

- V : set of vertices
- E : set of edges consisting of pairs of vertices from V

Definition of a Graph Omnipresence of Graphs

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by Leonard Euler [1707 - 1783].

modified from wikipedia

What is the minimum number of bridges that need to be added so that there exists a route that crosses each bridge exactly once?

 V_1

Definition of a Graph Omnipresence of Graphs

Road Networks as Graphs

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Definition of a Graph Omnipresence of Graphs

Airline Routes as Graphs

Figure: http://www.airlineroutemaps.com/

Definition of a Graph Omnipresence of Graphs

Social Networks as Graphs

Figure: http://hbr.idnet.net/images/

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Definition of a Graph Omnipresence of Graphs

The Internet as a Graph

Figure: Credit: Matt Britt

Visualization of the various routes through a portion of the Internet.

Figure: Credit: Young Hyun, CAIDA

Definition of a Graph Omnipresence of Graphs

Websites as Graphs

Figure: http://www.google.com

blue: for links red: for tables green: for the DIV tag violet: for images prime: for forms orange: for linebreaks and blockquotes black: the HTML tag, the root node gray: all other tags

Figure: Credit: Marcel Salathe http://www.aharef.info

Definition of a Graph Omnipresence of Graphs

Biological Networks as Graphs

Figure: Adapted from A. Barabasi, University of Notre Dame

Definition of a Graph Omnipresence of Graphs

Applications of Graphs

- Compilers
- Databases
- Neural Networks
- Machine Learning
- Artificial Intelligence
- Robotics
- Computational Biology
- ...

Definition of a Graph Omnipresence of Graphs

Formal Definition of a Graph

- A graph G = (V, E) is a pair consisting of:
- a set V of vertices (or nodes)
- a set $E \subseteq V \times V$ of edges (or arcs)
 - edge $e_i \in E$ is a pair (u, v) connecting vertices u and v

A graph G = (V, E) is:

- directed (referred to as a digraph) if *E* is a set of ordered pairs of vertices. The edges here are often referred to as directed edges or arrows.
- undirected if E is a set of unordered pairs of vertices.
- weighted if there are weights associated with the edges.

Definition of a Graph Omnipresence of Graphs

Illustrations of Types of Graphs

Figure: directed graph

Figure: weighted graph

Definition of a Graph Omnipresence of Graphs

General Definition of a Graph

In a graph G = (V, E):

- *E* may be a set of unorderered pairs of vertices not necessarily distinct. More than one edge can connect two vertices.
- An edge in *E* may connect more than two vertices.
- These graphs are referred to as multigraphs or pseudo-graphs.

Definition of a Graph Omnipresence of Graphs

Focusing on Simple Graphs

Simple Graphs

- A simple graph, or a strict graph, is an unweighted, undirected graph containing no loops or multiple edges
- Given that $E \subseteq V \times V$, $|E| \in O(|V|^2)$.
- If a graph is connected, $|E| \geq |V| 1$
- Combining the two, show that $lg(|E|) \in \theta(lg(|V|))$

Definition of a Graph Omnipresence of Graphs

More Definitions, Conventions, Nomenclature

- A subgraph H of G = (V, E) is $H = (V_1, E_1)$ where $V_1 \subseteq V$ and $E_1 \subseteq E$, where $\forall e = (k, j) \in E_1$, $k, j \in V_1$.
- A **path** is a sequence of vertices, where each pair of successive vertices is connected by an edge.
- The length of the path is the number of edges in the path.
- A simple path contains unique vertices.
- A cycle is a simple path with the same first and last vertex.
- Two vertices are **adjacent** if they are connected by an edge.
- The neighbors of a vertex are all the vertices adjacent to it.
- The **degree** of a vertex is the number of its neighbors.
- A graph is **connected** if ∃ a path between every pair of vertices.
- A tree is a connected graph with no cycles.

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Graph Representations

- A graph can be represented as an adjacency list.
- A graph can be represented as an adjacency matrix.

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Adjacency List Representation

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Basic Graph Functionality

Function	Adjacency List	
find(v)	O(V)	
hasVertex(v)	$O(\mathrm{find}(\mathrm{v}))$	
$hasEdge(v_i, v_j)$	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	In undirected graphs:
insertVertex(v)	O(1)	$\left \text{olign}(y) \right = \text{degree}(y)$
$insertEdge(v_i, v_j)$	$O(\mathrm{find}(\mathrm{v_i}))$	$ \operatorname{enst}[v] = \operatorname{degree}(v)$.
removeVertex(v)	O(V + E)	In digraphs:
removeEdge (v_i, v_j)	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	elist[v] = out-degree(v).
outEdges(v)	$O(\operatorname{find}(v) + \operatorname{deg}(v))$	
inEdges(v)	O(V + E)	
overall memory	O(V + E)	

Handshaking Lemma: $\sum_{v \in V} |elist(v)| = 2|E|$ for undirected graphs. O(|V| + |E|) storage \Rightarrow sparse representation.

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

More on Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list The list of vertices themselves can be implemented using:

- A linked list
- A binary search tree
- A hash table

In a standard implementation, each edge list has two fields, a data field and a pointer:

- The data field contains adjacent vertex name and edge information
- The pointer points to next adjacent vertex

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Adjacency Matrix Representation

Outline of Today's Class Graphs Solving Problems with Graph Algorithms

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Basic Graph Functionality

Adjacency Matrix
<i>O</i> (1)
O(1)
O(1)
$O(V ^2)$
O(1)
$O(V ^2)$
O(1)
O(V)
O(V)
$O(V ^2)$

 $O(|V|^2)$ storage \Rightarrow **dense** representation.

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Comparing The Two Representations

Function	Adjacency List	Adjacency Matrix
find(v)	O(V)	<i>O</i> (1)
hasVertex(v)	$O(\mathrm{find}(\mathrm{v}))$	O(1)
$hasEdge(v_i, v_j)$	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	O(1)
insertVertex(v)	<i>O</i> (1)	$O(V ^2)$
$insertEdge(v_i, v_j)$	$O(\text{find}(v_i))$	O(1)
removeVertex(v)	O(V + E)	$O(V ^2)$
removeEdge (v_i, v_j)	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	O(1)
outEdges(v)	$O(\operatorname{find}(v) + \operatorname{deg}(v))$	O(V)
inEdges(v)	O(V + E)	O(V)
overall memory	O(V + E)	$O(V ^2)$

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Alternative Graph Representations

HashMap			
Fast to query	[hasVertex, hasEdge]	O(1)	
Fast to scan	[outEdges]	O(V)	
Fast to insert	[insertVertex, insertEdge]	O(1)	
Fast to remove	[removeEdge]	<i>O</i> (1)	

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Graph Representation: Hash Map

- Vertex set as a hash map
 - key: vertex
 - data: outgoing edges
- Outgoing edges of each vertex as a hash set

using namespace std_ext;
hash_map
vertex outgoing edges
$$v_0$$
 hash_set: v_1 , v_2 , v_4
hash_set: v_1
hash_set: v_1
hash_set: v_2
hash_set: v_4
hash_set: v_4
hash_set: v_4
hash_set: v_7

Adjacency List Representation Adjacency Matrix Representation Alternative Graph Representations

Comparing The Three Representations

Function	Adj. List	Adj. Matrix	Hash Map
find(v)	O(V)	O(1)	<i>O</i> (1)
hasVertex(v)	O(V)	O(1)	O(1)
$hasEdge(v_i, v_j)$	$O(V + \deg(v_i))$	O(1)	O(1)
insertVertex(v)	<i>O</i> (1)	$O(V ^2)$	O(1)
$insertEdge(v_i, v_j)$	O(V)	O(1)	O(1)
removeVertex(v)	O(V + E)	$O(V ^2)$	O(V)
$removeEdge(v_i, v_j)$	$O(V + \deg(v_i))$	O(1)	O(1)
outEdges(v)	$O(V + \deg(v))$	O(V)	$O(\deg(v))$
inEdges(v)	O(V + E)	O(V)	O(V)
overall memory	O(V + E)	$O(V ^2)$	linear-quadratic

Graph modeling: Problem Solving with Graph Algorithms

- Identify the vertices and the edges in your problem formulation
- Identify the objective of the problem
- State this objective in graph terms
- Implementation:
 - Construct the graph from the input instance
 - Run the suitable graph algorithm on the graph
 - Convert the output into a suitable/required format