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Dynamic Programming

Dynamic Programming is a design technique like
divide-and-conquer

Example: Longest Common Subsequence (LCS)

Given two sequences x [1 . . .m] and y [1 . . . n], find a longest
subsequence common to them both:
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Brute-force LCS Algorithm

Check every subsequence of x [1 . . .m] to see if it is also a
subsequence of y [1 . . . n].

Analysis:

There are 2m possible subsequences of x , since each bit-vector
of length m represents a distinct subsequence of x

Checking each one of them into y takes O(n) time

So, worst-case running time is O(n · 2m)

An exponential running time is impractical
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A Better Algorithm

Simplification:

Look at the length of a longest common subsequence

Extend the algorithm to find the LCS itself

Notation: Let |s| denote the length of a sequence s

Proposed Strategy: Consider prefixes of x and y

Define c[i , j ] = |LCS(x[1 . . . i], y[1 . . . j])|
Then, LCS(x, y) = c[m,n]

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems

Recursive Formulation

Theorem:

c[i , j ] =

{
c[i − 1, j − 1] + 1 if x [i ] = y [j ]
max{c[i − 1, j ], c[i , j − 1]} otherwise

Proof: Case x [i ] = y [j ]

Let z [1 . . . k] = LCS(x[1 . . . i], y[1 . . . j]), where c[i , j ] = k . Then
z [k] = x [i ]. Otherwise, z could be extended by x [i ]. Moreover,
z [1 . . . k − 1] = LCS (x [1 . . . i − 1], y [1 . . . j − 1]).
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Continuing Proof in Case 1

Claim: z [1 . . . k − 1] = LCS(x[1 . . . i− 1], y[1 . . . j− 1])

Proof of Claim by Contradiction:

Suppose w is a longer common subsequence of x [1 . . . i − 1]
and y [1 . . . j − 1]. That is, |w | > k − 1.

Then, cut and paste: w · z [k] (w concatenated by z [k]) is also
a common subsequence of x [1 . . . i ] and y [1 . . . j ]. Since
|w · z [k]| > k , we have reached a contradiction, proving the
above claim.

So, c[i − 1, j − 1] = k − 1, which implies that
c[i , j ] = c[i − 1, j − 1] + 1.

Case 2 is proven with a similar argument.
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Dynamic Programming: Hallmark # 1

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x
and a prefix of y .
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Recursive Algorithm for LCS

LCS(x, y, i, j)
1: if x [i ] = y [j ] then
2: c[i , j ] ← LCS(x , y , i − 1, j − 1) + 1
3: else c[i , j ] = max{LCS(x, y, i− 1, j),LCS(x, y, i, j− 1)}

Worst-case: When x [i ] 6= y [j ], the algorithm evaluates two
subproblems, each one with only one parameter decremented.
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Analysis of Recursion Tree

The height of the recursion tree is m + n. It seems that the work is
exponential because we are solving the same subproblems over and
over. We need to remember subproblems once we solve them!
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Dynamic Programming: Hallmark # 2

The number of distinct LCS subproblems for two strings of lengths
m and n is only mn.
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Memoization Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

LCS(x, y, i, j)
1: if c[i , j ] = NIL then
2: if x [i ] = y [j ] then
3: c[i , j ] ← LCS(x , y , i − 1, j − 1) + 1
4: else c[i , j ] = max{LCS(x, y, i− 1, j),LCS(x, y, i, j− 1)}

Running Time Analysis: T (n,m) ∈ θ(m · n) since the amount of
work per table entry is constant.
Space Analysis: S(n,m) ∈ θ(m · n) since we only store the table.
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Dynamic Programming Algorithm

Idea:

Fill the table top left to
bottom right

T (n,m) ∈ θ(m · n)

Reconstruct the LCS by
tracing backwards

S(n,m) ∈ θ(m · n)

Exercise: reduce S(n,m) to
O(min{m, n})
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The 0/1 Integer Knapsack Problem
The Fractional Knapsack Problem
Huffman Coding
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Greedy Algorithms

Used to solve optimization problems

A greedy algorithm builds a solution one step at a time

At each step, the algorithm makes the currently best choice
from a small number of choices

The currently best choice is also referred to as the locally
optimal choice

Greedy algorithms are similar to DP algorithms in:

the solution is efficient if the problem exhibits substructure

BUT

The greedy solution may not be optimal even if the problem
exhibits optimal substructure
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When to Apply the Greedy Approach

When to Design Greedy Algorithms

On problems with optimal substructure where the greedy
approach is the optimal approach

These problems are said to have the greedy-choice property: a
“locally optimal” choice leads to a “globally optimal” solution

Applying the greedy approach to other problems that do not
have this property can yield suboptimal solutions

Suboptimal solutions may be good enough approximations of
the optimal solution on some applications

Instance: when globally optimal solution is too expensive to
compute
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Sample Problems to Illustrate Greedy Algorithms

The 0/1 Integer Knapsack Problem

The Fractional Knapsack Problem

Variable-length (Huffman) Coding
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The 0/1 Integer Knapsack Problem

Given n objects

Each object has an integer weight wi and integer profit pi

You have a knapsack with an integer weight capacity M

Problem: Find the subset of n objects that fits in the
knapsack and gives the maximum total profit
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Examples of Possible Solutions

Say the knapsack has capacity M = 20:

Object i 1 2 3 4 5 6

Profit pi 7 6 12 3 12 6

Weight wi 2 8 10 4 14 5

Possible solutions:

Put items 1-3 in knapsack: Total weight is 20, and profit is 25

Put items 1, 2, 4, and 6: Total weight now is 19, profit is 32

Other possible solutions ...

How long does it take to evaluate all feasible solutions?
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Mathematical Formulation of the Optimization Problem

MAXIMIZE
p1 · x1 + p2 · x2 . . . pn · xn

such that (SUBJECT TO CONSTRAINT)

w1 · x1 + w2 · x2 + . . .wn · xn ≤ M

where xi ∈ {0, 1} for i ∈ {1, 2, . . . , n}
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A Dynamic Programming Solution

Define fi (y) to be the optimal solution to the subproblem:

MAXIMIZE p1 · x1 + p2 · x2 . . . pi · xi
such that w1 · x1 + w2 · x2 + . . .wi · xi ≤ y

where xj ∈ {0, 1} for j ∈ {1, 2, . . . , i}

Then we see the optimal substructure of the solution:

fi (y) =

{
max{fi−1(y), pi + fi−1(y − wi )} if y ≥ wi

fi−1(y) if y < wi
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Seeing the Optimal Substructure

f1(y) = the maximum profit for capacity y considering only
object 1, where x1 ∈ {0, 1}
f2(y) = the maximum profit for capacity y considering only
objects 1 and 2, where x1, x2 ∈ {0, 1}
Consider what happens when we consider object 3:

If x3 = 0, this means we do not choose to include object 3 in
the knapsack. So, maximum profit is what it used to be using
objects 1, 2: f3(y) = f2(y)
Else, we choose to include, which means we only have y − w3

capacity for objects 1, 2:

We do not know a priori whether x3 should be 0 or 1
The only criterion is that f3(y) = max{f2(y), f2(y − w3)}
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Computing fi(y)

The optimal substructure dictates that we compute fi−1(y)
for all capacities y ∈ {0, 1, . . . ,M}
The recursion shows it is only necessary to save fi (y) and
fi−1(y) for all possible values of y

Basic Idea:

Set f0(y) = 0 ∀y ∈ {0, 1, . . . ,M}
Compute f1(y) ∀y ∈ {0, 1, . . . ,M}
...
Compute fn(y) ∀y ∈ {0, 1, . . .M}

Question: How big is the matrix that stores solutions to
subproblems?
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Dynamic Programming Solution in Action

Let p = (7, 6, 12, 3, 12, 16), w = (2, 8, 10, 4, 14, 5), and M = 20

0 1 2 3 4 . . . 10 . . . 20

f0 0 0 0 0 0 . . . 0 . . . 0

f1 0 0 7 7 7 . . . 7 . . . 7

f2 0 0 7 7 7 . . . 13 . . . 13

f3 0 0 7 7 7 . . . 13

f4
f5
f6
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A Greedy Approach for the Knapsack Problem

Reorder the objects by increasing weight (focus on feasible
solutions):

Object i 1 4 6 2 3 5

Profit pi 7 3 16 6 12 12

Weight wi 2 4 5 8 10 14

A potential greedy solution:

Put object with smallest weight in knapsack first

Add objects (according to sorted order of weights) into
knapsack as long as there is capacity

What is the resulting greedy solution when M = 20?

What is the time complexity of this approach?
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Another Greedy Approach

Instead, sort the items by descending pi/wi ratios (focusing
on maximizing profit while minimizing weight)

Examine each object i ∈ {1, . . . , n} in this order

If object fits in knapsack, take it

What is the time complexity now?

Does this greedy approach find the optimal solution to the
0/1 Integer Knapsack Problem?

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Greedy Algorithms

In the Context of the Following Problems

Greedy Approach: Not Optimal for 0/1 Knapsack Problem

The 0/1 Knapsack problem can be solved optimally by
Dynamic Programming, as illustrated

The problem cannot be solved optimally by the Greedy
Approach

Why? Because the 0/1 knapsack problem does not have the
greedy-choice property
To show that the greedy approach does not work, we have to
provide a counterexample
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Greedy Approach: Not Optimal for 0/1 Knapsack Problem

Say knapsack has capacity M = 5 and there are n = 3 items:

Object i 1 2 3

Profit pi 6 10 12

Weight wi 1 2 3

Profit/Weight pi/wi 6 5 4

A greedy algorithm that chooses by highest profit/weight
chooses items 1 and 2 for a total profit of 16

Optimal solution: items 2 and 3 for a total value of 22

Hence, greedy algorithm does not give optimal solution

However, the greedy approach gives an optimal solution to the
fractional knapsack problem

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Greedy Algorithms

In the Context of the Following Problems

The Fractional Knapsack Problem

Given n objects

Each object has an integer profit pi

Each object has a fractional weight wi

You can take fractions of an object

You have a knapsack with weight capacity M, where M is not
necessarily an integer

Problem: Fit objects (taking even fractions of them) that give
the maximum total profit
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An Optimal Greedy Solution to the Fractional Knapsack
Problem

Sort the items by descending pi/wi ratios (focusing on
maximizing profit while minimizing weight)

Examine each object i ∈ {1, . . . , n} in this order

If object fits in knapsack, take it

What is the time complexity?

Why does this greedy approach find the optimal solution to
the Fractional Knapsack Problem?
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Proof of Correctness

Let X ∈ {1, 2, . . . , k} be the optimal items taken

Consider item j with associated (pj ,wj) that has the the
highest pj/wj ratio

If j is not used in X , then X is not optimal: We can remove
portions of items with a total weight of wj from X and add j
instead.

Repeating this process, you see that the greedy approach
changes X considering all items without decreasing the total
value of X .
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The Coding Problem

Consider a message consisting of k characters (with known
frequencies).

We want to encode this message using a binary cipher

That is, we want to assign d bits to each letter:
Letter a b c d e f

Frequency (×103) 45 13 12 16 9 5

Fixed-length encoding 000 001 010 011 100 101

A message consisting of 100, 000 a-f characters would require
300, 000 bits of storage!!!
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How about Variable-length Encoding?

We could assign a variable-length encoding instead:
Letter a b c d e f

Frequency (×103) 45 13 12 16 9 5

Fixed-length encoding 000 001 010 011 100 101

Variable-length encoding 0 101 100 111 1101 1100

A message like 001011101 parses uniquely

That is to say that one can decode this cipher uniquely
This result is based on the fact that no code is a prefix of
another for the encoded characters

Only 9 bits are used instead.
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Optimum Source Coding Problem

Problem: Given an alphabet A = {a1, . . . , an} with frequency
distribution f (ai ), find a binary prefix code C for A that minimizes
the number of bits

B(C ) =
n∑

i=1

f (ai ) · L(c(ai ))

needed to encode a message of
∑n

i=1 f (ai ) characters, where c(ai )
is the codeword/code for encoding ai , and L(c(ai )) is the length of
this code.

Solution: Huffman developed a greedy algorithm for producing a
minimum-cost prefix code. The code that is produced is called a
Huffman Code.
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Basic Idea Behind Huffman Coding

A binary tree constructs codes

1-1 correspondence between the
leaves and the characters

The label of each leaf is the
frequency of each character

Left edges are labeled 0, right
edges are labeled 1

Path from root to leaf is the
code associated with the
character at that leaf
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Basic Idea Behind Huffman Coding

Step 1. Pick two letters x , y from alphabet A with the smallest
frequencies and create a subtree that has these two characters as
leaves. This is the greedy idea. Label the root of this subtree as z .

Step 2. Set frequency f (z) = f (x) + f (y). Remove x and y and
add z , creating a new alphabet A

′
= A ∪ z − {x , y}. Note that

|A′ | = |A| − 1

Repeat this procedure, called merge, creating new alphabet A
′

until
only one symbol is left. The resulting tree is the Huffman Code.
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Huffman Code Algorithm

HuffmanCoding(C)
1: n← |A|
2: Q ← A
3: for all i = 1 to n − 1 do
4: allocate a new node z
5: left[z]← x← EXTRACT-MIN(Q)
6: right[z]← y← EXTRACT-MIN(Q)
7: f [z ]← f [x ] + f [y ]
8: INSERT(Q, z)
9: return EXTRACT-MIN(Q)

Can you see why the time complexity of this algorithm is
O(n · lgn)?
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