Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Dynamic Programming

- Longest Common Subsequence
- Dynamic Programming Hallmark \# 1: Optimal Substructure
- Dynamic Programming Solution to LCS
- Dynamic Programming Hallmark \# 2: Overlapping subproblems

Dynamic Programming

Dynamic Programming is a design technique like divide-and-conquer

Example: Longest Common Subsequence (LCS)

Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both:

Brute-force LCS Algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis:

- There are 2^{m} possible subsequences of x, since each bit-vector of length m represents a distinct subsequence of x
- Checking each one of them into y takes $O(n)$ time
- So, worst-case running time is $O\left(n \cdot 2^{m}\right)$
- An exponential running time is impractical

A Better Algorithm

Simplification:

- Look at the length of a longest common subsequence
- Extend the algorithm to find the LCS itself

Notation: Let $|s|$ denote the length of a sequence s
Proposed Strategy: Consider prefixes of x and y

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots \mathrm{i}], \mathrm{y}[1 \ldots \mathrm{j}])|$
- Then, $\operatorname{LCS}(x, y)=c[m, n]$

Recursive Formulation

Theorem:

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j] \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise }\end{cases}
$$

Proof: Case $x[i]=y[j]$

Let $z[1 \ldots k]=\operatorname{LCS}(\mathrm{x}[1 \ldots \mathrm{i}], \mathrm{y}[1 \ldots \mathrm{j}])$, where $c[i, j]=k$. Then $z[k]=x[i]$. Otherwise, z could be extended by $x[i]$. Moreover, $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$.

Continuing Proof in Case 1

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(\mathrm{x}[1 \ldots \mathrm{i}-1], \mathrm{y}[1 \ldots \mathrm{j}-1])$

Proof of Claim by Contradiction:

- Suppose w is a longer common subsequence of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$. That is, $|w|>k-1$.
- Then, cut and paste: $w \cdot z[k](w$ concatenated by $z[k])$ is also a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$. Since $|w \cdot z[k]|>k$, we have reached a contradiction, proving the above claim.
- So, $c[i-1, j-1]=k-1$, which implies that $c[i, j]=c[i-1, j-1]+1$.

Case 2 is proven with a similar argument.

Dynamic Programming: Hallmark \# 1

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive Algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$
1: if $x[i]=y[j]$ then
2: $\quad c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1$
3: else $c[i, j]=\max \{\operatorname{LCS}(\mathrm{x}, \mathrm{y}, \mathrm{i}-1, \mathrm{j}), \operatorname{LCS}(\mathrm{x}, \mathrm{y}, \mathrm{i}, \mathrm{j}-1)\}$
Worst-case: When $x[i] \neq y[j]$, the algorithm evaluates two subproblems, each one with only one parameter decremented.

Analysis of Recursion Tree

$$
m=3, n=4
$$

same subproblem

The height of the recursion tree is $m+n$. It seems that the work is exponential because we are solving the same subproblems over and over. We need to remember subproblems once we solve them!

Dynamic Programming: Hallmark \# 2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Memoization Algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$
1: if $c[i, j]=$ NIL then
2: if $x[i]=y[j]$ then
3:
$c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1$
4: \quad else $c[i, j]=\max \{\operatorname{LCS}(x, y, i-1, j), \operatorname{LCS}(x, y, i, j-1)\}$
Running Time Analysis: $T(n, m) \in \theta(m \cdot n)$ since the amount of work per table entry is constant.
Space Analysis: $S(n, m) \in \theta(m \cdot n)$ since we only store the table.

Dynamic Programming Algorithm

Idea:

- Fill the table top left to bottom right
- $T(n, m) \in \theta(m \cdot n)$
- Reconstruct the LCS by tracing backwards
- $S(n, m) \in \theta(m \cdot n)$
- Exercise: reduce $S(n, m)$ to $O(\min \{m, n\})$

Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Greedy Algorithms

- In the Context of the Following Problems
- The 0/1 Integer Knapsack Problem
- The Fractional Knapsack Problem
- Huffman Coding

Greedy Algorithms

- Used to solve optimization problems
- A greedy algorithm builds a solution one step at a time
- At each step, the algorithm makes the currently best choice from a small number of choices
- The currently best choice is also referred to as the locally optimal choice
- Greedy algorithms are similar to DP algorithms in:
- the solution is efficient if the problem exhibits substructure
- BUT
- The greedy solution may not be optimal even if the problem exhibits optimal substructure

When to Apply the Greedy Approach

When to Design Greedy Algorithms

- On problems with optimal substructure where the greedy approach is the optimal approach
- These problems are said to have the greedy-choice property: a "locally optimal" choice leads to a "globally optimal" solution
- Applying the greedy approach to other problems that do not have this property can yield suboptimal solutions
- Suboptimal solutions may be good enough approximations of the optimal solution on some applications
- Instance: when globally optimal solution is too expensive to compute

Sample Problems to Illustrate Greedy Algorithms

- The 0/1 Integer Knapsack Problem
- The Fractional Knapsack Problem
- Variable-length (Huffman) Coding

The 0/1 Integer Knapsack Problem

- Given n objects
- Each object has an integer weight w_{i} and integer profit p_{i}
- You have a knapsack with an integer weight capacity M
- Problem: Find the subset of n objects that fits in the knapsack and gives the maximum total profit

Examples of Possible Solutions

Say the knapsack has capacity $M=20$:

Object	i	1	2	3	4	5	6
Profit	p_{i}	7	6	12	3	12	6
Weight	w_{i}	2	8	10	4	14	5

Possible solutions:

- Put items $1-3$ in knapsack: Total weight is 20 , and profit is 25
- Put items $1,2,4$, and 6 : Total weight now is 19 , profit is 32
- Other possible solutions ...

How long does it take to evaluate all feasible solutions?

Mathematical Formulation of the Optimization Problem

MAXIMIZE

$$
p_{1} \cdot x_{1}+p_{2} \cdot x_{2} \ldots p_{n} \cdot x_{n}
$$

such that (SUBJECT TO CONSTRAINT)

$$
w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+\ldots w_{n} \cdot x_{n} \leq M
$$

where $x_{i} \in\{0,1\}$ for $i \in\{1,2, \ldots, n\}$

A Dynamic Programming Solution

Define $f_{i}(y)$ to be the optimal solution to the subproblem:

$$
\begin{aligned}
& \text { MAXIMIZE } p_{1} \cdot x_{1}+p_{2} \cdot x_{2} \ldots p_{i} \cdot x_{i} \\
& \text { such that } w_{1} \cdot x_{1}+w_{2} \cdot x_{2}+\ldots w_{i} \cdot x_{i} \leq y \\
& \text { where } x_{j} \in\{0,1\} \text { for } j \in\{1,2, \ldots, i\}
\end{aligned}
$$

Then we see the optimal substructure of the solution:

$$
f_{i}(y)= \begin{cases}\max \left\{f_{i-1}(y), p_{i}+f_{i-1}\left(y-w_{i}\right)\right\} & \text { if } y \geq w_{i} \\ f_{i-1}(y) & \text { if } y<w_{i}\end{cases}
$$

Seeing the Optimal Substructure

- $f_{1}(y)=$ the maximum profit for capacity y considering only object 1 , where $x_{1} \in\{0,1\}$
- $f_{2}(y)=$ the maximum profit for capacity y considering only objects 1 and 2 , where $x_{1}, x_{2} \in\{0,1\}$
- Consider what happens when we consider object 3:
- If $x_{3}=0$, this means we do not choose to include object 3 in the knapsack. So, maximum profit is what it used to be using objects 1, 2: $f_{3}(y)=f_{2}(y)$
- Else, we choose to include, which means we only have $y-w_{3}$ capacity for objects 1,2 :
- We do not know a priori whether x_{3} should be 0 or 1
- The only criterion is that $f_{3}(y)=\max \left\{f_{2}(y), f_{2}\left(y-w_{3}\right)\right\}$

Computing $f_{i}(y)$

- The optimal substructure dictates that we compute $f_{i-1}(y)$ for all capacities $y \in\{0,1, \ldots, M\}$
- The recursion shows it is only necessary to save $f_{i}(y)$ and $f_{i-1}(y)$ for all possible values of y
- Basic Idea:
- Set $f_{0}(y)=0 \forall y \in\{0,1, \ldots, M\}$
- Compute $f_{1}(y) \forall y \in\{0,1, \ldots, M\}$
- ...
- Compute $f_{n}(y) \forall y \in\{0,1, \ldots M\}$

Question: How big is the matrix that stores solutions to subproblems?

Dynamic Programming Solution in Action

Let $p=(7,6,12,3,12,16), w=(2,8,10,4,14,5)$, and $M=20$

	0	1	2	3	4	\ldots	10	\ldots	20
f_{0}	0	0	0	0	0	\ldots	0	\ldots	0
f_{1}	0	0	7	7	7	\ldots	7	\ldots	7
f_{2}	0	0	7	7	7	\ldots	13	\ldots	13
f_{3}	0	0	7	7	7	\ldots	13		
f_{4}									
f_{5}									
f_{6}									

A Greedy Approach for the Knapsack Problem

Reorder the objects by increasing weight (focus on feasible solutions):

Object	i	1	4	6	2	3	5
Profit	p_{i}	7	3	16	6	12	12
Weight	w_{i}	2	4	5	8	10	14

A potential greedy solution:

- Put object with smallest weight in knapsack first
- Add objects (according to sorted order of weights) into knapsack as long as there is capacity
- What is the resulting greedy solution when $M=20$?
- What is the time complexity of this approach?

Another Greedy Approach

- Instead, sort the items by descending p_{i} / w_{i} ratios (focusing on maximizing profit while minimizing weight)
- Examine each object $i \in\{1, \ldots, n\}$ in this order
- If object fits in knapsack, take it
- What is the time complexity now?
- Does this greedy approach find the optimal solution to the 0/1 Integer Knapsack Problem?

Greedy Approach: Not Optimal for 0/1 Knapsack Problem

- The 0/1 Knapsack problem can be solved optimally by Dynamic Programming, as illustrated
- The problem cannot be solved optimally by the Greedy Approach
- Why? Because the $0 / 1$ knapsack problem does not have the greedy-choice property
- To show that the greedy approach does not work, we have to provide a counterexample

Greedy Approach: Not Optimal for 0/1 Knapsack Problem

Say knapsack has capacity $M=5$ and there are $n=3$ items:

Object	i	1	2	3
Profit	p_{i}	6	10	12
Weight	w_{i}	1	2	3
Profit/Weight	p_{i} / w_{i}	6	5	4

- A greedy algorithm that chooses by highest profit/weight chooses items 1 and 2 for a total profit of 16
- Optimal solution: items 2 and 3 for a total value of 22
- Hence, greedy algorithm does not give optimal solution
- However, the greedy approach gives an optimal solution to the fractional knapsack problem

The Fractional Knapsack Problem

- Given n objects
- Each object has an integer profit p_{i}
- Each object has a fractional weight w_{i}
- You can take fractions of an object
- You have a knapsack with weight capacity M, where M is not necessarily an integer
- Problem: Fit objects (taking even fractions of them) that give the maximum total profit

An Optimal Greedy Solution to the Fractional Knapsack Problem

- Sort the items by descending p_{i} / w_{i} ratios (focusing on maximizing profit while minimizing weight)
- Examine each object $i \in\{1, \ldots, n\}$ in this order
- If object fits in knapsack, take it
- What is the time complexity?
- Why does this greedy approach find the optimal solution to the Fractional Knapsack Problem?

Proof of Correctness

Let $X \in\{1,2, \ldots, k\}$ be the optimal items taken

- Consider item j with associated $\left(p_{j}, w_{j}\right)$ that has the the highest p_{j} / w_{j} ratio
- If j is not used in X, then X is not optimal: We can remove portions of items with a total weight of w_{j} from X and add j instead.
- Repeating this process, you see that the greedy approach changes X considering all items without decreasing the total value of X.

The Coding Problem

- Consider a message consisting of k characters (with known frequencies).
- We want to encode this message using a binary cipher
- That is, we want to assign d bits to each letter:

Letter	a	b	c	d	e	f
Frequency $\left(\times 10^{3}\right)$	45	13	12	16	9	5
Fixed-length encoding	000	001	010	011	100	101

- A message consisting of 100,000 a-f characters would require 300, 000 bits of storage!!!

How about Variable-length Encoding?

- We could assign a variable-length encoding instead:

Letter	a	b	c	d	e	f
Frequency $\left(\times 10^{3}\right)$	45	13	12	16	9	5
Fixed-length encoding	000	001	010	011	100	101
Variable-length encoding	0	101	100	111	1101	1100

- A message like 001011101 parses uniquely
- That is to say that one can decode this cipher uniquely
- This result is based on the fact that no code is a prefix of another for the encoded characters
- Only 9 bits are used instead.

Optimum Source Coding Problem

Problem: Given an alphabet $A=\left\{a_{1}, \ldots, a_{n}\right\}$ with frequency distribution $f\left(a_{i}\right)$, find a binary prefix code C for A that minimizes the number of bits

$$
B(C)=\sum_{i=1}^{n} f\left(a_{i}\right) \cdot L\left(c\left(a_{i}\right)\right)
$$

needed to encode a message of $\sum_{i=1}^{n} f\left(a_{i}\right)$ characters, where $c\left(a_{i}\right)$ is the codeword/code for encoding a_{i}, and $L\left(c\left(a_{i}\right)\right)$ is the length of this code.

Solution: Huffman developed a greedy algorithm for producing a minimum-cost prefix code. The code that is produced is called a Huffman Code.

Basic Idea Behind Huffman Coding

- A binary tree constructs codes
- 1-1 correspondence between the leaves and the characters
- The label of each leaf is the frequency of each character
- Left edges are labeled 0, right edges are labeled 1
- Path from root to leaf is the code associated with the character at that leaf

Basic Idea Behind Huffman Coding

Step 1. Pick two letters x, y from alphabet A with the smallest frequencies and create a subtree that has these two characters as leaves. This is the greedy idea. Label the root of this subtree as z.

Step 2. Set frequency $f(z)=f(x)+f(y)$. Remove x and y and add z, creating a new alphabet $A^{\prime}=A \cup z-\{x, y\}$. Note that $\left|A^{\prime}\right|=|A|-1$
Repeat this procedure, called merge, creating new alphabet A^{\prime} until only one symbol is left. The resulting tree is the Huffman Code.

Huffman Code Algorithm

HuffmanCoding(C)
1: $n \leftarrow|A|$
2: $Q \leftarrow A$
3: for all $i=1$ to $n-1$ do
4: allocate a new node z
5: \quad left $[z] \leftarrow \mathrm{x} \leftarrow$ EXTRACT-MIN (Q)
6: $\quad \operatorname{right}[\mathrm{z}] \leftarrow \mathrm{y} \leftarrow$ EXTRACT-MIN (Q)
7: $\quad f[z] \leftarrow f[x]+f[y]$
8: $\operatorname{INSERT}(Q, z)$
9: return EXTRACT-MIN (Q)
Can you see why the time complexity of this algorithm is $O(n \cdot \lg n)$?

