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Definition of a Binary Search Tree

A Binary Search Tree (BST) is a binary tree where:

if y is a node in the left subtree of x , then key[y ] ≤ key[x ]

if y is a node in the right subtree of x , then key[y ] ≥ key[x ]
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Applications of BSTs

BSTs are a family of data structures

Used in online settings, where one needs to maintain and support binary search
and other operations on a dynamic set of (ordered) keys

Binary Space Partition Tree (BSP) – used in almost all 3D video games to
determine which objects need to be rendered (are visible from front to back with
respect to a viewer at a given location)

Hash/Merkel tree/trie – used to implement sets and maps, replacing hash tables
in functional programming, p2p programs, and specialized image-signatures in
which a hash needs to be verified, but whole file not available

Goldreich-Godlwasser-Micali (GGM) Trees – used in cryptographic applications
and complexity theory to generate pseudo-random numbers

Huffman Coding Tree – used in compression algorithms in .jpeg and .mp3 file
formats (will see it in detail in our Greedy Paradigm lecture)

(Abstract syntax)/Syntax tree – used to represent the abstract syntactic
structure of source code written in a programming language

T-tree – used by main-memory databases, such as Datablitz, EXtremeDB,
MySQL Cluster, Oracle TimesTen and MobileLite

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Binary Search Trees
Balanced Search Trees

Binomial Trees
Binomial Heaps

Traversals, Querying, Insertion, and Deletion
Sorting with BSTs

Operations to Support on BSTs

Traversals/Walks

Querying

Insertion

Deletion
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BST Traversals or Walks

BST Walks

Preorder: Visit node, then left subtree, then right subtree.

Inorder: Visit left subtree, then node, then right subtree.

Postorder: Visit left subtree, then right subtree, then node.

Inorder Tree Walk

Inorder-Tree-Walk(x)

1: if x 6= NULL then
2: Inorder-Tree-Walk(left[x ])
3: print key[x ]
4: InorderTree-Walk(right[x ])

What changes in the other
algorithms?

What is the running time?

What is the recurrence
relationship?

How would you solve the
recurrence?
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Querying a BST: Searching for a Key

Querying using Recursion:

Tree-Search(x, k)

1: if x = NULL or k =key[x ] then
2: return x
3: if k <key[x ] then
4: return Tree-Search(left[x ], k)
5: else return

Tree-Search(right[x ], k)

Querying using No Recursion:

Iterative-Tree-Search(x, k)

1: while x 6= NULL and k 6=key[x ]
do

2: if k <key[x ] then
3: x ←left[x ]
4: else x ← right[x ]
5: return x

What do the algorithms return when k is not in the BST?

What is the running time of these algorithms?

What is the recurrence relationship of the recursive version?

How can you solve the recurrence?

Which implementation would you choose?
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Querying a BST: More Operations

Searching for Minimum and Maximum Keys

How would you search for the minimum key in a BST?

Similarly, how would you search for the maximum key?

What time cost do you incur on each?

Searching for Successors and Predecessors

Define successor(x) as the node with smallest key ≥ key[x ]

Define predecessor(x) as the node with largest key ≤ key[x ]

Design an algorithm to find the successor of a node x

Design an algorithm to find the predecessor of a node x

What time cost do you incur on each?
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Finding the Successor of a Node: Case 1

Successor when right subtree
not empty:

is leftmost node of right
subtree
has minimum key in right
subtree
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Finding the Successor of a Node: Case 1

Successor when right subtree is
empty:

lowest ancestor of x
whose left child is also an
ancestor of x
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Finding the Successor of a Node

Successor(x)

1: if right[x ] 6= NULL then
2: return Tree-Minimum(right[x ])
3: y ← p[x ]
4: while y 6= NULL and x =right[y ] do
5: x ← y
6: y ← p[y ]
7: return y

What is the running time of this algorithm?

How is finding the predecessor different?
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Inserting in a BST

Question: How would you insert a key in a BST?

Answer: In its proper place.

Insert 10, 21, 24, 30 into BST

What is the worst-case running
time?
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Deleting a Node From a BST

There are three possible cases when removing a node z :
1 z has no children: delete it
2 z has only one child: splice it out
3 z has two children:

find the successor y of z
splice out y
replace the key of z with that of y
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Sorting an Array with BST

Consider the array A = [3, 1, 8, 2, 6, 7, 5]
Sorting it with a BST requires only two stages:

1 First insert all the elements in a BST
2 Then perform an inorder traversal
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Time Complexity of Sorting an Array with BST

BST sort performs the same comparisons as quicksort, but in
a different order

So, the expected time to build the tree is asymptotically the
same as the running time of quicksort
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Average Node Depth in a BST

The depth of a node is the number of comparisons made
during its insertion into the BST

A total of O(n · lgn) comparisons are made (expected running
time of quicksort)

So, average depth of a node is 1
n · O(n · lgn), or O(lgn)
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Definition of a Balanced Search Tree

Balanced Search Tree:

A search-tree data structure for which a height of O(lgn) is
guaranteed when inserting a dynamic set of n items.

Examples

AA Trees

Splay Trees

Scapegoat Trees

Treaps

T-tree

AVL Trees

2-3 and 2-3-4 trees

B-trees

Red-black trees
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Example of a Red-black tree
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Red-black Trees

Red-black trees are self-balancing binary search trees: they keep
their height small through transformations known as rotations.

Properties

Each node is either red or black
A one-bit color field is needed per node

The root is black

The leaves are the NIL’s and are colored black

If a node is red, then both its children are black
This also means that a red node has a black parent

All paths from a node to descendant leaves have the same
number of black nodes (black-height)

Property ensures that the tree is balanced
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Properties of Red-black Trees

For convenience, NILs sometimes collected in a NIL sentinel

Nr. of black nodes on any path from a node x (not including
x) down to a leaf is black-height of x , or bh(x)
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Height of a Red-black Tree

Theorem: A red-black tree with n internal nodes has height

h ≤ 2 · lg(n + 1)

Proof: Makes use of two corollaries

1 The height h of a tree is at most twice the black-height bh

2 Subtree rooted at a node x has ≥ 2bh(x) − 1 internal nodes

1. Since a red parent can only have black children, at least half the
nodes on a path from root to leaf are black: bh ≥ h/2.
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Height of a Red-black Tree (continued)

2. A subtree rooted at x has nx internal nodes, which are x and
the number of internal nodes in its left and right subtrees. Let
them be nl and nr , respectively. Hence, nx = 1 + nl + nr .

The left and right subtrees each have ≥ bh(x)− 1 black heights
(property of red-black tree). Assuming that the property holds for
the left and right subtrees (we are using induction), then
nx ≥ 1 + 2 ∗ (2bh(x)−1 − 1) = 2bh(x) − 1. [what is the base case?]

Putting it all together: When x is root, nx = n. So, n ≥ 2bh(x)− 1.
This means that lg(n + 1) ≥ bh ≥ h/2. Hence, h ≤ 2 ∗ lg(n + 1).
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Operations on Red-black Trees

Query Operations: SEARCH, MIN, MAX, SUCCESSOR, and
PREDECESSOR run in O(lgn) time on a red-black tree with n
internal nodes

Modifying Operations: INSERT and DELETE, also running in
O(lgn) time on the number of internal nodes, cause modifications
to the red-black tree

color changes

red-black property may be violated

restored by restructuring the links of the tree via rotations
rotations restore the O(lgn) bound of the height
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Rotations in a Red-black Tree

Rotations maintain the inorder ordering of keys (BST property):

a ∈ α, b ∈ β, c ∈ γ ⇒ a ≤ A ≤ b ≤ B ≤ c

A rotation can be performed in O(1) time.
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Insertion into a Red-black Tree

Idea: Insert x in tree and color it red. Only red-black property
may be violated. Move the violation up the tree recoloring it until
can be fixed with rotations and recoloring.

Example:

Insert x = 15 as in BST

Recolor and move violation
up the tree
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Insertion into a Red-black Tree

Idea: Insert x in tree and color it red. Only red-black property
may be violated. Move the violation up the tree recoloring it until
can be fixed with rotations and recoloring.

Example:

Insert x = 15 as in BST

Recolor and move violation
up the tree

Right-rotate(18)
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Insertion into a Red-black Tree

Idea: Insert x in tree and color it red. Only red-black property
may be violated. Move the violation up the tree recoloring it until
can be fixed with rotations and recoloring.

Example:

Insert x = 15 as in BST

Recolor and move violation
up the tree

Right-rotate(18)

Left-rotate(7) and recolor
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Final Words on Red-black Trees

Insertion running time: O(lgn) with O(1) rotations

Delete has same asymptotic running time and number of rotations

Conclusion: Red-black trees are very useful self-balancing binary
search trees to implement associative arrays (e.g., STL map uses
such trees). Implementing Insert and Delete for them is complex
(and almost always requires looking up material) but pays off.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Binary Search Trees
Balanced Search Trees

Binomial Trees
Binomial Heaps

Properties of Binomial Trees
Binomial Trees and Binomial Theorem
Merge Operation on Binomial Trees

Binomial Trees

Definition of a Binomial Tree Bk

The binomial tree of order/degree k is defined as follows:

The binomial tree of order k = 0 consists of a single node, r .

The binomial tree of order k > 0 consists of root r and k
binomial subtrees {B0, . . . ,Bk−1}.

Applications and Examples of Binomial Trees

Price options, dividends,
interest rates

Construct binomial heaps
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Properties of Binomial Trees

1 degree(root(Bk)) = k

2 |Bk | = 2k

3 h(Bk) = k

These properties mean that the degree and depth of a binomial
tree with n nodes is lg(n).
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Number of Nodes in a Binomial Tree

Theorem: The binomial tree Bk has 2k nodes

Proof: Let nk = |Bk |. We proceed by induction.
Base Case: |B0| = 1 = 20 So, the formula holds.
Inductive Step: Assume that the formula holds for all binomial
trees of order 0 to k − 1. By definition,
Bk = {r ,B0,B1, . . . ,Bk−1}. Hence, the number of nodes in Bk is:

nk = 1 +
∑k−1

i=0 Bi

= 1 +
∑k−1

i=0 2i

= 1 + 2k−1
2−1

= 2k

We have shown by induction that nk = 2k , ∀k ≥ 0. It follows that
binomial trees only come in sizes that are powers of 2. Moreover,
for a given power of 2, there is a unique binomial tree.
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Height of a Binomial Tree

Theorem: The height of Bk is k .

Proof: Let hk be the height of Bk . We proceed by induction.
Base Case: By definition, B0 consists of a single node. So, its
height is 0, same as its degree. So, the formula holds.
Inductive Step: Assume that the formula holds for all binomial
trees of order 0 to k − 1. By definition,
Bk = {r ,B0,B1, . . . ,Bk−1}. Hence, the height of Bk is:
hk = 1 + max0≤i≤k−1 hi

= 1 + max0≤i≤k−1 i
= 1 + k − 1
= k

Hence, we have shown by induction that hk = k , ∀k ≥ 0. Since
|Bk | = 2k and hk = k , then hk = lg(|Bk |).
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Alternative Ways of Constructing Binomial Trees

Figure: Bk = {r ,B0, . . . ,Bk−1} Figure: Bk = {Bk−1,Bk−1}
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Connection between Binomial Tree and Binomial Theorem

What is the origin of the name binomial tree?

Number of nodes at a given depth in a binomial tree is
determined by the binomial coefficient.

The binomial coefficient is in the context of the binomial
theorem.

The binomial theorem computes the power of a binomial.

A binomial is an expression that consists of two terms, x+y.
That is why Bk = {Bk−1,Bk−1} is called a binomial tree.

Binomial Theorem: (x + y)n =
∑n

i=0

(n
i

)
· x i · yn−i , where

(n
i

)
is

the binomial coefficient.
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Properties of Binomial Trees

Theorem: The number of nodes at depth l in Bk , where
0 ≤ l ≤ k is given by the binomial coefficient

(k
l

)
Proof: Let nk(l) be the number of nodes at depth l in Bk . We
now proceed by induction.
Base Case: Since nk(0) = 1 =

(k
0

)
= 1, the formula holds.

Inductive Step: Assume that ni (l) =
(i
l

)
for 0 ≤ i ≤ k − 1. Since

Bk = {Bk−1,Bk−1}, we have:

nk(l) = nk−1(l) + nk−1(l − 1)

=
(k−1

l

)
+
(k−1
l−1

)
= (k−1)!(k−1+1−l)+(k−1)!l!

(k−1+1−l)!l!

=
(k
l

)
We showed by induction that nk(l) =

(k
l

)
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Basic Node Implementation in Binomial Trees

Maintaining pointer to
parent allows up-traversal

Maintaining degree to know
how many children

Maintaining pointer to
sibling allows in-traversal

Implementation affects
Merge operation
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Merging Two Binomial Trees of Same Order

Consider binomial trees that
satisfy the min-heap property

Merging two binomial trees of
same order is an important
operation: Bk+1 ← Bk + Bk

Its running time is O(1)

MERGETrees(p, q)

1: if key[p.root] ≤ key[q.root]
then

2: return p.addSubTree(q)
3: else return q.addSubTree(p)
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Binomial Heaps

A binomial heap is a set of binomial trees with the two properties:

1 Each binomial tree in a heap obeys the minimum-heap
property: the key of parent is ≤ than the keys of the children.

This property ensures that the root of each binomial tree
contains the smallest key in the tree.

2 There are ≤ 1 binomial trees for each order.

This property implies that a binomial heap with n elements has
≤ lgn + 1 binomial trees.
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Number and Orders of Binomial Trees in a Binomial Heap

The number and orders of these trees are uniquely determined
by the number of elements n.

Each binomial tree corresponds to digit one in the binary
representation of number n.

E.g., 13 is 1101 in binary, which is
23 + 22 + 20.

A binomial heap with 13 elements
consists of three binomial trees of
orders 3, 2, and 0.
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Operations on Binomial Heaps

Insert new element: O(lgn)

Create a new heap containing element: O(1)
Merge new heap with current one: O(lgn)

Find minimum: O(lgn)

Find minimum among roots of binomial trees
There are O(lgn) binomial trees

Delete minimum: O(lgn)

Find minimum element: O(lgn)
Remove element from its binomial tree: O(1)
Obtain list of subtrees: O(1)
Reorder from largest to smallest: O(lgn)
Merge heap with original heap: O(lgn)

Merge two heaps: O(lgn)
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Merging Two Binomial Heaps

Lists of roots of heaps are
traversed simultaneously

If only one heap contains Bj ,
move Bj to merged heap

If both heaps H1 and H2

contain Bj , create
Bj+1 ← Bj + Bj

Alternatively, all roots can
be linked in a linked list in
sorted order

Iterate over list and merge
binomial trees of same order

Heaps have ≤ blg(n1)c+ 1 and
blg(n2)c+ 1 roots

T (n) is then O(lgn) calls to
MergeTrees → O(lgn).
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