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Graph search algorithms conduct
systematic search

Assume state space is finite and can fit
in memory

State space can be large, not even
finite

Environment may not even be
observable

No model of the environment available

Local Search: how to find solutions quickly with only a local view of the space

Randomized Search: Address premature convergence of local search

Fundamental to local search: iterative improvement mechanism
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Iterative Improvement Mechanism in Local Search

In many optimization problems, path is irrelevant;
the goal state itself is the solution

Then state space = set of “complete” configurations;
find optimal configuration (explicit constraints or objective/fitness function)

iterative improvement

keep a single “current” state, try to improve it
that is, no memory of what has been found so far
hence, (memory-less) local search

iterative refers to iterating between states
improvement refers to later states improving some objective/goal function or satisfying
more of the specified constraints over earlier states
improvement may not be immediate (more on this later)
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Example: Traveling Salesman Problem (TSP)

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities
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Example: n-queens

Put n queens on an n × n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n = 1million
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(Simple) Hill Climbing

“Like climbing Everest in thick fog with amnesia”
“Like hopping kangaroos”

function Hill-Climbing( problem) returns a state that is a local opti-
mum

inputs: problem, a problem
local variables: current, a node

neighbor, a node

current←Make-Node(Initial-State[problem])
loop do

neighbor← a successor of current
if Value[neighbor] is not better than Value[current]

then return State← [current]
current← neighbor

end
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(Simple) Hill Climbing for Discrete State Spaces

How is the neighbor of a current state generated?

If state space is discrete and neighbor list is finite, all neighbors of a current state can
be considered:

Steepest hill climbing: compare best neighbor to current

What if neighbors cannot be enumerated? What if state space is continuous?
Stochastic hill climbing: select neighbor at random

Gradient-based variants: for continuous state spaces
(Conjugate) Gradient Descent/Ascent
Other numerical optimization algorithms (taught in Numerical Methods courses)
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Continuous State Spaces

Suppose we want to site three airports in Romania:
– 6-D state space defined by (x1, y2), (x2, y2), (x3, y3)
– objective function f (x1, y2, x2, y2, x3, y3) =

sum of squared distances from each city to nearest airport

Gradient-based methods (referred to as potential field methods in robotics) compute
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∂y1
,
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∂x2
,
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∂y2
,
∂f

∂x3
,
∂f

∂y3

)
to increase/reduce f , e.g., by x← x + α∇f (x)

Sometimes can solve for ∇f (x) = 0 exactly (e.g., with one city).
Steepest descent, gradient descent
Conjugate gradient descent methods, like Newton–Raphson (1664, 1690) iterate
x← x−H−1

f (x)∇f (x)
to solve ∇f (x) = 0, where Hij = ∂2f /∂xi∂xj

What if cannot analytically calculate the derivatives? empirical gradient considers ±δ
change in each coordinate
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(Simple) Hill Climbing and Premature Convergence

Why is simple hill climbing and its variants realizations of local search?
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(Simple) Hill Climbing and Premature Convergence

Why is simple hill climbing and its variants realizations of local search?
Useful to consider state space landscape

simple hill climbing converges to a local optimum

when is this behavior sufficient to locate the goal=global optimum?

How can we improve its behavior on non-convex landscapes?
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Premature Convergence in Nonconvex (Fitness) Landscapes
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Three General Mechanisms to Avoid Premature Convergence

Randomization:
Random/multi restarts allows embarrasing parallelization
Iterated Local Search (ILS)

Memory-less randomized/stochastic search/optimization:
Monte Carlo
Simulated Annealing Monte Carlo

Memory-based randomized search:
Memory via search structure

– list: tabu search
– tree-/graph-based search

Memory via population
Evolutionary search strategies
Evolutionary Algorithms (EAs),
Genetic Algorithms (GAs),
Genetic Programming Algorithms (GPs)
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Categorizations can be subjective, with no clear borders
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Random-restart Hill Climbing

A meta-algorithm that can encapsulate any local search algorithm, not just hill climbing

Launch multiple hill climbers from different initial states/configurations

Amenable to embarrasing parallelization

Also known as shotgun hill climbing (or shooting kangaroos)

Surprisingly effective on many difficult optimization problems.

Take-away: It is often better to spend CPU time exploring the space, than carefully
optimizing from an initial condition.

Why? Restarts give global view of state space

Drawback? Memory-less, The hill climber threads do not talk to one another. More on
this later.
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Kicking Hill Climbing out of Local Optimum

How to escape from a local optimum?

Kick the kangaroo out - make a random move

Iterated Local Search
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Iterated Local Search

Start at given initial state
Until some budget is exhausted or other termination criterion is reached:

Iterate between two types of moves:
local improvement
local randomization/perturbation/variation

Local improvement: as before, go from current state to a neighboring local optimum

Local randomization: modify some variable of local optimum to get a worse, adjacent
state (not necessarily neighbor)
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ILS continued

ILS also known as Basin Hopping (BH)

How to design effective local randomization strategies?

Domain-specific

Introduce enough change but not too much change

Examples from Research Literature

Gross, Jamali, Locatelli, Schoen. Solving the problem of packing equal and unequal
circles in a circular container. J Glob Optim 47:63-81, 2010.

Olson, Hashmi, Molloy, Shehu. Basin Hopping as a General and Versatile Optimization
Framework for the Characterization of Biological Macromolecules. Advances in Artificial
Intelligence J 2012, 674832 (special issue on Artificial Intelligence Applications in
Biomedicine).

Can encapsulate ILS within random restart
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Monte Carlo (MC) Search

Can be seen as a variant of hill climbing
While hill climbing is monotonic (strict on improvement), MC allows hopping to a worse
neighbor
Temperature parameter controlls how often

function MC( problem,T) returns a solution state
inputs: problem, a problem

T, a “temperature” controlling prob. of downward steps
local variables: current, a node

next, a node

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

if T = 0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current← next
else current← next only with probability e∆ E/T
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Simulated Annealing Monte Carlo (SA-MC)

Idea: escape local maxima by allowing some “bad” moves but gradually decrease their
size and frequency

function SA( problem, schedule) returns a solution state
inputs: problem, a problem

schedule, a mapping from time to “temperature”
local variables: current, a node

next, a node
T, a “temperature” controlling prob. of downward

steps

current←Make-Node(Initial-State[problem])
for t← 1 to ∞ do

T← schedule[t]
if T = 0 then return current
next← a randomly selected successor of current
∆E←Value[next] – Value[current]
if ∆E > 0 then current← next
else current← next only with probability e∆ E/T
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SA-MC Behavior

At fixed “temperature” T , state occupation probability reaches
Boltzman distribution

p(x) = αe
E(x)
kT

T decreased slowly enough =⇒ always reach best state x∗

because e
E(x∗)
kT /e

E(x)
kT = e

E(x∗)−E(x)
kT � 1 for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Sometimes referred to as Metropolis Monte Carlo (MMC)

Widely used in VLSI layout, airline scheduling, computational biology, chemistry, physics
to find lowest-energy states of a complex system composed of many modules that
constrain motions/placements of one another
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Exploiting Concept of Temperature

How should next temperature be picked?

Fixed, proportional cooling schedule
Dynamic, adaptive (adaptive tempering, popular in chemistry, material science)

Other ways to use temperature

To diversify restart threads
Different MCs, each at their own temperature
Trivial way threads can exchange information:

exchange current states every so often
known as parallel tempering or replica exchange (popular in physics and chemistry)
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Combination of Strategies

ILS+MC → Monte Carlo with minimization
very popular in biomolecular structure/energy optimization

SA-MC + random restart

Many enhancement strategies proposed to broaden the view of the state space
afforded by local search

Example: Local Beam Search
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Local Beam Search

Idea: keep k states instead of 1; choose top k of all their successors

Not the same as k searches run in parallel!
Searches that find good states recruit other searches to join them

Problem: quite often, all k states end up on same local hill

Idea: choose k successors randomly, biased towards good ones

Observe the close analogy to natural selection!
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Combination of Strategies

ILS+MC → Monte Carlo with minimization
very popular in biomolecular structure/energy optimization

SA-MC + random restart

Many enhancement strategies proposed to broaden the view of the state space
afforded by local search

Example: Local Beam Search
Nomenclature: domain-specific
In computational chemistry/physics: enhancement strategies
In evolutionary computation: hybridization mechanisms
In AI: local + global search

Where is the global view?
a data structure that records visited states (robotics)
a more general concept: population (evolutionary computation)
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Tabu Search

Idea: Avoid generating same state

Tabu: list of states generated so far

A generated state compared to tabu list for redundancy

Tabu list may also include set of moves that yield to redundant states

Tabu considered an evolutionary search strategy

More general concept: hall of fame (next in evolutionary computation)
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Tree-guided Search

Keep states generated so far in a tree or graph

Centralizes redundant local searches

Integrate local searches in a global search structure
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Tree-guided Search

Keep states generated so far in a tree

Generate a new state in a two-punch, select-and-expand mechanism:

Selection mechanism: Query tree to give you a (parent) state
Probability distribution function can be used to select parents (guide tree)

Expand (with local search) from that state to get a candidate child state

If candidate state not already similar to something in tree, add it as child, with
corresponding edge

Discretization/projection layers to organize states so as to quickly tell whether a
state is really new
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Tree-guided Search Continued

Popular in robotics and computational biology:

RRT (robot motion planning)
EST (robot motion planning)
FeLTr – Olson, Shehu. IJRR 2010, SPRINT – Molloy, Shehu. BMC Struct Biol 2013
(for protein structure prediction and motion computation)
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Memory-based Search via Population: Evolutionary Computation

Subfield of AI

Idea: mimick natural selection to arrive at solutions that have a better chance of
including the global optimum than local search

Many evolutionary search (ES) strategies exist
can learn about them in Nature-inspired Computing course (K. A. De Jong)

We will summarize main idea behind evolutionary algorithms (EAs) and provide specific
realizations such as GAs and GPs
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EAs

Initalization Mechanism Define an initial population of states

Population evolves over generations

At each generation:
selection mechanism selects parents that will give offspring
Variation operator applied to one or two parents yield offspring
Replacement mechanism selects new population from only the offspring, or offspring
and parent combined

Variation/perturbation operators:
mutation changes one parent
cross-over combines two parents to yield one or two offspring

Very rich framework:
e.g., if offspring subjected to local improvement, memetic EA
only value maintained but offspring not replaced – Baldwinian EA
offspring replaced with improved version – Lamarckian EA

Different decisions in each of the components yield different, complex behavior
Question: How is ILS/BH an EA?
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Question: How is ILS/BH an EA?
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EAs from Optimization to Mapping (of Environment)

Mapping state space of H-Ras, a flexible, oncogenic protein.
Sapin, De Jong, Shehu IEEE BIBM 2015.
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Genetic Algorithms (GAs)

= stochastic local beam search + generate successors from pairs of states
an EA with crossover
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From GAs to GPs

GAs require states encoded as strings (GPs use programs)
Crossover helps iff substrings are meaningful components

GAs 6= evolution: e.g., real genes encode replication machinery!
GPs designed to evolve programs
Attributed to Koza, 1992

Main change from a GA: states not binary or real-valued, but complex tree-based
structure representations of programs

Adapted by Kamath, De Jong, and Shehu to evolve features capturing complex signals
of function in DNA sequences (IEEE TCBB 2013, PLoS One 2014)
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Summary

EAs currently some of the most powerful (randomized) solvers for the toughest
academic and industrial optimization problems

Tree-guided search popular in robotics can be encapsulated in EA template

Literature on randomized search/optimization algorithms is very rich

Developments from different sub-communities within AI and different communities
outside of computer science

Often, similar ideas reproduced but differently termed
Example: basin hopping is just ILS

Example: ILS is just 1+1 EA
Example: Metropolis Monte Carlo (MMC) with minimization is just ILS
Example: MMC with minimization is just 1+1 memetic/hybrid EA

Awareness of developments in different communities inspires new strategies or
combination of strategies for more powerful randomized search algorithms
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