Lecture 7: Logical Agents and Propositional Logic CS 580 (001) - Spring 2018

Amarda Shehu
Department of Computer Science
George Mason University, Fairfax, VA, USA

March 07, 2018

■ Outline of Today's Class
[Knowledge-based Agents
B Wumpus World
4 Logic - Models and Entailment
5 Propositional (Boolean Logic)
б Model Checking: Inference by Enumeration
7 Deductive Systems: Inference and Theorem Proving

- Proof by Resolution
- Forward Chaining
- Backward Chaining

8 Inference-based Agent in Wumpus World

Inference engine
Knowledge base

domain-independent algorithms

domain-specific content

Knowledge base $=$ set of sentences in a formal language
Declarative approach to building an agent (or other system):
Tell it what it needs to know
Then it can Ask itself what to do-answers should follow from the KB
Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

A Simple Knowledge-based Agent

function KB-Agent(percept) returns an action

static: $K B$, a knowledge base
t, a counter, initially 0 , indicating time
Tell(KB, Make-Percept-Sentence (percept, t)) action $\leftarrow \operatorname{Ask}(K B, \operatorname{Make}-\operatorname{Action-Query}(t))$ Tell(KB, Make-Action-Sentence(action, t)) $t \leftarrow t+1$
return action

The agent must be able to:

Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions

Wumpus World - PEAS Description

Performance measure
gold +1000 , death -1000
-1 per step, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square Releasing drops the gold in same square Actuators Left turn, Right turn,

Forward, Grab, Release, Shoot
Sensors Breeze, Glitter, Smell

Observable??

Observable?? No-only local perception

Observable?? No-only local perception

Deterministic??

Observable?? No-only local perception

Deterministic?? Yes-outcomes exactly specified

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic??

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No-sequential at the level of actions

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static??

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move

Discrete??

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move
Discrete??

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move
Discrete?? Yes
Single-agent??

Observable?? No-only local perception
Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move
Discrete?? Yes
Single-agent?? Yes-Wumpus is essentially a natural feature

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified
Episodic?? No-sequential at the level of actions
Static?? Yes-Wumpus and Pits do not move
Discrete?? Yes
Single-agent?? Yes-Wumpus is essentially a natural feature

Exploring a Wumpus World

Breeze in (1,2) and (2,1) \Longrightarrow no safe actions

Assuming pits uniformly distributed, $(2,2)$ has pit w/ higher probability (how much?)

Breeze in $(1,2)$ and $(2,1)$ \Longrightarrow no safe actions

Assuming pits uniformly distributed, $(2,2)$ has pit $w /$ higher probability (how much?)

Smell in (1,1)
Can use a strategy of coercion: shoot straight ahead
wumpus was there \Longrightarrow dead \Longrightarrow safe wumpus wasn't there \Longrightarrow safe

Breeze in (1,2) and (2,1)
\Longrightarrow no safe actions
Assuming pits uniformly distributed, $(2,2)$ has pit $w /$ higher probability (how much?)

Smell in (1,1)
\Longrightarrow cannot move
Can use a strategy of coercion: shoot straight ahead wumpus was there \Longrightarrow dead \Longrightarrow safe wumpus wasn't there \Longrightarrow safe

Logics are formal languages for representing information such that conclusions can be drawn

Syntax determines how sentences are expressed in a particular logic/language
Semantics define the "meaning" of sentences;
i.e., define truth of a sentence in a world
E.g., the language of arithmetic
$x+2 \geq y$ is a sentence; $x 2+y>$ is not a sentence
$x+2 \geq y$ is true iff the number $x+2$ is no less than the number y
$x+2 \geq y$ is true in a world where $x=7, y=1$
$x+2 \geq y$ is false in a world where $x=0, y=6$

Logics are characterized by what they commit to as primitives Ontological commitment: what exists—facts? objects? time? beliefs? Epistemological commitment: what states of knowledge?

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

- First order of business: fundamental concepts of logical representation and reasoning independent of any logic's particular form/type Entailment

■ Second order of business: Introduction to propositional logic Wumpus KB via propositional logic

- Third order of business: Drawing conclusions Inference and theorem proving
- Can use the term model in place of possible world

■ Logicians typically think in terms of models, which are formally-structured worlds with respect to which truth can be evaluated

- Model $=$ mathematical abstraction that fixes the truth/falsehood of every relevant sentence

■ Possible models are just all possible assignments of variables in the environment
■ We say that a model m "satisfies" sentence α if α "is true in" m
Or: " m is a model of α " $M(\alpha)$ is the set of all models of α

Entailment means that one thing follows from another:

$$
K B \models \alpha
$$

Knowledge base $K B$ entails sentence α iff α is true in all worlds/models where $K B$ is true $K B \models \alpha$ iff $M(K B) \subseteq M(\alpha)$

E.g., KB containing "Giants won" and "Reds won" entails "Giants or Reds won" $x+y=4$ entails $4=x+y$

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)

Quick Exercise

Given two sentences α and β, what does this mean:

$$
\alpha \models \beta
$$

α entails β

Quick Exercise

Given two sentences α and β, what does this mean:

$$
\alpha \models \beta
$$

α entails β
\qquad

Quick Exercise

Given two sentences α and β, what does this mean:

$$
\alpha \models \beta
$$

α entails β
$M(\alpha) \subseteq M(\beta)$
β is satisfied in all models of α

Quick Exercise

Given two sentences α and β, what does this mean:

$$
\alpha \models \beta
$$

α entails β
$M(\alpha) \subseteq M(\beta)$
β is satisfied in all models of α
β may be satisfied in other models, as well

Quick Exercise

Given two sentences α and β, what does this mean:

$$
\alpha \models \beta
$$

α entails β
$M(\alpha) \subseteq M(\beta)$
β is satisfied in all models of α
β may be satisfied in other models, as well
α is a stronger assertion than β

Quick Exercise

Given two sentences α and β, what does this mean:

$$
\alpha \models \beta
$$

α entails β
$M(\alpha) \subseteq M(\beta)$
β is satisfied in all models of α
β may be satisfied in other models, as well
α is a stronger assertion than β

Situation after detecting nothing in $[1,1]$, moving right, breeze in $[2,1]$

Consider possible models for ?s assuming only pits

3 Boolean choices $\Longrightarrow 8$ possible models

$K B=$ wumpus-world rules + observations

$K B=$ wumpus-world rules + observations
$\alpha_{1}=$ " $[1,2]$ is safe", $K B \models \alpha_{1}$, proved by model checking

$K B=$ wumpus-world rules + observations

$K B=$ wumpus-world rules + observations
$\alpha_{2}=$ " $[2,2]$ is safe", $K B \not \vDash \alpha_{2}$

Entailment can be used to derive logical conclusions i.e.: carry out logical inference

A straightforward algorithm to carry out inference:
Model checking
Model checking enumerates all possible models to check that α is true in all models where $K B$ is true
i.e.: $M(K B) \subseteq M(\alpha)$

To understand entailment and inference: haystack and needle analogy
Consequences of $K B$ are a haystack; α is a needle.
Entailment $=$ needle in haystack inference $=$ finding it

We need inference procedures to derive α from a given $K B$

$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i

Soundness: inference procedure i is sound if whenever $K B \vdash ; \alpha$, it is also true that $K B \models \alpha$

$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i

Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha$ (does not make stuff up)
$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i

Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha \quad$ (does not make stuff up)

Completeness: inference procedure i is complete if whenever $K B \vDash \alpha$, it is also true that $K B \vdash_{i} \alpha$
$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha \quad$ (does not make stuff up)

Completeness: inference procedure i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{;} \alpha$
$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha \quad$ (does not make stuff up)

Completeness: inference procedure i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha \quad$ (finds needle in haystack)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.
$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha \quad$ (does not make stuff up)

Completeness: inference procedure i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$ (finds needle in haystack)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.
$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha \quad$ (does not make stuff up)

Completeness: inference procedure i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$ (finds needle in haystack)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Right now, we will venture into propositional logic; first-order logic is next.
$K B \vdash_{i} \alpha=$ sentence α can be derived from $K B$ by procedure i
Soundness: inference procedure i is sound if whenever $K B \vdash_{i} \alpha$, it is also true that $K B \mid=\alpha \quad$ (does not make stuff up)

Completeness: inference procedure i is complete if whenever $K B \models \alpha$, it is also true that $K B \vdash_{i} \alpha$ (finds needle in haystack)

Preview: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

That is, the procedure will answer any question whose answer follows from what is known by the $K B$.

Right now, we will venture into propositional logic; first-order logic is next.

Propositional logic is the simplest logic-illustrates basic ideas
Atomic sentences consist of a single proposition symbol E.g.: Proposition symbols P_{1}, P_{2}, etc. are atomic sentences

Each such symbol stands for a proposition that can be true or false E.g.: $W_{1,3}$ stands for proposition that wumpus is in $[1,3]$

Two propositions with fixed meaning: True and False
Complex sentences built over atomic ones via connectives: negation, conjunction, disjunction, implication, biconditional

If S is a sentence, $\neg S$ is a sentence (negation)
A (positive) literal is an atomic sentence
A (negative) literal is a negated atomic sentence
If S_{1} and S_{2} are sentences, $S_{1} \wedge S_{2}$ is a sentence (conjunction)
S_{1} and S_{2} are called conjuncts
If S_{1} and S_{2} are sentences, $S_{1} \vee S_{2}$ is a sentence (disjunction)
S_{1} and S_{2} are called disjuncts
If S_{1} and S_{2} are sentences, $S_{1} \Longrightarrow S_{2}$ is a sentence (implication/conditional)
S_{1} is called premise/antecedent
S_{2} is called conclusion or consequent
implication also known as rule or if-then statement
If S_{1} and S_{2} are sentences, $S_{1} \Leftrightarrow S_{2}$ is a sentence (biconditional)

BNF is an ambiguous formal grammar for propositional logic (pg. 1060 if unfamiliar):
Sentence \rightarrow AtomicSentence | ComplexSentence

AtomicSentence \rightarrow True \mid False $|P| Q \mid \ldots$
Complex Sentence \rightarrow (Sentence) | [Sentence]
$\mid \neg$ Sentence | Sentence \wedge Sentence

Sentence \Leftrightarrow Sentence
We add operator precedence to disambiguate it
Operator precedence (from highest to lowest)
$\neg, \wedge, \vee, \Longrightarrow, \Leftrightarrow$

Each model specifies true/false for each proposition symbol
E.g. $\quad P_{1,2} \quad P_{2,2} \quad P_{3,1}$
true true false

This specific model: $m_{1}=\left\{P_{1,2}=\right.$ true, $P_{2,2}=$ true,$P_{3,1}=$ false $\}$
(With these 3 symbols, $2^{3}=8$ possible models, feasible to enumerate.)
Rules for evaluating truth with respect to a model m :

	$\neg S$	is true iff	S	is false	
	$S_{1} \wedge S_{2}$	is true iff	S_{1}	is true and	S_{2}
$S_{1} \vee S_{2}$	is true iff	S_{1}	is true or	S_{2}	is true
$S_{1} \Longrightarrow S_{2}$	is true iff	S_{1}	is false or	S_{2}	is true
	i.e.,	is false iff	S_{1}	is true and	S_{2}
$S_{1} \Leftrightarrow S_{2}$	is true iff	$S_{1} \Longrightarrow S_{2}$	is true and	$S_{2} \Longrightarrow S_{1}$	is true

Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \wedge\left(P_{2,2} \vee P_{3,1}\right)=$ true $\wedge($ false \vee true $)=$ true \wedge true $=$ true

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Let $P_{i, j}$ be true if there is a pit in $[i, j]$
Let $B_{i, j}$ be true if agent is in $[i, j]$ and perceives a breeze
Let $W_{i, j}$ be true if there is a wumpus in $[i, j]$
Let $S_{i, j}$ be true if agent is in $[i, j]$ and perceives a stench
... you can define other atomic sentences
Percept sentences part of $K B$:
No pit, no breeze in [1,1], but breeze perceived when in [2, 1]

$$
\begin{aligned}
& R_{1}: \neg P_{1,1} \\
& R_{4}: \neg B_{1,1} \\
& R_{5}: B_{2,1}
\end{aligned}
$$

Rules in $K B$:
"Pits cause breezes in adjacent squares" eqv. to "square is breezy iff adjacent pit"

Let $P_{i, j}$ be true if there is a pit in $[i, j]$
Let $B_{i, j}$ be true if agent is in $[i, j]$ and perceives a breeze
Let $W_{i, j}$ be true if there is a wumpus in $[i, j]$
Let $S_{i, j}$ be true if agent is in $[i, j]$ and perceives a stench
... you can define other atomic sentences

Percept sentences part of $K B$:
No pit, no breeze in [1,1], but breeze perceived when in [2, 1]

$$
\begin{aligned}
& R_{1}: \neg P_{1,1} \\
& R_{4}: \neg B_{1,1} \\
& R_{5}: B_{2,1}
\end{aligned}
$$

Rules in $K B$:
"Pits cause breezes in adjacent squares" eqv. to "square is breezy iff adjacent pit"

$$
\begin{aligned}
& R_{2}: B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right) \\
& R_{3}: B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)
\end{aligned}
$$

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
\vdots												
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true						
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true							
false	true	false	false	true	false	false	true	false	false	true	true	false
\vdots												
true	false	true	true	false	true	false						

Enumerate rows (different assignments to symbols); rows are possible models if KB is true in a row/model, check that α is true; f not, entailment does not hold If entailment not broken over all rows where KB is true, then else, α entailed

Depth-first enumeration of all models is sound and complete
function TT-Entails? $(K B, \alpha)$ returns true or false inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
symbols \leftarrow a list of the proposition symbols in $K B$ and α return TT-Check-All(KB, α, symbols, [])
function TT-Check-ALL(KB, α, symbols, model) returns true or false
if Empty? (symbols) then
if PL-True? (KB, model) then return PL-True? (α, model)
else return true
else do
$P \leftarrow \operatorname{First}($ symbols); rest $\leftarrow \operatorname{REST}($ symbols) return TT-Check-All(KB, α, rest, Extend (P, true, model))
and

$$
\text { TT-Check-All(KB, } \alpha, \text { rest, } \operatorname{Extend}(P, \text { false, model)) }
$$

$\bar{O}\left(2^{n}\right)$ for n symbols; problem is co-NP-complete

Proof methods divide into (roughly) two kinds:
Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis-Putnam-Logemann-Loveland backtracking with constraint propagation, backjumping heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Theorem Proving/Deductive Systems: Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof $=$ a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.

- Typically require translation of sentences into a normal form

Two sentences are logically equivalent iff true in same models:
$\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Longrightarrow \beta) & \equiv(\neg \beta \Longrightarrow \neg) \text { contraposition } \\
(\alpha \Longrightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Longrightarrow \beta) \wedge(\beta \Longrightarrow \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { De Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { De Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

A sentence is valid if it is true in all models, e.g., True, $\quad A \vee \neg A, \quad A \Longrightarrow A, \quad(A \wedge(A \Longrightarrow B)) \Longrightarrow B$

Validity is connected to inference via the Deduction Theorem:
$K B \models \alpha$ if and only if $(K B \Longrightarrow \alpha)$ is valid
A sentence is satisfiable if it is true in some model e.g., $A \vee B$, C

A sentence is unsatisfiable if it is true in no models e.g., $A \wedge \neg A$

Satisfiability is connected to inference via the following: $K B \models \alpha$ if and only if $(K B \wedge \neg \alpha)$ is unsatisfiable i.e., prove α by reductio ad absurdum

Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

\diamond And-Elimination: (From a conjunction, you can infer any of the conjuncts.)

$$
\frac{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}{\alpha_{i}}
$$

\diamond And-Introduction: (From a list of sentences, you can infer their conjunction.)

$$
\frac{\alpha_{1}, \alpha_{2}, \ldots . \alpha_{n}}{\alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge \alpha_{n}}
$$

\diamond Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$
\frac{\alpha_{i}}{\alpha_{1} \vee \alpha_{2} \vee \ldots \vee \alpha_{n}}
$$

Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$
\frac{\neg \neg \alpha}{\alpha}
$$

Δ Unit Resolution: (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

\diamond Resolution: (This is the most difficult. Because β cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently. implication is transitive.)

$$
\frac{\alpha \vee \beta, \neg \beta \vee \gamma}{\alpha \vee \gamma} \quad \text { or equivalently } \quad \neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma,
$$

Figure 6.13 Seven inference rules for propositional logic. The unit resolution rule is a special case of the resolution rule, which in turn is a special case of the full resolution rule for first-order logic discussed in Chapter 9.

Conjunctive Normal Form (CNF—universal) conjunction of disjunctions of literals conjunction of disjuncticlauses
E.g., $(A \vee \neg B) \wedge(B \vee \neg C \vee \neg D)$

Resolution inference rule (for CNF): complete for propositional logic

$$
\frac{\ell_{1} \vee \cdots \vee \ell_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\ell_{1} \vee \cdots \vee \ell_{i-1} \vee \ell_{i+1} \vee \cdots \vee \ell_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}}
$$

where ℓ_{i} and m_{j} are complementary literals. E.g.,

$$
\frac{P_{1,3} \vee P_{2,2}, \quad \neg P_{2,2}}{P_{1,3}}
$$

Resolution is sound and complete for propositional logic
$B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$

1. Eliminate \Leftrightarrow, replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Longrightarrow \beta) \wedge(\beta \Longrightarrow \alpha)$.

$$
\left(B_{1,1} \Longrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge\left(\left(P_{1,2} \vee P_{2,1}\right) \Longrightarrow B_{1,1}\right)
$$

2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \vee \beta$.

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg\left(P_{1,2} \vee P_{2,1}\right) \vee B_{1,1}\right)
$$

3. Move \neg inwards using de Morgan's rules and double-negation:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\left(\neg P_{1,2} \wedge \neg P_{2,1}\right) \vee B_{1,1}\right)
$$

4. Apply distributivity law (\vee over \wedge) and flatten:

$$
\left(\neg B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \wedge\left(\neg P_{1,2} \vee B_{1,1}\right) \wedge\left(\neg P_{2,1} \vee B_{1,1}\right)
$$

Proof by contradiction/refutation, i.e., show $K B \wedge \neg \alpha$ unsatisfiable
function PL-Resolution $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$ new $\leftarrow\}$
loop do
for each C_{i}, C_{j} in clauses do resolvents $\leftarrow \operatorname{PL}-\operatorname{Resolve}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true new \leftarrow new \cup resolvents
if new \subseteq clauses then return false clauses \leftarrow clauses \cup new

Can actually use any search algorithm, with clauses as states and resolution as operators. Goal state is list of clauses containing empty clause.

$$
K B=\left(B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)\right) \wedge \neg B_{1,1} \alpha=\neg P_{1,2}
$$

Completeness of resolution algorithm follows from ground resolution theorem: If a set of clauses S is unsatisfiable, then the resolution closure $R C(S)$ of those clauses contains an empty clause.
$R C(S)$: set of all clauses derivable by repeated application of resolution rule to clauses in S or their derivatives.

Inference by resolution is complete, but sometimes an overkill

KB may contain restricted (rule-based) forms of sentences, such as:

Definite clause: disjunction of literals of which exactly one is positive.

$$
\begin{aligned}
& \left(\neg L_{1,1} \vee B_{1,1}\right) \text { is } \\
& \left(P_{1,2} \vee P_{2,1}\right) \text { is not } \\
& \left(\neg L_{1,1} \vee \neg B_{1,1}\right) \text { is not }
\end{aligned}
$$

Horn clause: disjunction of literals of which at most one is positive.
Which of the above is a Horn clause?
Negated literals $\neg A$ rewritten as $(A \Longrightarrow$ False) (integrity constraints)
Inference with Horn clauses can be done through forward chaining and backward chaining

These are more efficient than the resolution algorithm, run in linear time

Inference by resolution is complete, but sometimes an overkill
KB may contain restricted (rule-based) forms of sentences, such as:

Definite clause: disjunction of literals of which exactly one is positive.
$\left(\neg L_{1,1} \vee B_{1,1}\right)$ is
$\left(P_{1,2} \vee P_{2,1}\right)$ is not
$\left(\neg L_{1,1} \vee \neg B_{1,1}\right)$ is not
Horn clause: disjunction of literals of which at most one is positive. Which of the above is a Horn clause?

Negated literals $\neg A$ rewritten as $(A \Longrightarrow$ False) (integrity constraints)
Inference with Horn clauses can be done through forward chaining and backward chaining

These are more efficient than the resolution algorithm, run in linear time

Horn Form (restricted) KB (= conjunction of Horn clauses)

$$
\text { E.g., } C \wedge(B \Longrightarrow A) \wedge(C \wedge D \Longrightarrow B)
$$

Modus Ponens: complete for Horn $\mathrm{KBs}\left(\alpha_{1}, \ldots, \alpha_{n}\right.$ - premises, β - sought conclusion)

Known as forward chaining inference rule; repeated applications until sentence of interest obtained - forward chaining algorithm

Modus Tollens - a form of Modus Ponens

$$
\frac{\neg \beta, \quad \alpha_{1} \wedge \cdots \wedge \alpha_{n} \Longrightarrow \beta}{\neg\left(\alpha_{1} \wedge \cdots \wedge \alpha_{n}\right)}
$$

Known as backward chaining inference rule; repeated applications until all premises obtained - backward chaining algorithm

Both algorithms intuitive and run in linear time
Inference via forward or backward chaining forms basis of logic programming (Chapter 9)

Idea: Add literals in KB to facts (satisfied premises) apply each premise satisfied in $K B$ (fire rules) add rule's conclusion as new fact/premise to the $K B$ (this is inference propagation via forward chaining) stop when query found as fact or no more inferences

$$
P \Longrightarrow Q
$$

$$
L \wedge M \Longrightarrow P
$$

$$
B \wedge L \Longrightarrow M
$$

$$
A \wedge P \Longrightarrow L
$$

$$
A \wedge B \Longrightarrow L
$$

A

Figure: AND-OR tree

function PL-FC-Entails? $(K B, q)$ returns true or false

inputs: $K B$, the knowledge base, a set of propositional Horn clauses q, the query, a proposition symbol
local variables: count, table indexed by clause, initial nr. of premises inferred, table indexed by symbol, entries initially false agenda, list of symbols, initial symbols known in $K B$
while agenda is not empty do

$$
p \leftarrow \operatorname{Pop}(\text { agenda })
$$

unless inferred $[p]$ do
inferred $[p] \leftarrow$ true
for each Horn clause c in whose premise p appears do decrement count [c] if $\operatorname{count}[c]=0$ then do
if $\operatorname{HeAD}[c]=q$ then return true
Push (Head [c], agenda)
return false

Forward Chaining Example

FC derives every atomic sentence that is entailed by $K B$

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original $K B$ is true in m

Proof: Suppose a clause $a_{1} \wedge \ldots \wedge a_{k} \Rightarrow b$ is false in m
Then $a_{1} \wedge \ldots \wedge a_{k}$ is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!
4. Hence m is a model of $K B$
5. If $K B \models q, q$ is true in every model of $K B$, including m

General idea: construct any model of $K B$ by sound inference, check α
FC is an example of a data-driven reasoning algorithm
start with what known, derive new conclusions, with no particular goal in mind

Idea: goal-driven reasoning - work backwards from the query q :
to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack
Avoid repeated work: check if new subgoal

1) has already been proved true, or
2) has already failed

Backward Chaining Example

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal
$B C$ is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of $B C$ can be much less than linear in size of $K B$, because only relevant facts are touched

A wumpus-world agent using propositional logic:

$$
\begin{aligned}
& \neg P_{1,1} \\
& \neg W_{1,1} \\
& B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right) \\
& S_{x, y} \Leftrightarrow\left(W_{x, y+1} \vee W_{x, v-1} \vee W_{x+1, y} \vee W_{x-1, y}\right) \\
& W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4} \\
& \neg W_{1,1} \vee \neg W_{1,2} \\
& \neg W_{1,1} \vee \neg W_{1,3}
\end{aligned}
$$

64 distinct proposition symbols, 155 sentences
function PL-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter]
static: $K B$, initially containing the "physics" of the wumpus world x, y, orientation, the agent's position (init. $[1,1]$) and orient. (init. right) visited, an array indicating which squares have been visited, initially false action, the agent's most recent action, initially null plan, an action sequence, initially empty
update x,y,orientation, visited based on action
if stench then $\operatorname{TelL}\left(K B, S_{x, y}\right)$ else $\operatorname{TelL}\left(K B, \neg S_{x, y}\right)$
if breeze then $\operatorname{Tell}\left(K B, B_{x, y}\right)$ else $\operatorname{Tell}\left(K B, \neg B_{x, y}\right)$
if glitter then action \leftarrow grab
else if plan is nonempty then action $\leftarrow \operatorname{POP}($ plan $)$
else if for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(\neg P_{i, j} \wedge \neg W_{i, j}\right)\right)$ is true or for some fringe square $[i, j], \operatorname{Ask}\left(K B,\left(P_{i, j} \vee W_{i, j}\right)\right)$ is false then do plan $\leftarrow \mathrm{A}^{*}$-Graph-SEARCH $($ Route-PB $([x, y]$, orientation, $[i, j]$, visited $))$ action $\leftarrow \operatorname{POP}($ plan $)$
else action \leftarrow a randomly chosen move
return action

Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
Forward, backward chaining are linear-time, complete for Horn clauses
Resolution is complete for propositional logic

Propositional logic does not scale to environments of unbounded size, as it lacks expressive power to deal concisely with time, space, and universal patterns of relationships among objects

