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Knowledge Bases

Knowledge base = set of sentences in a formal language
Declarative approach to building an agent (or other system):

Tell it what it needs to know
Then it can Ask itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them
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A Simple Knowledge-based Agent

function KB-Agent( percept) returns an action
static: KB, a knowledge base

t, a counter, initially 0, indicating time

Tell(KB,Make-Percept-Sentence( percept, t))
action←Ask(KB,Make-Action-Query(t))
Tell(KB,Make-Action-Sentence(action, t))
t← t + 1
return action

The agent must be able to:

Represent states, actions, etc.
Incorporate new percepts
Update internal representations of the world
Deduce hidden properties of the world
Deduce appropriate actions
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Wumpus World - PEAS Description

Performance measure
gold +1000, death -1000
-1 per step, -10 for using the arrow

Environment
Squares adjacent to wumpus are smelly
Squares adjacent to pit are breezy
Glitter iff gold is in the same square
Shooting kills wumpus if you are facing it
Shooting uses up the only arrow
Grabbing picks up gold if in same square
Releasing drops the gold in same square

Actuators Left turn, Right turn,
Forward, Grab, Release, Shoot

Sensors Breeze, Glitter, Smell
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Wumpus World Characterization

Observable??

No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent?? Yes—Wumpus is essentially a natural feature
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Exploring a Wumpus World
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Exploring a Wumpus World

Amarda Shehu (580) Wumpus World 14



Other Tight Spots

Breeze in (1,2) and (2,1)
=⇒ no safe actions

Assuming pits uniformly distributed,
(2,2) has pit w/ higher probability (how much?)

Smell in (1,1)
=⇒ cannot move

Can use a strategy of coercion:
shoot straight ahead
wumpus was there =⇒ dead =⇒ safe
wumpus wasn’t there =⇒ safe
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Logic in General

Logics are formal languages for representing information
such that conclusions can be drawn

Syntax determines how sentences are expressed in a particular logic/language

Semantics define the “meaning” of sentences;
i.e., define truth of a sentence in a world

E.g., the language of arithmetic

x + 2 ≥ y is a sentence; x2 + y > is not a sentence
x + 2 ≥ y is true iff the number x + 2 is no less than the number y
x + 2 ≥ y is true in a world where x = 7, y = 1
x + 2 ≥ y is false in a world where x = 0, y = 6
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Types of Logic

Logics are characterized by what they commit to as primitives
Ontological commitment: what exists—facts? objects? time? beliefs?
Epistemological commitment: what states of knowledge?

Language Ontological Epistemological
Commitment Commitment

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value
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Reasoning with Logic

First order of business: fundamental concepts of logical representation and
reasoning

independent of any logic’s particular form/type
Entailment

Second order of business: Introduction to propositional logic
Wumpus KB via propositional logic

Third order of business: Drawing conclusions
Inference and theorem proving
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Models

Can use the term model in place of possible world

Logicians typically think in terms of models, which are formally-structured worlds
with respect to which truth can be evaluated

Model = mathematical abstraction that fixes the truth/falsehood of every relevant
sentence

Possible models are just all possible assignments of variables in the environment

We say that a model m “satisfies” sentence α if α “is true in” m
Or: “m is a model of α”
M(α) is the set of all models of α
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Models and Entailment

Entailment means that one thing follows from another:

KB |= α

Knowledge base KB entails sentence α
iff α is true in all worlds/models where KB is true
KB |= α iff M(KB) ⊆ M(α)

E.g., KB containing “Giants won” and “Reds won” entails “Giants or Reds won”
x + y = 4 entails 4 = x + y

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics

Note: brains process syntax (of some sort)
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Quick Exercise

Given two sentences α and β, what does this mean:

α |= β

α entails β

M(α) ⊆ M(β)

β is satisfied in all models of α

β may be satisfied in other models, as well

α is a stronger assertion than β
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Hands On: Entailment in the Wumpus World

Situation after detecting nothing in [1,1],
moving right, breeze in [2,1]

Consider possible models for ?s
assuming only pits

3 Boolean choices =⇒ 8 possible models
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Wumpus Models
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Wumpus Models

KB = wumpus-world rules + observations
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Wumpus Models

KB = wumpus-world rules + observations
α1 = “[1,2] is safe”, KB |= α1, proved by model checking
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Wumpus Models

KB = wumpus-world rules + observations
α2 = “[2,2] is safe”, KB 6|= α2
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From Entailment to Logical Inference

Entailment can be used to derive logical conclusions
i.e.: carry out logical inference

A straightforward algorithm to carry out inference:
Model checking

Model checking enumerates all possible models to check that α is true in all models
where KB is true

i.e.: M(KB) ⊆ M(α)

To understand entailment and inference: haystack and needle analogy
Consequences of KB are a haystack; α is a needle.
Entailment = needle in haystack
inference = finding it

We need inference procedures to derive α from a given KB
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Inference

KB `i α = sentence α can be derived from KB by procedure i

Soundness: inference procedure i is sound if
whenever KB `i α, it is also true that KB |= α

(does not make stuff up)

Completeness: inference procedure i is complete if
whenever KB |= α, it is also true that KB `i α (finds needle in haystack)

Preview: we will define a logic (first-order logic) which is expressive enough to say
almost anything of interest, and for which there exists a sound and complete inference
procedure.

That is, the procedure will answer any question whose answer follows from what is
known by the KB.

Right now, we will venture into propositional logic; first-order logic is next.
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Propositional Logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

Atomic sentences consist of a single proposition symbol
E.g.: Proposition symbols P1, P2, etc. are atomic sentences

Each such symbol stands for a proposition that can be true or false
E.g.: W1,3 stands for proposition that wumpus is in [1,3]

Two propositions with fixed meaning: True and False

Complex sentences built over atomic ones via connectives:
negation, conjunction, disjunction, implication, biconditional
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Propositional Logic: Syntax (Continued)

If S is a sentence, ¬S is a sentence (negation)
A (positive) literal is an atomic sentence
A (negative) literal is a negated atomic sentence

If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)
S1 and S2 are called conjuncts

If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)
S1 and S2 are called disjuncts

If S1 and S2 are sentences, S1 =⇒ S2 is a sentence (implication/conditional)
S1 is called premise/antecedent
S2 is called conclusion or consequent

implication also known as rule or if-then statement

If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)
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Propositional Logic: Semantics – Backus-Naur Form (BNF)

BNF is an ambiguous formal grammar for propositional logic (pg. 1060 if unfamiliar):

Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | P | Q | . . .

Complex Sentence → (Sentence) | [Sentence]
| ¬Sentence
| Sentence ∧ Sentence
. . .
| Sentence ⇔ Sentence

We add operator precedence to disambiguate it

Operator precedence (from highest to lowest)
¬, ∧, ∨, =⇒ , ⇔
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Propositional Logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

true true false
This specific model: m1 = {P1,2 = true,P2,2 = true,P3,1 = false}

(With these 3 symbols, 23 = 8 possible models, feasible to enumerate.)

Rules for evaluating truth with respect to a model m:
¬S is true iff S is false

S1 ∧ S2 is true iff S1 is true and S2 is true
S1 ∨ S2 is true iff S1 is true or S2 is true

S1 =⇒ S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1 ⇔ S2 is true iff S1 =⇒ S2 is true and S2 =⇒ S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬P1,2 ∧ (P2,2 ∨ P3,1) = true ∧ (false ∨ true) = true ∧ true = true
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Truth Tables for Connectives

P Q ¬P P ∧ Q P ∨ Q P⇒Q P⇔Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true
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Wumpus World Sentences in Propositional Logic

Let Pi,j be true if there is a pit in [i , j ]
Let Bi,j be true if agent is in [i , j ] and perceives a breeze
Let Wi,j be true if there is a wumpus in [i , j ]
Let Si,j be true if agent is in [i , j ] and perceives a stench
... you can define other atomic sentences

Percept sentences part of KB:
No pit, no breeze in [1,1], but breeze perceived when in [2, 1]

R1 : ¬P1,1

R4 : ¬B1,1

R5 : B2,1

Rules in KB:
“Pits cause breezes in adjacent squares” eqv. to “square is breezy iff adjacent pit”
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Truth Tables for Inference

B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false
false false false false false false true true true false true false false
...

...
...

...
...

...
...

...
...

...
...

...
...

false true false false false false false true true false true true false

false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true

false true false false true false false true false false true true false
...

...
...

...
...

...
...

...
...

...
...

...
...

true true true true true true true false true true false true false

Enumerate rows (different assignments to symbols); rows are possible models
if KB is true in a row/model, check that α is true; f not, entailment does not hold
If entailment not broken over all rows where KB is true, then else, α entailed
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Model Checking: Inference by Enumeration

Depth-first enumeration of all models is sound and complete

function TT-Entails?(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols← a list of the proposition symbols in KB and α
return TT-Check-All(KB,α, symbols, [ ])

function TT-Check-All(KB,α, symbols,model) returns true or false
if Empty?(symbols) then

if PL-True?(KB,model) then return PL-True?(α,model)
else return true

else do
P←First(symbols); rest←Rest(symbols)

return TT-Check-All(KB,α, rest,Extend(P, true,model))
and

TT-Check-All(KB,α, rest,Extend(P, false,model))

O(2n) for n symbols; problem is co-NP-complete
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Proof Methods

Proof methods divide into (roughly) two kinds:

Model checking
truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
backtracking with constraint propagation, backjumping
heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

Theorem Proving/Deductive Systems: Application of inference rules
– Legitimate (sound) generation of new sentences from old
– Proof = a sequence of inference rule applications

Can use inference rules as operators in a standard search alg.
– Typically require translation of sentences into a normal form
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Logical Equivalence

Two sentences are logically equivalent iff true in same models:
α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α =⇒ β) ≡ (¬β =⇒ ¬α) contraposition
(α =⇒ β) ≡ (¬α ∨ β) implication elimination

(α⇔ β) ≡ ((α =⇒ β) ∧ (β =⇒ α)) biconditional elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧
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Validity and Satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨ ¬A, A =⇒ A, (A ∧ (A =⇒ B)) =⇒ B

Validity is connected to inference via the Deduction Theorem:
KB |= α if and only if (KB =⇒ α) is valid

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

Satisfiability is connected to inference via the following:
KB |= α if and only if (KB ∧ ¬α) is unsatisfiable
i.e., prove α by reductio ad absurdum
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Deductive Systems: Rules of Inference
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Inference by Resolution

Conjunctive Normal Form (CNF—universal)
conjunction of disjunctions of literals︸ ︷︷ ︸
conjunction of disjuncticlauses
E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)
Resolution inference rule (for CNF): complete for propositional logic

`1 ∨ · · · ∨ `k , m1 ∨ · · · ∨mn

`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn

where `i and mj are complementary literals. E.g.,
P1,3 ∨ P2,2, ¬P2,2

P1,3

Resolution is sound and complete for propositional logic
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Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)
1. Eliminate ⇔, replacing α ⇔ β with (α =⇒ β) ∧ (β =⇒ α).

(B1,1 =⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) =⇒ B1,1)

2. Eliminate ⇒, replacing α ⇒ β with ¬α ∨ β.

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)
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Resolution Algorithm

Proof by contradiction/refutation, i.e., show KB ∧ ¬α unsatisfiable

function PL-Resolution(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB ∧ ¬α
new←{}
loop do

for each Ci , Cj in clauses do
resolvents←PL-Resolve(Ci ,Cj)
if resolvents contains the empty clause then return true
new← new ∪ resolvents

if new ⊆ clauses then return false
clauses← clauses ∪ new

Can actually use any search algorithm, with clauses as states and resolution as
operators. Goal state is list of clauses containing empty clause.
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Resolution Example

KB = (B1,1 ⇔ (P1,2 ∨ P2,1)) ∧ ¬B1,1 α = ¬P1,2

Completeness of resolution algorithm follows from ground resolution theorem: If a set of
clauses S is unsatisfiable, then the resolution closure RC(S) of those clauses contains an
empty clause.

RC(S): set of all clauses derivable by repeated application of resolution rule to clauses
in S or their derivatives.

Amarda Shehu (580) Deductive Systems: Inference and Theorem Proving 45



Definite Clauses and Horn Clauses

Inference by resolution is complete, but sometimes an overkill

KB may contain restricted (rule-based) forms of sentences, such as:

Definite clause: disjunction of literals of which exactly one is positive.
(¬L1,1 ∨ B1,1) is
(P1,2 ∨ P2,1) is not
(¬L1,1 ∨ ¬B1,1) is not

Horn clause: disjunction of literals of which at most one is positive.
Which of the above is a Horn clause?

Negated literals ¬A rewritten as (A =⇒ False) (integrity constraints)

Inference with Horn clauses can be done through forward chaining and backward
chaining

These are more efficient than the resolution algorithm, run in linear time
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Horn Form and Forward and Backward Chaining

Horn Form (restricted) KB (= conjunction of Horn clauses)
E.g., C ∧ (B =⇒ A) ∧ (C ∧ D =⇒ B)

Modus Ponens: complete for Horn KBs (α1, . . . , αn - premises, β - sought conclusion)

α1, . . . , αn, α1 ∧ · · · ∧ αn =⇒ β

β

Known as forward chaining inference rule; repeated applications until sentence of
interest obtained – forward chaining algorithm

Modus Tollens - a form of Modus Ponens

¬β, α1 ∧ · · · ∧ αn =⇒ β

¬(α1 ∧ · · · ∧ αn)

Known as backward chaining inference rule; repeated applications until all premises
obtained – backward chaining algorithm

Both algorithms intuitive and run in linear time

Inference via forward or backward chaining forms basis of logic programming (Chapter 9)
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Forward Chaining

Idea: Add literals in KB to facts (satisfied premises)
apply each premise satisfied in KB (fire rules)
add rule’s conclusion as new fact/premise to the KB

(this is inference propagation via forward chaining)
stop when query found as fact or no more inferences

P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧ B =⇒ L

A

B
Figure: AND-OR tree
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Forward Chaining Algorithm

function PL-FC-Entails?(KB,q) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses

q, the query, a proposition symbol
local variables: count, table indexed by clause, initial nr. of premises

inferred, table indexed by symbol, entries initially false
agenda, list of symbols, initial symbols known in KB

while agenda is not empty do
p←Pop(agenda)
unless inferred[p] do

inferred[p]← true
for each Horn clause c in whose premise p appears do

decrement count[c]
if count[c] = 0 then do

if Head[c] = q then return true
Push(Head[c], agenda)

return false
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Proof of Completeness

FC derives every atomic sentence that is entailed by KB
1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m

Proof: Suppose a clause a1 ∧ . . . ∧ ak ⇒ b is false in m

Then a1 ∧ . . . ∧ ak is true in m and b is false in m

Therefore the algorithm has not reached a fixed point!
4. Hence m is a model of KB
5. If KB |= q, q is true in every model of KB, including m

General idea: construct any model of KB by sound inference, check α

FC is an example of a data-driven reasoning algorithm
start with what known, derive new conclusions, with no particular goal in mind
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Backward Chaining

Idea: goal-driven reasoning – work backwards from the query q:
to prove q by BC,

check if q is known already, or
prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal
1) has already been proved true, or
2) has already failed
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Forward versus Backward Chaining

FC is data-driven, cf. automatic, unconscious processing,
e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving,
e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be much less than linear in size of KB, because only relevant
facts are touched
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Inference-based Agent in Wumpus World

A wumpus-world agent using propositional logic:

64 distinct proposition symbols, 155 sentences
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PL-WUMPUS-AGENT Algorithm
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Propositional Logic Summary

Logical agents apply inference to a knowledge base
to derive new information and make decisions

Basic concepts of logic:
– syntax: formal structure of sentences
– semantics: truth of sentences wrt models
– entailment: truth of one sentence given another
– inference: deriving sentences from other sentences
– soundess: derivations produce only entailed sentences
– completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason
by cases, etc.
Forward, backward chaining are linear-time, complete for Horn clauses

Resolution is complete for propositional logic

Propositional logic does not scale to environments of unbounded size, as it lacks
expressive power to deal concisely with time, space, and universal patterns of
relationships among objects
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