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Restricted Form of a General Agent

function Simple-Problem-Solving-Agent( percept) returns an ac-
tion

static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state←Update-State(state, percept)
if seq is empty then

goal←Formulate-Goal(state)
problem←Formulate-Problem(state, goal)
seq←Search( problem)

action←Recommendation(seq, state)
seq←Remainder(seq, state)
return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.
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Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest.

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Amarda Shehu (580) Problem-solving Agents 4



Example: Romania

Amarda Shehu (580) Problem-solving Agents 5



Problem Types

Fully-observable, Known, Deterministic → single-state problem
Agent knows exactly which state it will be in; solution is a sequence of actions that
can be executed eyes closed
open loop: no need to sense environment during execution

Non-observable → conformant problem
Agent may have no idea where it is; solution (if any) is a sequence
Also known as multi-state problem: agent knows which states it might be in

Nondeterministic and/or Partially observable → contingency problem
Percepts provide new information about current state
Solution is a contingent plan or a policy
Often interleave search, execution
plans contain conditional parts based on sensors

Unknown environment → exploration problem (“online”)
Agent must learn the effect of its actions
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Example: Vacuum World

Single-state, start in #5.
Solution??

[Right, Suck]

Conformant, start in
{1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}.
Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a
clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]
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Formulation of a Problem via Five Components

1 Initial state(s): the state(s) the agent starts in

2 Actions/operators: given any state s, ACTION(s) returns set of actions that can
be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a,
RESULT(s, a) returns the state that results from carrying out action a on s

1.-3. implicitly define state space: set of all states reachable from initial state
and any sequence of actions.

encoded as a directed graph: nodes are states and edges are actions.

what is a path in this graph?

4 Goal test: determines whether a given state is a goal state

defined explicitly or via a property

5 Path cost: computational cost of the execution of the path/plan
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Single-state Problem Formulation for Route-Finding

A problem is defined by five components:

1 Initial state e.g., “In(Arad)”

2 Actions e.g.
ACTION(Arad) = { Arad → Timisoara, Arad → Sibiu, . . ., Arad → Zerind }

3 Transition model
e.g. RESULT(Arad, Arad → Zerind) = Zerind

4 Goal test, can be:
explicit e.g., “In(Bucharest)”
implicit e.g., NoDirt(s)

5 Path cost (additive)
e.g. sum of distances, number of actions executed, etc.

c(x , a, y) is the step cost, assumed to be ≥ 0

Solution:

A solution is a sequence of actions leading from the initial state to a goal state
the process of looking for a solution is called search
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Abstraction: Selecting a State Space

Real world is absurdly complex

⇒ state space must be abstracted for problem solving
(Abstract) state = set of real states
(Abstract) action = complex combination of real actions

e.g., “Arad → Zerind” represents a complex set
of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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State Space Graph

State space graph: A mathematical
representation of a search problem

Nodes are (abstracted) world
configurations

Arcs/edges/links represent successors
(action results)

Goal test is a set of goal nodes (maybe
only one)

In a state space graph, each state
occurs only once!

We can rarely build this full graph in
memory (its too big), but it’s a useful
idea
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Example: Vacuum World State Space Graph

states??:

integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)

How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??:

Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp

transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??:

([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . .

where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??:

no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??:

1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) How many states?

actions??: Left, Right, Suck, NoOp
transition model??: ([A, dirt], Suck) → [A, clean], . . . where is transition model in graph?

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Amarda Shehu (580) Problem Formulation 12



Example: The 8-puzzle

states??:

integer locations of tiles (ignore intermediate positions) How many states?

actions??: blank space “moves” Left, Right, Up, Down
transition model??: Given state and action, returns resulting state
goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard!]
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Example: Robotic Assembly

states??:

real-valued coordinates of robot joint angles + parts of the object to be
assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state
goal test??: complete assembly with no robot included!

path cost??: time to execute
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Route-finding and Tour-finding Problems

The vacuum cleaner problem, 8-puzzle (block sliding), 8-queens, and others are
examples of toy, route-finding problems.

Real-world route-finding problems can be found in robot navigation, manipulation,
assembly, airline travel web-planning, and more.

Tour-finding problems are slighly different: “visit every city at least once, starting and
ending in Bucharest.”

Traveling salesperson problem (TSP): find shortest tour that visits each city exactly
once, NP-hard.

Other related, complex problems: packing, scheduling, VLSI layout, protein folding,
protein design.
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Searching for Solutions

Choosing states and actions:

abstraction: remove unnecessary information from representation; makes it cheaper
to find a solution

Searching for Solutions:

operators expand a state: generate new states from present ones

fringe or frontier: discovered states to be expanded

search strategy: tells which state in fringe set to expand next

Measuring Performance:

does it find a solution?

what is the search cost?

what is the total cost (path cost + search cost)
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Search Trees

A Search Tree:

A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree
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State Space Graphs vs. Search Trees

We construct both on demand and we construct as little as possible.
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Quiz: State Space Graphs vs. Search Trees

Consider this 4-state space graph: How big is it’s search tree?

Lots of repeated structure in the search tree!
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Repeated States

Failure to detect repeated states can turn a linear problem into an exponential one!

Repeated structure can be easily avoided:

How?
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Graph Search

function Graph-Search( problem, fringe) returns a solution, or failure

closed← an empty set
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State[node]) then return node
if State[node] is not in closed then

add State[node] to closed
fringe← InsertAll(Expand(node, problem), fringe)

end
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Searching with a Search Tree

Basic idea:

Expand out potential plans (tree nodes)

Maintain a fringe of partial plans under consideration

Try to expand as few tree nodes as possible (Why?)
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(Discrete) Search Algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function Tree-Search( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding

solution
else expand the node and add the resulting nodes to the search

tree
end
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Fundamental Properties of Discrete Search Algorithms

Fundamental to Graph Search/Traversal Algorithms:

Successor function: generate successors/neighbors and distinguish a goal state
from a non-goal state.

Completeness Goal should not be missed if a path exists.

Efficiency No edge should be traversed more than twice.
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Tree Search Example
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Tree Search Example
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Tree Search Example
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Implementation: States vs. Nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the
SuccessorFn of the problem to create the corresponding states.
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General Tree Search

Important insight:
Any search algorithm constructs a tree, adding to it vertices from state-space graph
G in some order

G = (V ,E) —– look at it as split in two: set S on one side and V − S on the other

search proceeds as vertices are taken from V − S and added to S
search ends when V − S is empty or goal found

First vertex to be taken from V − S and added to S?
Next vertex? (... expansion ...)
Where to keep track of these vertices? (... fringe/frontier ...)

Important ideas:
Fringe (frontier into V − S/border between S and V − S)
Expansion (neighbor generation so can add to fringe)
Exploration strategy (what order to grow S?)

Main question:
which fringe/frontier nodes to explore/expand next?
strategy distinguishes search algorithms from one another
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Implementation: General Tree Search

function Tree-Search( problem, fringe) returns a solution, or failure
fringe← Insert(Make-Node(Initial-State[problem]), fringe)
loop do

if fringe is empty then return failure
node←Remove-Front(fringe)
if Goal-Test(problem,State(node)) then return node
fringe← InsertAll(Expand(node, problem), fringe)

function Expand( node, problem) returns a set of nodes
successors← the empty set
for each action, result in Successor-Fn(problem,State[node]) do

s← a new Node
Parent-Node[s]← node; Action[s]← action; State[s]← result
Path-Cost[s]←Path-Cost[node] + Step-Cost(State[node],

action, result)
Depth[s]←Depth[node] + 1
add s to successors

return successors
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Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

completeness—does it always find a solution if one exists?

time complexity—number of nodes generated/expanded

space complexity—maximum number of nodes in memory

optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of:

b—maximum branching factor of the search tree

d—depth of the least-cost solution

m—maximum depth of the state space (may be ∞)
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Uninformed Graph Search

Characteristics of Uninformed Graph Search/Traversal:

There is no additional information about states/vertices beyond what is provided in
the problem definition.

All that the search does is generate successors/neighbors and distinguish a goal
state from a non-goal state.

The systematic search “lays out” all paths from initial
vertex; it traverses the search tree of the graph.
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Uninformed Graph Search

F: search data structure (fringe)
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Figure: Graph

Figure: Search Tree of Graph
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Uninformed Search Algorithms

Breadth-first Search (BFS)

Depth-first Search (DFS)

Depth-limited search (DLS)

Iterative Deepening Search (IDS)
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Breadth-first Search (BFS)
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue
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Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Running Time?

Let V and E be vertices and edges in search tree
O(|V |+ |E |) What about in terms of b and m?
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Properties of Breadth-first Search (BFS)

Complete??

Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time??

1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space??

O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal??

Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space

is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu (580) Elementary (Graph) Search Algorithms 41



BFS Summary

Basic Behavior:

Expands all nodes at depth d before those at depth d + 1

The sequence is root, then children, then grandchildren in the search tree.

Problems:

If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.

BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.

BFS is not very popular because time and space complexity are exponential:
O(bd+1) and O(bd+1), respectively.

Memory requirements of BFS are a bigger problem.
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Depth-first Search (DFS)
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Depth-first Search (DFS)
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Running Time?

Let V and E be vertices and edges in search tree
O(|V |+ |E |) What about in terms of b and m?
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Properties of Depth-first Search (DFS)

Complete??

No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No Why?
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DFS Summary

Basic Behavior:

Expands the deepest node in the tree

Backtracks when reaches a non-goal node with no descendants

Problems:

Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex

Hence, DFS is not optimal

If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

Hence, DFS is not complete

Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree

Time complexity is O(bm) and space complexity is O(b ·m)
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BFS vs. DFS

When will BFS outperform DFS?

When will DFS outperform BFS?
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Another Advantage of DFS

RecursiveDFS(v)
1: if v is unmarked then
2: mark v
3: for each edge v , u do
4: RecursiveDFS(u)

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is
discovered, when its neighbors are in the process of being considered, and when all its
neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they
are finished. These start and finish times are useful in various applications of DFS
regarding constraint satisfaction.
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Depth-limited Search (DLS)

Problem with DFS is presence of infinite paths

DLS limits the depth of a path in search tree of DFS

Modifies DFS by using a predetermined depth limit dl

DLS is incomplete if the shallowest goal is beyond the depth limit dl

DLS is not optimal if d < dl

Time complexity is O(bdl ) and space complexity is O(b · dl)
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Depth-limited Search (DLS)

= DFS with depth limit dl [i.e., nodes at depth dl are not expanded]

Recursive implementation:

function Depth-Limited-Search( problem, limit) returns
soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem,
limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem,State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do

result←Recursive-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure
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Iterative Deepening Search (IDS)

Finds the best depth limit by incrementing dl until goal is found at dl = d

Can be viewed as running DLS with consecutive values of dl

IDS combines the benefits of both DFS and BFS

Like DFS, its space complexity is O(b · d)

Like BFS, it is complete when the branching factor is finite, and it is optimal if the
path cost is a non-decreasing function of the depth of the goal node

Its time complexity is O(bd)

IDS is the preferred uninformed search when the state space is large, and the depth
of the solution is not known
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Iterative Deepening Search (IDS)

function Iterative-Deepening-Search( problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←Depth-Limited-Search( problem, depth)
if result 6= cutoff then return result

end
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Iterative Deepening Search (IDS) @ dl = 0
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Iterative Deepening Search (IDS) @ dl = 1
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Iterative Deepening Search (IDS) @ dl = 2
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Iterative Deepening Search (IDS) @ dl = 3
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Summary of Uninformed Search Algorithms

Criterion Breadth- Depth- Depth- Iterative
First First Limited Deepening

Complete? Yes∗ No Yes, if dl ≥ d Yes
Time bd+1 bm bdl bd

Space bd+1 bm bdl bd
Optimal? Yes∗ No No Yes∗
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Uninformed Search Summary

Problem formulation usually requires abstracting away real-world details to define a
state space that can feasibly be explored

Variety of uninformed search strategies

IDS uses only linear space and not much more time than other uninformed
algorithms

Graph search can be exponentially more efficient than tree search

What about least-cost paths with non-uniform state-state costs?
That is the subject of next lecture
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