Lecture 2: Problem Solving and (Uninformed) Search CS 580 (001) - Spring 2018

Amarda Shehu

Department of Computer Science
George Mason University, Fairfax, VA, USA
January 31, 2018

1 Outline of Today's Class

2 Problem-solving Agents
(3) Problem Types

4 Problem Formulation

5 Example Problems

6 Elementary (Graph) Search Algorithms

- Uninformed Search
- Breadth-first Search (BFS)
- Depth-first Search (DFS)
- Depth-limited Search (DLS)
- Iterative Deepening Search (IDS)

Restricted Form of a General Agent

function Simple-Problem-Solving-AGENT(percept) returns an action
static: seq, an action sequence, initially empty state, some description of the current world state goal, a goal, initially null problem, a problem formulation
state \leftarrow UPDATE-STATE (state, percept)
if $s e q$ is empty then
goal \leftarrow FORMULATE-GOAL $($ state $)$
problem \leftarrow FORMULATE-PROBLEM(state, goal)
seq $\leftarrow \operatorname{SEARCH}($ problem $)$
action \leftarrow RECOMMENDATION(seq, state)
seq \leftarrow REMAINDER(seq, state)
return action

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest.

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

■ Fully-observable, Known, Deterministic \rightarrow single-state problem
Agent knows exactly which state it will be in; solution is a sequence of actions that can be executed eyes closed
open loop: no need to sense environment during execution

■ Non-observable \rightarrow conformant problem
Agent may have no idea where it is; solution (if any) is a sequence Also known as multi-state problem: agent knows which states it might be in

■ Nondeterministic and/or Partially observable \rightarrow contingency problem
Percepts provide new information about current state
Solution is a contingent plan or a policy
Often interleave search, execution
plans contain conditional parts based on sensors

■ Unknown environment \rightarrow exploration problem ("online")
Agent must learn the effect of its actions

Single-state, start in \#5. Solution??

Single-state, start in \#5. Solution??

3

Single-state, start in \#5.
Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$

3

Single-state, start in \#5.
Solution??
[Right, Suck]
Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$

Solution??

3

Single-state, start in \#5.
Solution??
[Right, Suck]
Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$.

Solution??

[Right,Suck, Left, Suck]

3

Single-state, start in \#5.
Solution??
[Right, Suck]
Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$.

Solution??
[Right, Suck, Left, Suck]
Contingency, start in \#5
Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.

Single-state, start in \#5.
Solution??
[Right, Suck]
Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$.

Solution??
[Right, Suck, Left, Suck]
Contingency, start in \#5
Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only. Solution??
[Right, if dirt then Suck]

Single-state, start in \#5.
Solution??
[Right, Suck]
Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$.

Solution??
[Right, Suck, Left, Suck]
Contingency, start in \#5
Murphy's Law: Suck can dirty a clean carpet
Local sensing: dirt, location only. Solution??
[Right, if dirt then Suck]

1 Initial state(s): the state(s) the agent starts in

1 Initial state(s): the state(s) the agent starts in
2. Actions/operators: given any state $s, \operatorname{ACTION(s)}$ returns set of actions that can be executed from s

1 Initial state(s): the state(s) the agent starts in
2 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s

1 Initial state(s): the state(s) the agent starts in
1 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s
1.-3. implicitly define state space: set of all states reachable from initial state and any sequence of actions.

1 Initial state(s): the state(s) the agent starts in
1 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s
1.-3. implicitly define state space: set of all states reachable from initial state and any sequence of actions.
encoded as a directed graph: nodes are states and edges are actions.

1 Initial state(s): the state(s) the agent starts in
2 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s
1.-3. implicitly define state space: set of all states reachable from initial state and any sequence of actions.
encoded as a directed graph: nodes are states and edges are actions.
what is a path in this graph?

1 Initial state(s): the state(s) the agent starts in
1 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s
1.-3. implicitly define state space: set of all states reachable from initial state and any sequence of actions.
encoded as a directed graph: nodes are states and edges are actions. what is a path in this graph?

4 Goal test: determines whether a given state is a goal state defined explicitly or via a property

1 Initial state(s): the state(s) the agent starts in
1 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s
1.-3. implicitly define state space: set of all states reachable from initial state and any sequence of actions.
encoded as a directed graph: nodes are states and edges are actions. what is a path in this graph?

4 Goal test: determines whether a given state is a goal state defined explicitly or via a property

5 Path cost: computational cost of the execution of the path/plan

1 Initial state(s): the state(s) the agent starts in
2 Actions/operators: given any state $s, \operatorname{ACTION}(s)$ returns set of actions that can be executed from s

3 Transition model: maps state-action pairs to states; given a state s and action a, $\operatorname{RESULT}(s, a)$ returns the state that results from carrying out action a on s
1.-3. implicitly define state space: set of all states reachable from initial state and any sequence of actions.
encoded as a directed graph: nodes are states and edges are actions. what is a path in this graph?

4 Goal test: determines whether a given state is a goal state defined explicitly or via a property

5 Path cost: computational cost of the execution of the path/plan

A problem is defined by five components:

1 Initial state e.g., "In(Arad)"
\downarrow Actions e.g.
ACTION $($ Arad $)=\{$ Arad \rightarrow Timisoara, Arad \rightarrow Sibiu, . .., Arad \rightarrow Zerind $\}$
3 Transition model
e.g. RESULT(Arad, Arad \rightarrow Zerind) $=$ Zerind

4 Goal test, can be:
■ explicit e.g., "In(Bucharest)"

- implicit
e.g., NoDirt(s)

5 Path cost (additive)
e.g. sum of distances, number of actions executed, etc.

- $c(x, a, y)$ is the step cost, assumed to be ≥ 0

Solution:

A solution is a sequence of actions leading from the initial state to a goal state the process of looking for a solution is called search

Real world is absurdly complex
\Rightarrow state space must be abstracted for problem solving
(Abstract) state $=$ set of real states
(Abstract) action $=$ complex combination of real actions
e.g., "Arad \rightarrow Zerind" represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
(Abstract) solution $=$
set of real paths that are solutions in the real world
Each abstract action should be "easier" than the original problem!

State Space Graph

- State space graph: A mathematical representation of a search problem
- Nodes are (abstracted) world configurations
- Arcs/edges/links represent successors (action results)
■ Goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (its too big), but it's a useful idea

states??:

[^0]
states??: integer dirt and robot locations (ignore dirt amounts etc.)

Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??:

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp

Example: Vacuum World State Space Graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: ([A, dirt], Suck) \rightarrow [A, clean]

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: $([A$, dirt $]$, Suck $) \rightarrow[A$, clean $], \ldots$

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: ([A, dirt], Suck) \rightarrow [A, clean $], \ldots$ where is transition model in graph?

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: ([A, dirt], Suck) \rightarrow [A, clean $], \ldots \quad$ where is transition model in graph? goal test??: no dirt

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: ([A, dirt], Suck) \rightarrow [A, clean $], \ldots$ where is transition model in graph? goal test??: no dirt

```
path cost??:
```


states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: ([A, dirt], Suck) \rightarrow [A, clean $], \ldots$ where is transition model in graph? goal test??: no dirt path cost??: 1 per action (0 for NoOp)

states??: integer dirt and robot locations (ignore dirt amounts etc.)
How many states? actions??: Left, Right, Suck, NoOp transition model??: ([A, dirt], Suck) \rightarrow [A, clean $], \ldots$ where is transition model in graph? goal test??: no dirt path cost??: 1 per action (0 for NoOp)

states??:

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)
actions??: blank space "moves" Left, Right, Up, Down
transition model??: Given state and action, returns resulting state goal test??: = goal state (given)
path cost??: 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard!]

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions)
actions??: blank space "moves" Left, Right, Up, Down
transition model??: Given state and action, returns resulting state goal test??: = goal state (given)
path cost??: 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard!]

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??:

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state goal test??: complete assembly with no robot included!

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state goal test??: complete assembly with no robot included!

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state goal test??: complete assembly with no robot included! path cost ??: time to execute

states??: real-valued coordinates of robot joint angles + parts of the object to be assembled
actions??: continuous motions of robot joints
transition model??: state+action yields new state goal test??: complete assembly with no robot included! path cost??: time to execute

The vacuum cleaner problem, 8-puzzle (block sliding), 8-queens, and others are examples of toy, route-finding problems.

Real-world route-finding problems can be found in robot navigation, manipulation, assembly, airline travel web-planning, and more.

Tour-finding problems are slighly different: "visit every city at least once, starting and ending in Bucharest."

Traveling salesperson problem (TSP): find shortest tour that visits each city exactly once, NP-hard.

Other related, complex problems: packing, scheduling, VLSI layout, protein folding, protein design.

Choosing states and actions:

- abstraction: remove unnecessary information from representation; makes it cheaper to find a solution

Searching for Solutions:

- operators expand a state: generate new states from present ones
- fringe or frontier: discovered states to be expanded
- search strategy: tells which state in fringe set to expand next

Measuring Performance:

- does it find a solution?
- what is the search cost?
- what is the total cost (path cost + search cost)

Search Trees

A "what if" tree of plans and their outcomes
The start state is the root node
Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree

We construct both on demand and we construct as little as possible.

Consider this 4-state space graph:

How big is it's search tree?

Lots of repeated structure in the search tree!

Failure to detect repeated states can turn a linear problem into an exponential one!

Repeated structure can be easily avoided:

Failure to detect repeated states can turn a linear problem into an exponential one!

Repeated structure can be easily avoided: How?

Failure to detect repeated states can turn a linear problem into an exponential one!

Repeated structure can be easily avoided: How?
function Graph-SEARCH (problem, fringe) returns a solution, or failure

```
closed}\leftarrow\mathrm{ an empty set
fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
    if fringe is empty then return failure
    node}\leftarrow\mathrm{ REMOVE-FRONT(fringe)
    if Goal-TEST(problem,STATE[node]) then return node
    if State[node] is not in closed then
        add STATE[node] to closed
        fringe }\leftarrow\mathrm{ INSERTALL(EXPAND(node, problem), fringe)
end
```


Searching with a Search Tree

Expand out potential plans (tree nodes)
Maintain a fringe of partial plans under consideration
Try to expand as few tree nodes as possible (Why?)

Searching with a Search Tree

Expand out potential plans (tree nodes)
Maintain a fringe of partial plans under consideration
Try to expand as few tree nodes as possible (Why?)

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)
function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree end

Fundamental to Graph Search/Traversal Algorithms:

■ Successor function: generate successors/neighbors and distinguish a goal state from a non-goal state.

Completeness Goal should not be missed if a path exists.
Efficiency No edge should be traversed more than twice.

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!
parent, action

State

5	4	
6	1	8
7	3	2
		2

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.

■ Important insight:

- Any search algorithm constructs a tree, adding to it vertices from state-space graph G in some order
- $G=(V, E)-$ look at it as split in two: set S on one side and $V-S$ on the other
- search proceeds as vertices are taken from $V-S$ and added to S
- search ends when $V-S$ is empty or goal found
- First vertex to be taken from $V-S$ and added to S ?
- Next vertex? (... expansion ...)
- Where to keep track of these vertices? (... fringe/frontier ...)
- Important ideas:
- Fringe (frontier into $V-S /$ border between S and $V-S$)
- Expansion (neighbor generation so can add to fringe)
- Exploration strategy (what order to grow S?)

- Main question:

- which fringe/frontier nodes to explore/expand next?
- strategy distinguishes search algorithms from one another
function Tree-SEARCH (problem, fringe) returns a solution, or failure fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe) loop do
if fringe is empty then return failure node \leftarrow Remove-Front(fringe)
if Goal-Test(problem, State(node)) then return node fringe $\leftarrow \operatorname{Insert}$ AlL(Expand(node, problem), fringe)
function EXPAND (node, problem) returns a set of nodes
successors \leftarrow the empty set
for each action, result in Successor-Fn(problem, State[node]) do $s \leftarrow a$ new Node
Parent-Node $[s] \leftarrow$ node; Action $[s] \leftarrow$ action; State $[s] \leftarrow$ result Path-Cost[s] \leftarrow Path-Cost[node] + Step-Cost(State[node], action, result)

Depth $[s] \leftarrow$ Depth[node] +1
add s to successors
return successors

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:

- completeness-does it always find a solution if one exists?
- time complexity—number of nodes generated/expanded
- space complexity-maximum number of nodes in memory
- optimality-does it always find a least-cost solution?

Time and space complexity are measured in terms of:

- b-maximum branching factor of the search tree
- d-depth of the least-cost solution
- m-maximum depth of the state space (may be ∞)

Uninformed Graph Search

Characteristics of Uninformed Graph Search/Traversal:

- There is no additional information about states/vertices beyond what is provided in the problem definition.
- All that the search does is generate successors/neighbors and distinguish a goal state from a non-goal state.

The systematic search "lays out" all paths from initial vertex; it traverses the search tree of the graph.

F: search data structure (fringe) parent array: stores "edge comes from" to record visited states

1: F.insert(v)
2: parent $[\mathrm{v}] \leftarrow$ true
: while not F.isEmpty do
4: $\quad \mathrm{u} \leftarrow$ F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v$]$ then
9: F.insert(v)
10: \quad parent $[\mathrm{v}] \leftarrow \mathrm{u}$

Figure: Search Tree of Graph

Uninformed Search Algorithms

- Breadth-first Search (BFS)
- Depth-first Search (DFS)
- Depth-limited search (DLS)
- Iterative Deepening Search (IDS)

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe $=$ first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe $=$ first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe $=$ first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe $=$ first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue


```
F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores "edge comes from" to record visited states
```

1: F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
4: $\quad u \leftarrow$ F.extract()
5: if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent[v] then
F.insert(v)
parent $[\mathrm{v}] \leftarrow \mathrm{u}$
Running Time?

```
F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrowF\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree

```
F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrowF\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree $O(|V|+|E|)$

```
F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrow\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree $O(|V|+|E|)$

```
F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrowF\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree $O(|V|+|E|)$

Complete??

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Complete?? Yes (if b is finite)

Time??

Complete?? Yes (if b is finite)

Time??

Complete?? Yes (if b is finite)

Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)

Optimal??

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem; can easily generate nodes at $100 \mathrm{MB} / \mathrm{sec}$
so $24 \mathrm{hrs}=8640 \mathrm{~GB}$.

Complete?? Yes (if b is finite)

Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem; can easily generate nodes at $100 \mathrm{MB} / \mathrm{sec}$
so $24 \mathrm{hrs}=8640 \mathrm{~GB}$.

Basic Behavior:

- Expands all nodes at depth d before those at depth $d+1$
- The sequence is root, then children, then grandchildren in the search tree.

Problems:

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)

Basic Behavior:

- Expands all nodes at depth d before those at depth $d+1$
- The sequence is root, then children, then grandchildren in the search tree.

Problems:

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.

Basic Behavior:

- Expands all nodes at depth d before those at depth $d+1$
- The sequence is root, then children, then grandchildren in the search tree.

Problems:

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.
- BFS will find shallowest goal after expanding all shallower nodes (if branching factor is finite). Hence, BFS is complete.

Basic Behavior:

- Expands all nodes at depth d before those at depth $d+1$

■ The sequence is root, then children, then grandchildren in the search tree.

Problems:

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.
- BFS will find shallowest goal after expanding all shallower nodes (if branching factor is finite). Hence, BFS is complete.
- BFS is not very popular because time and space complexity are exponential: $O\left(b^{d+1}\right)$ and $O\left(b^{d+1}\right)$, respectively.
- Memory requirements of BFS are a bigger problem.

Basic Behavior:

- Expands all nodes at depth d before those at depth $d+1$
- The sequence is root, then children, then grandchildren in the search tree.

Problems:

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.
- BFS will find shallowest goal after expanding all shallower nodes (if branching factor is finite). Hence, BFS is complete.
- BFS is not very popular because time and space complexity are exponential: $O\left(b^{d+1}\right)$ and $O\left(b^{d+1}\right)$, respectively.
- Memory requirements of BFS are a bigger problem.

Depth-first Search (DFS)

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Strategy: Expand deepest unexpanded node

Implementation:
fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack

Strategy: Expand deepest unexpanded node

Implementation:
fringe $=$ last-in first-out (LIFO), i.e., unvisited successors at front F is a stack


```
F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores "edge comes from" to record visited states
```

1: F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
4: $\quad \mathrm{u} \leftarrow$ F.extract()
5: if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent[v] then
F.insert(v)
parent $[\mathrm{v}] \leftarrow \mathrm{u}$
Running Time?

```
F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrow\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree

```
F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrowF\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree
$O(|V|+|E|)$

```
F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrowF\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow
```


Running Time?

Let V and E be vertices and edges in search tree $O(|V|+|E|)$

Depth-first Search (DFS)

```
F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores "edge comes from" to record visited states
```

```
F.insert(v)
parent[v] \leftarrow true
while not F.isEmpty do
    u}\leftarrowF\mathrm{ F.extract()
    if isGoal(u) then
        return true
    for each v in outEdges(u) do
        if no parent[v] then
        F.insert(v)
        parent[v]}\leftarrow\textrm{u
```


Running Time?

Let V and E be vertices and edges in search tree $O(|V|+|E|)$

What about in terms of b and m ?

Complete??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Space??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Space?? $O(\mathrm{bm})$, i.e., linear space!

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Space?? $O(\mathrm{bm})$, i.e., linear space!
Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Space?? $O(\mathrm{bm})$, i.e., linear space!
Optimal??

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Space?? $O(\mathrm{bm})$, i.e., linear space!
Optimal?? No

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces

Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than BFS

Space?? $O(\mathrm{bm})$, i.e., linear space!
Optimal?? No

Basic Behavior:

- Expands the deepest node in the tree

■ Backtracks when reaches a non-goal node with no descendants

Problems:

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal

Basic Behavior:

- Expands the deepest node in the tree

■ Backtracks when reaches a non-goal node with no descendants

Problems:

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.

Basic Behavior:

- Expands the deepest node in the tree

■ Backtracks when reaches a non-goal node with no descendants

Problems:

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete

Basic Behavior:

- Expands the deepest node in the tree

■ Backtracks when reaches a non-goal node with no descendants

Problems:

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete
- Let b be the maximum number of successors of any node (known as branching factor), d be depth of shallowest goal, and m be maximum length of any path in the search tree

Basic Behavior:

- Expands the deepest node in the tree

■ Backtracks when reaches a non-goal node with no descendants

Problems:

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete
- Let b be the maximum number of successors of any node (known as branching factor), d be depth of shallowest goal, and m be maximum length of any path in the search tree
- Time complexity is $O\left(b^{m}\right)$ and space complexity is $O(b \cdot m)$

Basic Behavior:

- Expands the deepest node in the tree

■ Backtracks when reaches a non-goal node with no descendants

Problems:

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete
- Let b be the maximum number of successors of any node (known as branching factor), d be depth of shallowest goal, and m be maximum length of any path in the search tree
- Time complexity is $O\left(b^{m}\right)$ and space complexity is $O(b \cdot m)$

- When will BFS outperform DFS?
- When will DFS outperform BFS?

RecursiveDFS(v)
1: if v is unmarked then
2: mark v
3: for each edge v, u do
4: RecursiveDFS(u)

Undiscovered

Unfinished Active Finished

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is discovered, when its neighbors are in the process of being considered, and when all its neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they are finished. These start and finish times are useful in various applications of DFS regarding constraint satisfaction.

- Problem with DFS is presence of infinite paths
- DLS limits the depth of a path in search tree of DFS
- Modifies DFS by using a predetermined depth limit d_{1}
- DLS is incomplete if the shallowest goal is beyond the depth limit d_{l}
- DLS is not optimal if $d<d_{l}$
- Time complexity is $O\left(b^{d_{l}}\right)$ and space complexity is $O\left(b \cdot d_{l}\right)$
$=$ DFS with depth limit d_{l} [i.e., nodes at depth d_{l} are not expanded]
Recursive implementation:
function Depth-Limited-SEARCH (problem, limit) returns soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)
function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff cutoff-occurred? \leftarrow false
if Goal-Test(problem, State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do result \leftarrow Recursive-DLS(successor, problem, limit)
if result $=$ cutoff then cutoff-occurred? \leftarrow true else if result \neq failure then return result
if cutoff-occurred? then return cutoff else return failure

Iterative Deepening Search (IDS)

- Finds the best depth limit by incrementing d_{l} until goal is found at $d_{l}=d$
- Can be viewed as running DLS with consecutive values of d_{l}
- IDS combines the benefits of both DFS and BFS
- Like DFS, its space complexity is $O(b \cdot d)$
- Like BFS, it is complete when the branching factor is finite, and it is optimal if the path cost is a non-decreasing function of the depth of the goal node
- Its time complexity is $O\left(b^{d}\right)$
- IDS is the preferred uninformed search when the state space is large, and the depth of the solution is not known

function Iterative-Deepening-Search (problem) returns a solution inputs: problem, a problem for depth $\leftarrow 0$ to ∞ do result \leftarrow Depth-Limited-Search (problem, depth) if result \neq cutoff then return result end

Limit $=0$ (자

Summary of Uninformed Search Algorithms

Criterion	Breadth- First	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes *	No	Yes, if $d_{l} \geq d$	Yes
Time	b^{d+1}	b^{m}	$b^{d_{l}}$	b^{d}
Space	b^{d+1}	$b m$	$b d_{l}$	$b d$
Optimal?	Yes *	No	No	Yes *

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- IDS uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search
- What about least-cost paths with non-uniform state-state costs?
- That is the subject of next lecture

[^0]: states??: integer dirt and robot locations (ignore dirt amounts etc.)

