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Planning is the process of computing several steps of a problem-solving procedure before
executing any of them

This problem can be solved by search

The main difference between search and planning is the representation of states

In search, states are represented as a single/atomic entity (which may be quite a
complex object, but its internal structure is not used by the search algorithm)

In planning, states have structured/factored representations (collections of
properties/attributes) which are used by the planning algorithm
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Search vs. Planning (continued)

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate
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Search vs. Planning

Planning systems do the following:

1) open up action and goal representation to allow selection

2) divide-and-conquer by subgoaling

3) relax requirement for sequential construction of solutions
Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions
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Classical Planning

Atomic time: Each action is indivisible

No concurrent actions allowed

Deterministic actions: Result of each action is completely determined by the
definition of the action, and there is no uncertainty in performing it in the world

Agent is the sole cause of change in the world (environment is static and
deterministic)

Agent is omniscient – has complete knowledge of the state of the world
(environment is fully-observable)

Closed World assumption – everything known to be true in the world is included in
a state description; what not listed is false
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STRIPS operators

STRIPS planning language (Fikes and Nilsson, 1971)

Tidily arranged actions descriptions, restricted language

Action: Buy(x)
Precondition: At(p),Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language =⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

Complete set of STRIPS operators can be translated into set of successor-state axioms
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PDDL

Planning Domain Definition Language

A bit more relaxed that STRIPS

Preconditions and goals can contain negative literals

Action: Buy(x)
Precondition: At(p), Sells(p, x)
Effect: Have(x)

is called an action schema
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Planning Domain

States are sets of fluents (ground, function-less atoms)

Fluents which are not mentioned are false (this is the closed world assumption)

a ∈ Actions(s) iff s |=Precond(a)
Result(s, a) = (s - Del(a)) ∪ Add(a)

where:
Del(a) is the list of literals which appear negatively in the effect of a
Add(a) is the list of positive literals in the effect of a
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Example

Action: Buy(x)
Precondition: At(p), Sells(p, x), Have(Money)
Effect: Have(x), ¬Have(Money)

Del(Buy(Jaguar)) = Have(Money)
Add(Buy(Jaguar)) = Have(Jaguar)

If s = {At(JDealer), Sells(JDealer, Jaguar), Blue(Sky), Have(Money)}

Is Buy(Jaguar) ∈ Actions(s)? is it a valid action?
Yes: s |=Precond(a)

How?

Result(s, Buy(Jaguar)) = (s - Have(Money)) ∪ {Have(Jaguar)}
= {At(JDealer), Sells(JDealer, Jaguar), Blue(Sky), Have(Jaguar)}
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Planning Problem as a Search Problem

Planning problem = planning domain + initial state + goal

Goal is a conjunction of literals: Have(Jaguar) ∧ ¬ At(Jail)

Can solve planning problem using search

How?

Forward Search or Backward Search

We mainly look at search as forward search: from initial to goal state

Nothing prevents us from searching from goal to initial state

Sometimes, branching factor makes searching backwards more reasonable

Motivating example: imagine trying to figure out how to get to some small place with
few traffic connections from somewhere with a lot of traffic connections
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Example: Forward Search Tree

Amarda Shehu (580) Classical Planning 12



Example: Backward Search Tree
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Backward Search

Can use any search method, BFS, DFS, IDS, Dijkstra, A*, etc.

If there are several goal states, search backwards from each in turn

Planning can use both forward and backward search (progression and regression
planning)
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Example of Forward/Progression Planning

Planning domain:

Predicates: At, Sells, Have

Two action schemas:

Action: Buy(x)
Precondition: At(p), Sells(p, x),Have(Money)
Effect: Have(x),¬Have(Money)

Action: Go(x, y)
Precondition: At(x)
Effect: At(y), ¬At(x)
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Example of Forward/Progression Planning (continued)

Planning problem: planning domain above plus

Objects: Money, J (for Jaguar), Home, G (for garage)
Initial state: At(Home) ∧ Have(Money) ∧ Sells(G, J)
Goal state: Have(J)

Note: state descriptions are always ground (no variables).

Goal description may have variables: At(x) ∧ Have(y).

An atomic ground formula At(Home) is true iff it is in the state description.

A negation of a ground atom ¬At(G) is true iff the atom At(G) is not in the state
description.

A property with a variable, such as At(x), is satisfied at a state if there is a way of
substituting an object for x so that the resulting formula is true in the state.
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Example of Forward/Progression Planning (continued)

Note:

At initial state:
Go(Home, Home) is applicable/valid and does not change the state
Buy(x) not available for any x (dont have Sells(Home, x))

At intermediate state:
Go(Garage, Home) and Go(Garage, Garage) both applicable/valid
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Backward (Regression) Planning: Relevant-states Search

Also called relevant-states search

Start at the goal state(s) and do regression (go back)

To be precise, we start with a ground goal description g which describes a set of states
(all those where Have(J) holds but Have(Money) may or may not hold, for example)
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Example of Backward/Regression Planning

Given a goal description g and a ground action a, the regression from g over a gives a
state description g’:

g’ = (g - Add(a)) ∪ {Precond(a)}

For example, if the goal is Have(J) and ground action is Buy(J):

g’ = ({Have(J)} - {Have(J)}) ∪ { At(p), Sells(p, J), Have(Money)}
= {At(p), Sells(p, J), Have(Money)}

note that g’ is partially uninstantiated (p is a free variable)

In this example, there is only one match for p, namely G(arage), but in general there
may be several.
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Backward/Regression Planning (continued)

Which actions to regress over?

Relevant actions: have an effect which is in the set of goal elements and no effect which
negates an element of the goal

For example, Buy(Jaguar) is a relevant action

In summary: backward planning searches backwards from g, remembering the actions
and checking whether it reached an expression applicable to the initial state
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Example of Backward/Regression Planning (continued)

Note:
goal state matches initial state with y/Home and x/G
intermediate state does not match initial state yet

Let g = Have(Jaguar) ∧ ¬At(Jail):

Buy(Jaguar) is a relevant action:
(has an effect which is in g and no effect which negates an element of g)

g’ = ({Have(Jaguar), ¬At(Jail)} - {Have(Jaguar)}) ∪
{At(p), Sells(p, Jaguar), Have(Money)} =
{¬At(Jail), At(p), Sells(p, Jaguar), Have(Money)}

If we had an extra action Steal(Jaguar), which also resulted in Have(Jaguar) but had an
additional effect of At(Jail), Buy(Jaguar) would not be a relevant action
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Forward vs. Backward Planning

If there are lots of actions, searching for a solution starting from the initial state looks
hopeless
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Heuristics to Tame Forward and Backward Planning

One can derive good heuristics (for A*) - two basic approaches to deriving heuristics:

1) relax the problem - effectively adding more edges to the graph
Strategies: remove (some) preconditions, ignore delete lists, etc.

Action: Slide(t, s1, s2)
Precond: On(t, s1) ∧ Tile(t) ∧ Blank(s2) ∧ Adjacent(s1, s2)
Effect: On(t, s2) ∧ Blank(s1) ∧ ¬On(t, s1) ∧ ¬Blank(s2)

removing preconditions Blank(s2) ∧ Adjacent(s1, s2) =⇒ number-of-misplaced-tiles
heuristic

removing Blank(s2) allows tiles to move to occupied places =⇒ Manhattan-distance
heuristic

2) abstract the problem (group nodes together, make the search space smaller)

Backward planning considers a lot fewer actions/relevant states than forward search,
but uses sets of states (g, g’) - harder to come up with good heuristics:

planning graph can be used to derive better heuristics
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Deriving Heuristics via Planning Graph

Planning graphs are also used as a source of heuristics (an estimate of how many steps
it takes to reach the goal)

Planning graph is an approximation of a complete tree of all possible actions and their
results

Organized into levels:

Level S0: initial state, consisting of nodes representing each fluent that holds in S0
Level A0: each ground action that might be applicable in S0
Then alternate Si and Ai

Si contains fluents which could hold at time i, (may be both P and ¬P)
literals may show up too early but never too late

Ai contains actions which could have their preconditions satisfied at i

Amarda Shehu (580) Classical Planning 24



Planning Domain and Problem Example

Initial state: Have(Cake)

Goal: Have(Cake) ∧ Eaten(Cake)

Eat(Cake):
Precond: Have(Cake)
Effect: ¬Have(Cake) ∧ Eaten(Cake)

Bake(Cake):
Precond: ¬Have(Cake)
Effect: Have(Cake)
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Incomplete Planning Graph
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Building a Planning Graph

In addition to ’normal’ action, persistence action or no-op (no operation): one for each
fluent, preserves the fluents truth

Mutex or mutual exclusion links depicted by red semicircles mean that actions cannot
occur together

Similarly there are mutex links between fluents

Build the graph until two consecutive levels are identical
until the graph levels off
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Incomplete Planning Graph (continued)

Amarda Shehu (580) Classical Planning 28



Mutex between Actions

Mutex relation holds between two actions at the same level if any of the following three
conditions holds:

♦ Inconsistent effects: one action negates an effect of another
For example, Eat(Cake) and persistence for Have(Cake) have inconsistent effects

(¬Have(Cake) and Have(Cake))

♦ Interference: one of the effects of one action is the negation of a precondition of the
other

For example Eat(Cake) interferes with the persistence of Have(Cake) by negating
its precondition

♦ Competing needs: one of the preconditions of one action is mutually exclusive with a
precondition of the other

For example, Eat(Cake) has precondition Have(Cake) and Bake(Cake) has
precondition of ¬Have(Cake).
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Mutex between Fluents

Mutex holds between fluents if:

♦ they are negations of each other, like Have(Cake) and ¬Have(Cake)

♦ each possible pair of actions that could achieve the two literals is mutually exclusive,
for example Have(Cake) and Eaten(Cake) in S1 can only be achieved by persistence for
Have(Cake) and by Eat(Cake) respectively.
(In S2 can use persistence for Eaten(Cake) and Bake(Cake) which are not mutex).
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Complete Planning Graph (and Size)

Size: is polynomial in the size of the problem (unlike a complete search tree, which is
exponential!)

If we have n literals and a actions:
each Si has no more than n nodes and n2 mutex links,
each Ai has no more than a + n nodes (n because of no-ops), (a + n)2 mutex links, and
2(an + n) precondition and effect links.

Hence, a graph with k levels has O(k(a + n)2) size.
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Using Planning Graph for Heuristic Estimation

If some goal literal does not appear in the final level of the graph, the goal is not
achievable

The cost of achieving any goal literal can be estimated by counting the number of levels
before it appears

This heuristic never overestimates

It underestimates because planning graph allows application of actions (including
incompatible actions) in parallel

Conjunctive goals:
max level heuristic: max level for any goal conjunct (admissible but inaccurate)

set level heuristic: which level they all occur on without mutex links (better, also
admissible)
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Planning with Planning Graph: GraphPlan

GraphPlan repeatedly adds a level to a planning graph with Expand-Graph

Once all the goals show up as non-mutex in the graph, calls Extract-Solution on the
graph to search for a plan

If that fails, extracts another level

Solution can be then extracted via backward search

Search may still degenerate to exponential exploration, but heuristics exist

Amarda Shehu (580) Classical Planning 33



(Local) Fast Forward Search with Planning Graph: Fast Forward Search

Example of a planning system using planning graphs for heuristics

FF or FastForward system (Hoffman 2005)

Forward space searcher

Ignore-delete-lists heuristic estimated using planning graph

Uses hill-climbing search with this heuristic to find solution

When hits a plateau or local maximum uses iterative deepening to find a better state or
gives up and restarts hill-climbing
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Satisficing vs. Optimal (Classical) Planning

GraphPlan seeks optimal plan

SATPlan reduces planning problem to classical propositional SAT problem (section 10.4
in book)

SAT problem: is this propositional formula satisfiable? (is there an assignment that
makes it true?)

Can only find plans of fixed maximal length

To use SATPlan, PDDL planning problem description needs first to be translated to a
suitable form
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Complexity of Classical Planning

PlanSAT is the question whether there exists any plan that solves a given planning
problem

Bounded PlanSAT is the question whether there exists a plan of length k or less

PlanSAT is about satisficing (want any solution, not necessarily the cheapest or the
shortest)

Bounded PlanSAT can be used to ask for the optimal solution

If in the PDDL language we do not allow functional symbols, both problems are
decidable

Complexity of both problems is PSPACE (can be solved by a Turing machine which uses
polynomial amount of space)

NP is a subset of PSPACE (PSPACE is even harder than NP)
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Summary: Top-performing Planning Systems

Year Track Winning systems (approaches)
2008 Optimal Gamer (symbolic bi-directional search)
2008 Satisficing LAMA (fast forward search with FF heuristic)
2006 Optimal SATPlan, MAXPlan (boolean satisfiability)
2006 Satisficing SGPlan (forward search, partition into independent sub-

problems)
2004 Optimal SATPlan (boolean satisfiability)
2004 Satisficing Fast Diagonally Forward (forward search with causal

graph)
2002 Automated LPG (local search, constraint satisfaction)
2002 Hand-coded TLPLan (temporal action logic with control rules for for-

ward search)
2000 Automated FF (forward search)
2000 Hand-coded TalPlanner (temporal action logic with control rules for

forward search)
1998 Automated IPP (planning graphs); HSP (forward search)
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Classical planning algorithms typically do not scale well

Should subgoals be reached serially?

What about leveraging goal decomposition?

Does order matter?

Next: Partial-order Planning

Then: Partial-order planning that scales: hierarchical task network Search may still
degenerate to exponential exploration(HTN) planning

But first: an instructive exercise
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Example Domain: the Blocks World

The domain consists of:

1. a table, a set of cubic blocks, and a robot arm

2. each block is either on the table or stacked on top of another block

3. the arm can pick up a block and move it to another position either on the table or on
top of another block

4. the arm can only pick up one block at time, so it cannot pick up a block which has
another block on top

A goal is a request to build one or more stacks of blocks specified in terms of which
blocks are on top of which other blocks
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State Descriptions

Blocks are represented by constants A,B,C . . . etc.

An additional constant Table represents the table

The following predicates are used to describe states:

On(b, x): block b is on x, where x is either another block or the table

Clear(x): there is a clear space on x to hold a block
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Action Schemas

MOVE(b, x, y):
Precond: On(b, x) ∧ Clear(b) ∧ Clear(y)
Effect: On(b, y) ∧ Clear(x) ∧

¬On(b, x) ∧ ¬Clear(y)

MOVE-TO-TABLE(b, x):
Precond: On(b, x) ∧ Clear(b)
Effect: On(b, Table) ∧ Clear(x) ∧

¬On(b, x)
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Problems with this Formalization

There is nothing to stop the planner using the ’wrong’ operator to put a block on the
table, i.e. MOVE(b, x, Table) rather than MOVE-TO-TABLE(b, x)

which results in a larger-than-necessary search space, and

Some of the operator applications, such as MOVE(B,C,C), which should do nothing,
have inconsistent effects

To solve the first one, we could introduce predicate Block and make Block(x) and
Block(y) preconditions of MOVE(x, y, z)

To solve the second we could add ¬(y = z) as a precondition for MOVE(x, y, z)
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Example Problem: Sussman Anomaly

Initial state:
On(C,A) ∧ OnTable(A) ∧ OnTable(B) ∧ Clear(B) ∧ Clear(C)

Goal state:
On(A,B) ∧ On(B,C) ∧ OnTable(C)
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Goal Stack Planning

Goal Stack Planning: One of the earlier planning algorithms, used by STRIPS

Work backwards from the goal, looking for an operator which has one or more of the
goal literals as one of its effects and then trying to satisfy the preconditions of the
operator

The preconditions of the operator become subgoals that must be satisfied

Keep doing this until initial state is reached

Goal stack planning uses a stack to hold goals and actions to satisfy the goals, and a
knowledge base to hold the current state, action schemas and domain axioms

Goal stack is like a node in a search tree

If there is a choice of action, create branches
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Goal Stack Planning Pseudocode

Push the original goal on the stack.

Repeat until the stack is empty:

If stack top is a compound goal, push its unsatisfied subgoals on the stack.

If stack top is a single unsatisfied goal, replace it by an action that makes it satisfied
and push the actions precondition on the stack.

If stack top is an action, pop it from the stack, execute it and change the knowledge
base by the action’s effects.

If stack top is a satisfied goal, pop it from the stack.
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Goal Stack Planning Trace

(Below does pushing of subgoals at the same step as the compound goal.)
The order of subgoals is arbitrary; could have put On(B,C) on top

On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {On(C,A), OnTable(A), OnTable(B), Clear(B), Clear(C)}

plan = [ ]

The top of the stack is a single unsatisfied goal. So push the action that would achieve
it, and its preconditions.
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Goal Stack Planning Trace (continued)

Clear(B)
Clear(A)
On(A, x)
Clear(A) ∧ Clear(x)
MOVE(A, x, B)
On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {On(C,A),OnTable(A),OnTable(B),Clear(B),Clear(C)}

plan = [ ]

The top of the stack is a satisfied goal. We pop the stack.
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Goal Stack Planning Trace (continued)

Clear(A)
On(A, x)
Clear(A) ∧ Clear(x)
MOVE(A, x, B)
On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {On(C,A),OnTable(A),OnTable(B),Clear(B),Clear(C)}

plan = [ ]

The top of the stack is an unsatisfied goal. We push the action which would achieve it,
and its preconditions.
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Goal Stack Planning Trace (continued)

On(C, A)
Clear(C)
On(C, A) ∧ Clear(C)
MOVE-TO-TABLE(C, A)
Clear(A)
On(A, x)
Clear(A) ∧ Clear(x)
MOVE(A, x, B)
On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {On(C,A),OnTable(A),OnTable(B),Clear(B),Clear(C)}

plan = [ ]
The top of the stack is a satisfied goal. We pop the stack (three times).
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Goal Stack Planning Trace (continued)

MOVE-TO-TABLE(C, A)
Clear(A)
On(A, x)
Clear(A) ∧ Clear(x)
MOVE(A, x, B)
On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {On(C,A),OnTable(A),OnTable(B),Clear(B),Clear(C)}

plan = [ ]

The top of the stack is an action. We execute it, update the KB with its effects, and
add it to the plan.
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Goal Stack Planning Trace (continued)

Clear(A)
On(A, Table)
Clear(A) ∧ Clear(x)
MOVE(A, x, B)
On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {OnTable(C),OnTable(A),OnTable(B),Clear(A),Clear(B),Clear(C)}
plan = [MOVE-TO-TABLE(C,A)]

The top of the stack is a satisfied goal. We pop the stack (thrice).
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Goal Stack Planning Trace (continued)

MOVE(A, x, B)
On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {OnTable(C),OnTable(A),OnTable(B),Clear(A),Clear(B),Clear(C)}

plan = [MOVE-TO-TABLE(C,A)]

The top of the stack is an action. We execute it, update the KB with its effects, and
add it to the plan.
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Goal Stack Planning Trace (continued)

On(A,B)
On(B,C)
OnTable(C)
On(A,B) ∧ On(B,C) ∧ OnTable(C)

KB = {On(A,B),OnTable(C),OnTable(B), Clear(A), Clear(C)}

plan = [MOVE-TO-TABLE(C,A),MOVE(A, Table,B)]

the current state is:
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Goal Stack Planning Trace (continued)

If we follow the same process for the On(B,C) goal, we end up in the state:

On(B,C) ∧ OnTable(A) ∧ OnTable(C)

The remaining goal on the stack On(A,B) ∧ On(B,C) ∧ OnTable(C)
is not satisfied.

So On(A,B) will be pushed on the stack again!
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Goal Stack Planning Trace (continued)

Now we finally can move A on top of B, but the resulting plan is redundant:

MOVE-TO-TABLE(C,A)
MOVE(A, Table,B)
MOVE-TO-TABLE(A,B)
MOVE(B, Table,C)
MOVE(A, Table,B)

There are techniques for ’fixing’ inefficient plans (where something is done and then
undone), but it is difficult in general (when it is not straight one after another)
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Sussman Anomaly

It seemed to make sense to break up a conjunctive goal into subgoals and achieve them,
separately, in some order

Sussman anomaly is instructive, because achieving one goal (On(A,B)) destroys
preconditions of an action which is necessary to achieve the other goal (On(B,C)),
namely Clear(B).

Such interaction between actions is called clobbering

This is addressed in partial order planning
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Totally vs. Partially-ordered Plans

So far we produced a linear sequence of actions (totally ordered plan)

Often it does not matter in which order some of the actions are executed

For problems with independent subproblems, often easier to find a partially-ordered plan:
a plan which is a set of actions and a set of constraints Before(ai, aj)

Partially ordered plans are created by a search through a space of plans (rather than the
state space)
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Partially Ordered Plans

Partially-ordered collection of steps with:
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
Causal links from outcome of one step to precondition of another
Temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it
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Example
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Example
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Example
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Planning Process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable
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POP Algorithm Sketch

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)
loop do

if Solution?( plan) then return plan
Sneed , c←Select-Subgoal( plan)
Choose-Operator( plan, operators,Sneed , c)
Resolve-Threats( plan)

end

function Select-Subgoal( plan) returns Sneed , c

pick a plan step Sneed from Steps( plan)
with a precondition c that has not been achieved

return Sneed , c
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POP Algorithm Continued

procedure Choose-Operator(plan, operators,Sneed , c)

choose a step Sadd from operators or Steps( plan) that has c as an
effect

if there is no such step then fail
add the causal link Sadd

c−→ Sneed to Links( plan)
add the ordering constraint Sadd ≺ Sneed to Orderings( plan)
if Sadd is a newly added step from operators then

add Sadd to Steps( plan)
add Start ≺ Sadd ≺ Finish to Orderings( plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c−→ Sj in Links( plan) do

choose either
Demotion: Add Sthreat ≺ Si to Orderings( plan)
Promotion: Add Sj ≺ Sthreat to Orderings( plan)

if not Consistent( plan) then fail
end
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Clobbering and Promotion/Demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a
causal link. E.g., Go(Home) clobbers At(Supermarket):

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)
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Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:

– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer

– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals
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Example: Blocks World
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Example Continued
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Example Continued
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Example Continued
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Example Continued
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Planning in the Real World

Planning in the presence of limited resources:
Actions consume resources, time being one of them
Specialized scheduling algorithms or algorithms that integrate scheduling with planning
address time

Semi-autonomous Planning:
Hierarchical task network planning (HTN) allows planning agent to incorporate advice
from domain expert in the form of high-level actions (HLAs)

Assumptions of classic planning often violated in the real world:
Contingent plans allow agent to sense in a partially-observed environment
Online planning agent can address nondeterministic actions, exogeneous events, or
incorrect models of the environment
Multiagent planning allows cooperation or competition with other agents in the
environment

Markov decision processes and game theory allow agent to plan in stochastic
environments

Amarda Shehu (580) Planning and Acting in the Real World 72



HTN Planning

Partial-order planning does not scale well in the real world

Some planning tasks involve millions of actions

Example: planning to invade a country

There is, however, hierarchical structure that humans employ when putting together
plans

HTN planning: plan at a higher level, then refine if necessary

Important concept: high-level actions (HLAs)

More in class, on the board
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The Real World: Planning and Acting in Nondeterministic Domains
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Things Go Wrong

Incomplete information
Unknown preconditions, e.g., Intact(Spare)?
Disjunctive effects, e.g., Inflate(x) causes
Inflated(x) ∨ SlowHiss(x) ∨ Burst(x) ∨ BrokenPump ∨ . . .

Incorrect information
Current state incorrect, e.g., spare NOT intact
Missing/incorrect postconditions in operators

Qualification problem:
can never finish listing all the required preconditions and
possible conditional outcomes of actions
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Solutions

Conformant or sensorless planning
Devise a plan that works regardless of state or outcome
Such plans may not exist

Conditional planning
Plan to obtain information (observation actions)
Subplan for each contingency, e.g.,
[Check(Tire1), if Intact(Tire1) then Inflate(Tire1) else CallAAA
Expensive because it plans for many unlikely cases

Monitoring/Replanning
Assume normal states, outcomes
Check progress during execution, replan if necessary
Unanticipated outcomes may lead to failure (e.g., no AAA card)

(Really need a combination; plan for likely/serious eventualities,
deal with others when they arise, as they must eventually)
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Conformant Planning

Search in space of belief states (sets of possible actual states)
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Conditional Planning

If the world is nondeterministic or partially observable

then percepts usually provide information,

i.e., split up the belief state
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Conditional Planning (continued)

Conditional plans check (any consequence of KB +) percept
[. . . , if C then PlanA else PlanB , . . .]

Execution: check C against current KB, execute “then” or “else”

Need some plan for every possible percept
(Cf. game playing: some response for every opponent move)
(Cf. backward chaining: some rule such that every premise satisfied

AND–OR tree search (very similar to backward chaining algorithm)
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AND-OR-GRAPH-SEARCH for Conditional Planning
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Nondeterministic Vacuum Cleaner

Double Murphy: sucking or arriving may dirty a clean square
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Nondeterministic Vacuum Cleaner

Triple Murphy: also sometimes stays put instead of moving

[L1 : Left, if AtR then L1 else [if CleanL then [ ] else Suck]]

or [while AtR do [Left], if CleanL then [ ] else Suck]

“Infinite loop” but will eventually work unless action always fails
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Execution Monitoring - Replanning

“Failure” = preconditions of remaining plan not met

Preconditions of remaining plan
= all preconditions of remaining steps not achieved by remaining steps
= all causal links crossing current time point

On failure, resume POP to achieve open conditions from current state

IPEM (Integrated Planning, Execution, and Monitoring):
keep updating Start to match current state
links from actions replaced by links from Start when done
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Example
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Example
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Example
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Example
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Example
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Example
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Emergent Behavior
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Emergent Behavior

“Loop until success” behavior emerges from interaction between monitor/replan agent
design and uncooperative environment
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Emergent Behavior

“Loop until success” behavior emerges from interaction between monitor/replan agent
design and uncooperative environment
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