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Game Playing – Adversarial Search

Search in a multi-agent, competitive environment → Adversarial Search/Game Playing

Mathematical game theory treats any multi-agent environment as a game, with possibly
co-operative behaviors (study of economies)

Most games studied in AI:
deterministic, turn-taking, two-player, zero-sum games of perfect information
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Most games studied in AI:
deterministic, turn-taking, two-player, zero-sum games of perfect information

zero-sum: utilities of the two players sum to 0 (no win-win)
deterministic: precise rules with known outcomes
perfect information: fully observable

Search algorithms designed for such games make use of interesting general techniques
(meta-heuristics) such as evaluation functions, search pruning, and more.

However, games are to AI what grand prix racing is to automobile design.

Our objective: study the three main adversarial search algorithms [ minimax, alpha-beta
pruning, and expectiminimax ] and meta-heuristics they employ
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Game Playing as a Search Problem

Two turn-taking agents in a zero-sum game: Max (starts game) and Min
Max’s goal is to maximize its utility Min’s goal is to minimize Max’s utility
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Game Playing as a Search Problem

Formal definition of a game as a search problem:
S0 ← initial state that specifices how game starts
PLAYER(s)← which player has move in state s
ACTIONS(s)← returns set of legal moves in state s
RESULT(s, a)← transition model that defines result of an action a on a state s
TERMINAL-TEST(s)← true on states that are game enders, false otherwise
UTILITY(s, p)← utility/objective function defines numeric value for game that
ends in terminal state s with player p

Concept of game/search tree valid here
Chess: 35 moves per player → branching factor b = 35

ends at typically 50 moves → m = 100
search tree has 35100 ≈ 1040 distinct nodes

Pruning: how to ignore portions of tree without impacting strategy
Evaluation function: estimate utility of a state without a complete search

Some games too big search trees:
Time limits ⇒ unlikely to find goal, must approximate
Many “tricks” (meta-heuristics) employed to look ahead
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Early Obsession with Games before Term AI Coined

Computer considers possible lines of play (Babbage, 1846)

Algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944)

Finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948;
Shannon, 1950)

First chess program (Turing, 1951)

Machine learning to improve evaluation accuracy (Samuel, 1952–57)

Pruning to allow deeper search (McCarthy, 1956)

...

Today, Alphabet’s deep learning team has a Go-playing program that beats world
masters
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Game Tree (Two-player, Deterministic, Turns)
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Minimax Decisions

Perfect play for deterministic, perfect-information games

Idea: choose move to position with highest minimax value
= best achievable payoff against best play

E.g., 2-ply game:
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Minimax-Value Algorithm

function Minimax-Value(state) returns minimax-value/utility
if Terminal-Test(state) then return Utility(state)
if next agent is MAX then return Max-Value(state)
if next agent is MIN then return Min-Value(state)

function Max-Value(state) returns a utility value
v←−∞
for each successor of state

do v←Max(v, Minimax-Value(successor))
return v

function Min-Value(state) returns a utility value
v←∞
for each successor of state

do v←Min(v, Minimax-Value(successor))
return v
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Tracing on the Board

Class activity: trace Minimax-Value on 2-ply game below
update your v’s!
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Minimax Decision Algorithm

function Minimax-Decision(state) returns an action
return argmaxa ∈ ACTIONS Min-Value(Result(state, a))

function Max-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←−∞
for a in ACTIONS(state)

do v←Max(v, Min-Value(RESULT(s, a)))
return v

function Min-Value(state) returns a utility value
if Terminal-Test(state) then return Utility(state)
v←∞
for a in ACTIONS(state)

do v←Min(v, Max-Value(RESULT(state, a)))
return v
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Properties of Minimax

Complete???

Yes, if tree is finite (chess has specific rules for this)

Optimal??? Yes, against an optimal opponent. Otherwise??

Otherwise even better. Example? Class activity.
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Playing against a suboptimal opponent

Consider a simple 2-ply game, with four terminal states with values 10, 10, 9, and 11, in
order (from left to right).

DIY & trace on the board
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Properties of Minimax

Complete??? Yes, if tree is finite (chess has specific rules for this)

Optimal??? Yes, against an optimal opponent. Otherwise??

Time complexity???

O(bm)

Space complexity??? O(bm) (depth-first exploration)

For chess, b ≈ 35, m ≈ 100 for “reasonable” games
⇒ exact solution completely infeasible

Do we need to explore every path?
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Game Trees

In realistic games, cannot explore the full game tree.

Number of game states MiniMax explores is exponential in the depth of the tree.

What to do?

Two options (can be used in combination):

Remove from consideration entire subtrees

Find away not to have to reach the leaves to determine the value of a state
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Remove from Consideration Entire Subtrees – α–β Pruning Example
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Remove from Consideration Entire Subtrees – α–β Pruning Example

Amarda Shehu (580) Perfect Play 18



α–β pruning example
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Remove from Consideration Entire Subtrees – α–β Pruning Example
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Pruning Entire Subtrees – Example
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α–β Pruning

α is the best value (to max) found so far off the current path
If V is worse than α, max will avoid it ⇒ prune that branch
Define β similarly for min

α : MAX’s best option on path to root
β: MIN’s best option on path to root
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Pruning by Maintaining α and β

function Alpha-Beta-Value(state, α, β) returns value/utility
if Terminal-Test(state) then return Utility(state)
if next agent is MAX then return Max-Value(state, α, β)
if next agent is MIN then return Min-Value(state, α, β)

function Max-Value(state, α, β) returns a utility value
v←−∞
for each successor of state

v←Max(v, Alpha-Beta-Value(successor, α, β))
if v ≥ β then return v
α←Max(α, v)

return v

function Min-Value(state, α, β) returns a utility value
v←∞
for each successor of state

v←Min(v, Alpha-Beta-Value(successor, α, β))
if v ≤ α then return v
β←Min(β, v)

return v
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The α–β Pruning Algorithm

function Alpha-Beta-Decision(state) returns an action
v←Max-Value(state,−∞,∞)
return a in Actions(state) with value v

function Max-Value(state,α,β) returns a utility value
inputs: state, current state in game

α, value of best alternative for max along the path to state
β, value of best alternative for min along the path to state

if Terminal-Test(state) then return Utility(state)
v←−∞
for a in ACTIONS(state) do
v←Max(v, Min-Value(RESULT(state, a),α,β))
if v ≥ β then return v
α←Max(α, v)

return v

function Min-Value(state,α,β) returns a utility value
same as Max-Value but with roles of α,β reversed
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Tracing on the Board

Class activity: trace Alpha-Beta-Pruning on 2-ply game below
update your v’s, α’s, and β’s!
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Properties of α–β

Pruning is an example of metareasoning – computing about what to compute

Pruning does not affect final result, though intermediate nodes may have wrong values
(when subtrees pruned)

Good move ordering improves effectiveness of pruning

With “perfect ordering,” time complexity = O(bm/2)
⇒ doubles solvable depth

With random ordering, time complexity ≈ O(b3m/4) for moderate b

Unfortunately, 3550 for chess is still impossible!

Some tricks/meta-heuristics: killer moves first, IDS, remembering states (and their
values) in transposition table, and more.

More generally: need to obtain value of a state without reaching leaf states
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Resource Limits

Standard approach:

Use Cutoff-Test instead of Terminal-Test
e.g., depth limit (perhaps add quiescence search)

Use Eval instead of Utility
i.e., heuristic evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 104 nodes/second
⇒ 106 nodes per move ≈ 358/2

⇒ α–β reaches depth 8 ⇒ pretty good chess program
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H-Minimax-Value Algorithm

function H-Minimax-Value(state, d) returns h-minimax-value
if Cutoff-Test(state, d) then return EVAL(state)
if next agent is MAX then return H-Max-Value(state, d+1)
if next agent is MIN then return H-Min-Value(state, d+1)

function H-Max-Value(state, d) returns a utility value
v←−∞
for each successor of state

do v←Max(v, H-Minimax-Value(successor, d))
return v

function H-Min-Value(state, d) returns a utility value
v←∞
for each successor of state

do v←Min(v, H-Minimax-Value(successor, d))
return v
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H-Alpha-Beta-Value Algorithm

Take-home exercise.
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Evaluation Functions

For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

e.g., w1 = 9 with f1(s) = (number of white queens) – (number of black queens), etc.
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Digression: Exact Values do not Matter

Behaviour is preserved under any monotonic transformation of Eval

Only the order matters:
payoff in deterministic games acts as an ordinal utility function
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Deterministic Games in Practice

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley
in 1994. Used an endgame database defining perfect play for all positions involving
8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game
match in 1997. Deep Blue searches 200 million positions per second, uses very
sophisticated evaluation, and undisclosed methods for extending some lines of
search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too
good.

Go: human champions refused to compete against computers, who were too bad.
In Go, b goes from 361 to 250 (compared to chess’ b = 35), so most programs use
pattern knowledge bases to suggest plausible moves. Great progress made by
AlphaGo via deep learning and playing against itself: now indisputable champion!
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Nondeterministic Games: Backgammon
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Nondeterministic Games in General

In nondeterministic games, chance introduced by dice, card-shuffling
Simplified example with coin-flipping:

Amarda Shehu (580) Resource Limits and Approximate Evaluation 34



EXPECTIMINIMAX Algorithm for Nondeterministic Games

Just like Minimax, except we must also handle chance nodes:

if state is a Max node then
return the highest ExpectiMinimax-Value of Successors(state)

if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)

if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)
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Nondeterministic Games in Practice

Dice rolls increase b: 21 possible distinct rolls with 2 dice
Backgammon ≈ 20 legal moves (can be 6,000 with 1-1 roll)

depth 4 = 20× (21× 20)3 ≈ 1.2× 109

Time complexity: O(bmnm), where n is the number of distinct rolls

As depth increases, probability of reaching a given node shrinks
⇒ value of lookahead is diminished

α–β pruning is much less effective

TDGammon uses depth-2 search (d = 2 in CUTOFF-test) + very good Eval
≈ world-champion level
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Careful with EVAL design: Exact Values DO Matter

Behaviour is preserved only by positive linear transformation of expected utility

Hence Eval should be proportional to the expected payoff
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What kind of Evaluation Functions for Stochastic Games?

Monte Carlo simulation can be used to evaluate a state

From a start state, have the algorithm play games against itself, using random dice rolls

In backgammon, the resulting win percentage is a good-enough approximation of the
value of a state

For games with dice, this is called a rollout

For stochastic games other than backgammon, more sophisticated evaluation functions
may be designed via machine learning algorithm
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Games of Imperfect Information

E.g., card games, where opponent’s initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game∗

Idea:
compute the minimax value of each action in each deal,
then choose the action with highest expected value over all deals∗

Special case: if an action is optimal for all deals, it’s optimal.∗

GIB, current best bridge program, approximates this idea by
1) generating 100 deals consistent with bidding information
2) picking the action that wins most tricks on average

Amarda Shehu (580) Games of Imperfect Information 39



Example

Four-card bridge/whist/hearts hand, Max to play first
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Commonsense Example

Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll find a mound of jewels;
take the right fork and you’ll be run over by a bus.
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take the left fork and you’ll find a mound of jewels;
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Road A leads to a small heap of gold pieces
Road B leads to a fork:

take the left fork and you’ll be run over by a bus;
take the right fork and you’ll find a mound of jewels.

Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you’ll find a mound of jewels;
guess incorrectly and you’ll be run over by a bus.
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Proper Analysis

* Intuition that the value of an action is the average of its values
in all actual states is WRONG

With partial observability, value of an action depends on the
information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as
♦ Acting to obtain information

♦ Signalling to one’s partner

♦ Acting randomly to minimize information disclosure
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Game Playing Summary

Games are fun to work on! (and dangerously obsessive)

Illustrate several important points about AI

♦ perfection is unattainable ⇒ must approximate
♦ good idea to think about what to think about
♦ uncertainty constrains the assignment of values to states
♦ optimal decisions depend on information state, not real state

♦ Domain-specific tricks can be generalized to meta-heuristics of possible relevance for
search of complex state spaces
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