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Constraint Satisfaction Problems (CSPs)

Standard search problem:

state is a “black box”"—any old data structure that
supports goal test, eval, successor

CSP:

state is defined by variables X; with values from domain D;
goal test is a set of constraints specifying

allowable combinations of values for subsets of variables
Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms
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Example: Map-Coloring

Northern
Territory

Western

Queensland
Australia

South
Australia

New South Wales

Victoria

Variables WA, NT, Q, NSW, V, SA, T

Tasmania

Domains D; = {red, green, blue}

Constraints: adjacent regions must have different colors
e.g., WA # NT (if the language allows this), or

(WA, NT) € {(red, green), (red, blue), (green, red), (green, blue), ...}
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Example: Map-Coloring Continued

Northern
Territory

New South Wales

Tasmahnia

Solutions are assignments satisfying all constraints, e.g.,
{WA=red, NT = green, Q = red, NSW = green, V = red, SA= blue, T = green}
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Constraint Graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

®
@ @'e:@

©

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!
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Varieties of CSPs

Discrete variables

finite domains; size d = O(d") complete assignments
{ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

infinite domains (integers, strings, etc.)

{ e.g., job scheduling, variables are start/end days for each job
{ need a constraint language, e.g., StartJob, + 5 < StartJobs
{ linear constraints solvable, nonlinear undecidable

Continuous variables

{ e.g., start/end times for Hubble Telescope observations
¢ linear constraints solvable in polynomial time by linear programming (LP)
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Varieties of Constraints

Unary constraints involve a single variable
e.g., SA # green

Binary constraints involve pairs of variables
e.g., SA# WA

Higher-order constraints involve 3 or more variables
e.g., cryptarithmetic column constraints

Strong vs. soft constraints
Preferences (soft constraints)
e.g., red is better than green

often representable by a cost for each variable assignment
— constrained optimization problems
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Example: Cryptarithmetic

o4 4
DO O

W
W
U

M|+

Variables: F T U W R O X1 Xo X3
Domains: {0,1,2,3,4,5,6,7,8,9}
Constraints

alldif{ F, T, U, W, R, O)
O+0=R+10-Xi, etc.
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Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?
Hardware configuration
Spreadsheets
Transportation scheduling

Factory scheduling

Floorplanning

Real-world problems almost always involve real-valued variables
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Standard Search Formulation (Incremental)

Let's start with the straightforward, dumb approach, then fix it
States are defined by the values assigned so far
¢ Initial state: the empty assignment, ()
¢ Successor function: assign a value to an unassigned variable
that does not conflict with current assignment.
= fail if no legal assignments (not fixable!)
{ Goal test: the current assignment is complete

)
1) This is the same for all CSPs! ©

2) Every solution appears at depth n with n variables
—> use depth-first search

3) Path is irrelevant, so can also use complete-state formulation

4) b=(n— ()d at depth ¢, hence n!d" leaves!!!!
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Backtracking Search

Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
= b=d and there are d" leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ~ 25
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Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return BACKTRACK({ }, csp)

function BACKTRACK(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var<— SELECT-UNASSIGNED- VARIABLE( csp, assignment)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment then
add {var = value} to assignment
inferences <— INFERENCE(var, assignment, csp)
if inferences # failure then
add inferences to assignment
result «— BACKTRACK(assignment, csp)
if result # failure then
return result
remove {var = value} and inferences from assignment
return failure
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Backtracking Example
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Backtracking Example

— ]
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Backtracking Example
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Backtracking Example
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Improving Backtracking Efficiency

General-purpose methods can give huge gains in speed:
Which variable should be assigned next? [SELECT-UNASSIGNED-VARIABLE]
In what order should its values be tried? [ORDER-DOMAIN-VALUES]
Can we detect inevitable failure early? [INFERENCE]

A Can we take advantage of problem structure?
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Minimum Remaining Values

Minimum remaining values (MRV) for
var <— SELECT-UNASSIGNED-VAR(csp, assignment):

choose the variable with the fewest legal values to prune search tree
also called “most constrained variable” or “fail-first heuristic”

L
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Minimum Remaining Values

Minimum remaining values (MRV) for
var <— SELECT-UNASSIGNED-VAR(csp, assignment):

choose the variable with the fewest legal values to prune search tree
also called “most constrained variable” or “fail-first heuristic”

L

... but MRV heuristic does not help in selecting the first variable
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Degree Heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

Samt. Spad Shat .

called degree heuristic because can get this information from constraint graph

attempts to reduce branching factor on future choices
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Least Constraining Value Heuristic

Least Constraining Value Heuristic for:
var <~ ORDER-DOMAIN-VALUES(var, assignment, csp)

Given a variable, choose the least constraining value:
selects value that rules out the fewest values in the remaining variables

\ L% Allows 1 value for SA
FLE—-CHE—-CP;<
* Allows 0 values for SA

Goal is to reach one complete assignment fast
Combining above heuristics makes 1000 queens feasible

When all solutions/complete assignments needed, LCV is irrelevant
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Inference

Idea: Infer reductions in the domain of variables
When: Before and/or during the backtracking search itself
How: Constraint propagation

Algorithms: Forward Checking, AC-3
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Simplest Form of Inference: Forward Checking

Idea: Keep track of remaining legal values for unassigned variables
Idea: Terminate search when any variable has no legal values

SSla S5

WA NT Q NSW v SA T
TR IR I I IrE I 1ren i,
1 EErEETE BN E] EEOE|

Amarda Shehu (580) Backtracking Search for CSPs pxj



Forward Checking

Idea: Keep track of remaining legal values for unassigned variables
Idea: Terminate search when any variable has no legal values

SN S S~

WA NT Q NSW v SA T
(EFEEFE BN BN BTN BN
| I— | A ICE IrE 1 HED N
1 1 NI I 1 HENE|
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Forward Checking

Idea: Keep track of remaining legal values for unassigned variables
Idea: Terminate search when any variable has no legal values

S S Sl S~

WA NT Q NSW v SA T
CEC IR I ITE T I I
(] FEEfEErEErE] SE[=
1 1 dm EmeE| L1
(] uj [ — L]

Amarda Shehu (580) Backtracking Search for CSPs



Constraint Propagation

Forward checking propagates information from assigned to unassigned variables:

S S S

WA NT Q NSW v SA T
IR I iIrerirerirer iremnm
[ — | EErE[ErE[E i N] ]
[ — ] o[m m[mE] E[E N

Forward checking establishes arc consistency

whenever a var X is assigned, domains of neighbors Y of X in constraint graph are
reduced

for each unassigned var Y that is connected to X by a constraint, delete from Y's
domain any value that is inconsistent with the value chosen for X

Amarda Shehu (580) Backtracking Search for CSPs 26



Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

S S~ S

WA NT a NSW v SA T
CEICE I I Ire irerireni
[ — | EjErEErE(Eo N HjmrE|
( — | 1 NICEN 11 EEOE|

BUT: NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally, and does not “chase” arc
consistency

When the domain of a neighbor Y of X is reduced, domains of neighbors of Y may also
become inconsistent (e.g.: NT and SA)
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Back to Arc Consistency

Simplest form of constraint propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed value y of Y

ESEA SSa S~

WA NT Q NSW v SA T

~<¢—
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Arc Consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed value y of Y

ESEA SSa S~

WA NT Q N SA T

Sw '
(] =] im Xmrm] mE[EmnE]

W
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Arc Consistency

Simplest form of propagation makes each arc consistent

X — Y is consistent iff
for every value x of X there is some allowed value y of Y

ESEA SSa S~

WA NT Q N SA T

SwW v
(mw] s[ow[em xxGE] s[E-E]

\_</

If a variable loses a value, its neighbors in the constraint graph need to be rechecked
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Maintaining Arc Consistency

More powerful idea than forward checking: If a variable loses a value, its neighbors in
the constraint graph need to be rechecked

Recursively propagates constraints when changes are made to domains of variables

This recursive constraint propagation approach detects failure earlier than forward
checking

Can be preprocessing or run after each assignment (INFERENCE) in the backtracking
search algorithm

Algorithm: Maintaining Arc Consistency (MAC), also known as AC-3
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Maintaining Arc Consistency (MAC) Algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, Xa, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi, X;) < REMOVE-FIRST(queue)

if REMOVE-INCONSISTENT- VALUES(X;, X;) then

for each X; in NEIGHBORS[X;]| do
add (Xk, X;) to queue

function REMOVE-INCONSISTENT- VALUES( X;, X;) returns true iff suc-
ceeds
removed < false
for each x in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (x,y) to satisfy the constraint
Xi < )(1
then delete x from DOMAIN[X]]
removed <+ true
return removed
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

Amarda Shehu (580) Backtracking Search for CSPs 33



Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?

sum over all degrees is O(E) of constraint graph
which is O(c)
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph

which is O(c)

How often will the domain of each variable be pruned?
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph

which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...50...0(d) times
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

...50...0(d) times

In total, how many arces (X, X;) will be added to the queue over all variables?
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

...50...0(d) times

In total, how many arces (X, X;) will be added to the queue over all variables?
O(cd)
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

...50...0(d) times

In total, how many arces (X, X;) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

...50...0(d) times

In total, how many arces (X, X;) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?

O(d?)
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Time Complexity Arc Consistency Algorithm

Given: c¢ constraints, < d values in the domain of each variable X;

How many (Xx, X;) arces will be added to the queue when pruning domain of some X;?
at most deg(X;)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

...50...0(d) times

In total, how many arces (X, X;) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?

O(d?)
So, putting it all together: T(AC — 3) € O(cd?)
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Problem Structure

@
@ @'e:@

©

Identifiable as connected components of constraint graph

Tasmania and mainland are independent subproblems
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Problem Structure continued

Suppose each subproblem has ¢ variables out of n total
Worst-case solution cost is n/c - d°, linear in n

E.g., n=80, d=2, c=20

2%0 = 4 billion years at 10 million nodes/sec

4 .2% = 0.4 seconds at 10 million nodes/sec
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Tree-structured CSPs

Theorem: if the constraint graph has no cycles (so, it's a tree),
the CSP can be solved in O(nd?) time

Compare to general CSPs, where worst-case time is O(d")
This property also applies to logical and probabilistic reasoning:

an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Amarda Shehu (580) Problem Structure and Problem Decomposition 36



Algorithm for Tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

()
(B) QG (A-BHODHEXP)

2. For j from n down to 2, apply REMOVEINCONSISTENT( Parent(X;), X;)

3. For j from 1 to n, assign X consistently with Parent(X;)
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Nearly Tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ = runtime O(d“ - (n — c)d?), very fast for small ¢
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Iterative Algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:

allow states with unsatisfied constraints

operators reassign variable values
Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic:

choose value that violates the fewest constraints

i.e., hill-climber with h(n) = total number of violated constraints

Take-home: Propose a simple EA for 4-queens CSP
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Example: 4-Queens as CSP
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Example: 4-Queens as CSP

States:
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4" = 256 states)
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4" = 256 states)

Operators:
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4" = 256 states)

Operators: move queen in column
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column

Goal test:
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column

Goal test: no attacks
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation:

=

h=5
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Example: 4-Queens as CSP

States: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column
Goal test: no attacks

Evaluation: h(n) = number of attacks

h=5
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Performance of Min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)
The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio
__ number of constraints
"~ number of variables

CPU
time

. -I
critical
ratio
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4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?
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4-Queens as a CSP

Work through the 4-queens as CSP in greater detail
Assume one queen in each column. Which row does each one go in?

Variables Q:, @, @3, Qs
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4-Queens as a CSP

Work through the 4-queens as CSP in greater detail
Assume one queen in each column. Which row does each one go in?
Variables Q1, Q2, Q3, Q4

Domains D; = {1,2,3.4}

Amarda Shehu (580) Take-home Problem 42



4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?
Variables Q1, @, Q3, Q4

Domains D; = {1,2,3.4}

Constraints

Qi # Q; (cannot be in same row)
|Q — Q| # |i —j| (or same diagonal)
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4-Queens as a CSP

Work through the 4-queens as CSP in greater detail
Assume one queen in each column. Which row does each one go in?
Variables Q1, @, Q3, Qs
Domains D; = {1,2,3.4}
Constraints
Qi # Q; (cannot be in same row)

|Q — Q| # |i —j| (or same diagonal)

Translate each constraint into set of allowable values for its variables
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4-Queens as a CSP

Work through the 4-queens as CSP in greater detail
Assume one queen in each column. Which row does each one go in?
Variables Q1, @, Q3, Qs
Domains D; = {1,2,3.4}
Constraints
Qi # Q; (cannot be in same row)

|Q — Q| # |i —j| (or same diagonal)

Translate each constraint into set of allowable values for its variables
E.g., values for (Q1, @) are (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)
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CSP Summary

CSPs are a special kind of search problems:

states defined by values of a fixed set of variables

goal test defined by constraints on variable values
Backtracking = depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice
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