Lecture 6: Constraint Satisfaction Problems (CSPs)

 CS 580 (001) - Spring 2018Amarda Shehu
Department of Computer Science
George Mason University, Fairfax, VA, USA

February 28, 2018

■ Outline of Today's Class

■ CSP Examples

3 Backtracking Search for CSPs

4 Problem Structure and Problem Decomposition

5 Local Search for CSPs

■ Take-home Problem

7 CSP Summary

Standard search problem:
state is a "black box"-any old data structure that supports goal test, eval, successor

CSP:
state is defined by variables X_{i} with values from domain D_{i} goal test is a set of constraints specifying
allowable combinations of values for subsets of variables
Simple example of a formal representation language
Allows useful general-purpose algorithms with more power than standard search algorithms

Variables WA, NT, Q, NSW, V, SA, T
Tasmania

Domains $D_{i}=\{$ red, green, blue $\}$
Constraints: adjacent regions must have different colors
e.g., $W A \neq N T$ (if the language allows this), or $($ WA, NT $) \in\{($ red, green $),($ red, blue $),($ green, red $),($ green, blue $), \ldots\}$

Example: Map-Coloring Continued

Solutions are assignments satisfying all constraints, e.g., $\{W A=$ red,$N T=$ green, $Q=$ red, $N S W=$ green, $V=$ red, $S A=$ blue, $T=$ green $\}$

Constraint Graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Discrete variables

finite domains; size $d \Longrightarrow O\left(d^{n}\right)$ complete assignments
\diamond e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
infinite domains (integers, strings, etc.)
\diamond e.g., job scheduling, variables are start/end days for each job
\diamond need a constraint language, e.g., StartJob ${ }_{1}+5 \leq$ StartJob $_{3}$
\diamond linear constraints solvable, nonlinear undecidable

Continuous variables

\diamond e.g., start/end times for Hubble Telescope observations
\diamond linear constraints solvable in polynomial time by linear programming (LP)

Unary constraints involve a single variable e.g., $S A \neq$ green

Binary constraints involve pairs of variables
e.g., $S A \neq$ WA

Higher-order constraints involve 3 or more variables
e.g., cryptarithmetic column constraints

Strong vs. soft constraints
Preferences (soft constraints)
e.g., red is better than green
often representable by a cost for each variable assignment
\rightarrow constrained optimization problems

Example: Cryptarithmetic

$\begin{array}{r}T W O \\ +\quad \mathrm{T} \text { WO } \\ \hline \mathrm{FOUR}\end{array}$

Variables: FTUWROX1 $X_{2} X_{3}$
Domains: $\{0,1,2,3,4,5,6,7,8,9\}$
Constraints

$$
\begin{aligned}
& \text { alldiff(} F, T, U, W, R, O) \\
& O+O=R+10 \cdot X_{1}, \text { etc. }
\end{aligned}
$$

Assignment problemse.g., who teaches what class
Timetabling problemse.g., which class is offered when and where?
Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
FloorplanningReal-world problems almost always involve real-valued variables

Let's start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far
\diamond Initial state: the empty assignment, \emptyset
\diamond Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
\Longrightarrow fail if no legal assignments (not fixable!)
\diamond Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables
\Longrightarrow use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) $b=(n-\ell) d$ at depth ℓ, hence $n!d^{n}$ leaves!!!!

Variable assignments are commutative, i.e.,

$$
[W A=\text { red then } N T=\text { green }] \text { same as }[N T=\text { green then } W A=\text { red }]
$$

Only need to consider assignments to a single variable at each node $\Longrightarrow b=d$ and there are d^{n} leaves

Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs
Can solve n-queens for $n \approx 25$

Backtracking Search

function BACKTRACKING-SEARCH (csp) returns solution/failure return BACKTRACK (\{ \}, csp)
function BACKTRACK(assignment, csp) returns soln/failure
if assignment is complete then return assignment
$v a r \leftarrow$ SELECT-UnASSIGNED-VARIABLE (csp, assignment) for each value in Order-Domain-VALues(var, assignment, csp) do
if value is consistent with assignment then
add $\{$ var $=$ value $\}$ to assignment
inferences \leftarrow INFERENCE(var, assignment, csp)
if inferences \neq failure then add inferences to assignment result \leftarrow BACKTRACK (assignment, csp)
if result \neq failure then
return result
remove $\{$ var $=$ value $\}$ and inferences from assignment return failure

Backtracking Example

Backtracking Example

Backtracking Example

Backtracking Example

General-purpose methods can give huge gains in speed:
\llbracket Which variable should be assigned next? [SELECT-UNASSIGNED-VARIABLE]
2 In what order should its values be tried? [ORDER-DOMAIN-VALUES]
3 Can we detect inevitable failure early? [INFERENCE]
4 Can we take advantage of problem structure?

Minimum remaining values (MRV) for var \leftarrow SELECT-UNASSIGNED-VAR(csp, assignment):
choose the variable with the fewest legal values to prune search tree also called "most constrained variable" or "fail-first heuristic"

but MRV heuristic does not help in selecting the first variable

Minimum remaining values (MRV) for var \leftarrow SELECT-UNASSIGNED-VAR(csp, assignment):
choose the variable with the fewest legal values to prune search tree also called "most constrained variable" or "fail-first heuristic"

... but MRV heuristic does not help in selecting the first variable

Tie-breaker among MRV variables
Degree heuristic:
choose the variable with the most constraints on remaining variables

called degree heuristic because can get this information from constraint graph attempts to reduce branching factor on future choices

Least Constraining Value Heuristic for:

var \leftarrow ORDER-DOMAIN-VALUES(var, assignment, csp)

Given a variable, choose the least constraining value: selects value that rules out the fewest values in the remaining variables

Goal is to reach one complete assignment fast
Combining above heuristics makes 1000 queens feasible
When all solutions/complete assignments needed, LCV is irrelevant

Idea: Infer reductions in the domain of variables
When: Before and/or during the backtracking search itself

How: Constraint propagation

Algorithms: Forward Checking, AC-3

Simplest Form of Inference: Forward Checking

Idea: Keep track of remaining legal values for unassigned variables Idea: Terminate search when any variable has no legal values

Idea: Keep track of remaining legal values for unassigned variables Idea: Terminate search when any variable has no legal values

Idea: Keep track of remaining legal values for unassigned variables Idea: Terminate search when any variable has no legal values

Constraint Propagation

Forward checking propagates information from assigned to unassigned variables:

Forward checking establishes arc consistency
whenever a var X is assigned, domains of neighbors Y of X in constraint graph are reduced
for each unassigned var Y that is connected to X by a constraint, delete from Y 's domain any value that is inconsistent with the value chosen for X

Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

BUT: NT and SA cannot both be blue!
Constraint propagation repeatedly enforces constraints locally, and does not "chase" arc consistency

When the domain of a neighbor Y of X is reduced, domains of neighbors of Y may also become inconsistent (e.g.: NT and SA)

Simplest form of constraint propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y of Y

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y of Y

Simplest form of propagation makes each arc consistent
$X \rightarrow Y$ is consistent iff
for every value x of X there is some allowed value y of Y

If a variable loses a value, its neighbors in the constraint graph need to be rechecked

More powerful idea than forward checking: If a variable loses a value, its neighbors in the constraint graph need to be rechecked

Recursively propagates constraints when changes are made to domains of variables
This recursive constraint propagation approach detects failure earlier than forward checking

Can be preprocessing or run after each assignment (INFERENCE) in the backtracking search algorithm

Algorithm: Maintaining Arc Consistency (MAC), also known as AC-3
function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do
$\left(X_{i}, X_{j}\right) \leftarrow$ Remove-First (queue)
if Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ then for each X_{k} in Neighbors $\left[X_{i}\right]$ do add $\left(X_{k}, X_{i}\right)$ to queue
function Remove-Inconsistent-Values $\left(X_{i}, X_{j}\right)$ returns true iff succeeds
removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$
then delete x from Domain $\left[X_{i}\right]$

$$
\text { removed } \leftarrow \text { true }
$$

return removed

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ?

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}

How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned?

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so...O(d) times

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so... O(d) times

In total, how many arces (X_{k}, X_{i}) will be added to the queue over all variables?

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so... $O(d)$ times

In total, how many arces $\left(X_{k}, X_{i}\right)$ will be added to the queue over all variables? $O(c d)$

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so... $O(d)$ times

In total, how many arces $\left(X_{k}, X_{i}\right)$ will be added to the queue over all variables? $O(c d)$

How long does it take to check consistency of an arc?

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so... $O(d)$ times

In total, how many arces $\left(X_{k}, X_{i}\right)$ will be added to the queue over all variables? $O(c d)$

How long does it take to check consistency of an arc? $O\left(d^{2}\right)$

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is $O(c)$

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so... $O(d)$ times

In total, how many arces (X_{k}, X_{i}) will be added to the queue over all variables? $O(c d)$

How long does it take to check consistency of an arc? $O\left(d^{2}\right)$

So, putting it all together: $T(A C-3) \in O\left(\mathrm{~cd}^{3}\right)$

Given: c constraints, $\leq d$ values in the domain of each variable X_{i}
How many $\left(X_{k}, X_{i}\right)$ arces will be added to the queue when pruning domain of some X_{i} ? at most $\operatorname{deg}\left(X_{i}\right)$

How many is this over all variables?
sum over all degrees is $O(E)$ of constraint graph which is O (c)

How often will the domain of each variable be pruned? cannot be more than the actual size of the domain ...so... $O(d)$ times

In total, how many arces (X_{k}, X_{i}) will be added to the queue over all variables? $O(c d)$

How long does it take to check consistency of an arc? $O\left(d^{2}\right)$

So, putting it all together: $T(\mathrm{AC}-3) \in \mathrm{O}\left(\mathrm{cd}^{3}\right)$

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph

Suppose each subproblem has c variables out of n total
Worst-case solution cost is $n / c \cdot d^{c}$, linear in n
E.g., $n=80, d=2, c=20$
$2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$
$4 \cdot 2^{20}=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Theorem: if the constraint graph has no cycles (so, it's a tree), the CSP can be solved in $O\left(n d^{2}\right)$ time

Compare to general CSPs, where worst-case time is $O\left(d^{n}\right)$
This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Algorithm for Tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent $\left(\operatorname{Parent}\left(X_{j}\right), X_{j}\right)$
3. For j from 1 to n, assign X_{j} consistently with $\operatorname{Parent}\left(X_{j}\right)$

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree Cutset size $c \Longrightarrow$ runtime $O\left(d^{c} \cdot(n-c) d^{2}\right)$, very fast for small c

Hill-climbing, simulated annealing typically work with
"complete" states, i.e., all variables assigned
To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values
Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climber with $h(n)=$ total number of violated constraints

Take-home: Propose a simple EA for 4-queens CSP

Example: 4-Queens as CSP

States:

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators:

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)

Operators: move queen in column

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column

Goal test:

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column

Goal test: no attacks

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation:

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks

Evaluation: $h(n)=$ number of attacks

Example: 4-Queens as CSP

States: 4 queens in 4 columns ($4^{4}=256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation: $h(n)=$ number of attacks

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n=10,000,000$)
The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables $Q_{1}, Q_{2}, Q_{3}, Q_{4}$

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?
Variables $Q_{1}, Q_{2}, Q_{3}, Q_{4}$
Domains $D_{i}=\{1,2,3,4\}$

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?
Variables $Q_{1}, Q_{2}, Q_{3}, Q_{4}$
Domains $D_{i}=\{1,2,3,4\}$
Constraints
$Q_{i} \neq Q_{j}$ (cannot be in same row)
$\left|Q_{i}-Q_{j}\right| \neq|i-j|$ (or same diagonal)

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?
Variables $Q_{1}, Q_{2}, Q_{3}, Q_{4}$
Domains $D_{i}=\{1,2,3,4\}$

Constraints

$Q_{i} \neq Q_{j}$ (cannot be in same row)
$\left|Q_{i}-Q_{j}\right| \neq|i-j|$ (or same diagonal)
Translate each constraint into set of allowable values for its variables

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?
Variables $Q_{1}, Q_{2}, Q_{3}, Q_{4}$
Domains $D_{i}=\{1,2,3,4\}$

Constraints

$Q_{i} \neq Q_{j}$ (cannot be in same row)
$\left|Q_{i}-Q_{j}\right| \neq|i-j|$ (or same diagonal)
Translate each constraint into set of allowable values for its variables E.g., values for $\left(Q_{1}, Q_{2}\right)$ are $(1,3)(1,4)(2,4)(3,1)(4,1)(4,2)$

CSPs are a special kind of search problems:
states defined by values of a fixed set of variables goal test defined by constraints on variable values

Backtracking $=$ depth-first search with one variable assigned per node
Variable ordering and value selection heuristics help significantly
Forward checking prevents assignments that guarantee later failure
Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure
Tree-structured CSPs can be solved in linear time
Iterative min-conflicts is usually effective in practice

