
Lecture 6: Constraint Satisfaction Problems (CSPs)
CS 580 (001) - Spring 2018

Amarda Shehu

Department of Computer Science
George Mason University, Fairfax, VA, USA

February 28, 2018

Amarda Shehu (580) 1

1 Outline of Today’s Class

2 CSP Examples

3 Backtracking Search for CSPs

4 Problem Structure and Problem Decomposition

5 Local Search for CSPs

6 Take-home Problem

7 CSP Summary

Amarda Shehu (580) Outline of Today’s Class 2

Constraint Satisfaction Problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure that

supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying

allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Amarda Shehu (580) CSP Examples 3

Example: Map-Coloring

Variables WA, NT , Q, NSW , V , SA, T

Domains Di = {red , green, blue}

Constraints: adjacent regions must have different colors
e.g., WA 6= NT (if the language allows this), or

(WA,NT) ∈ {(red , green), (red , blue), (green, red), (green, blue), . . .}

Amarda Shehu (580) CSP Examples 4

Example: Map-Coloring Continued

Solutions are assignments satisfying all constraints, e.g.,
{WA= red ,NT = green,Q = red ,NSW = green,V = red ,SA= blue,T = green}

Amarda Shehu (580) CSP Examples 5

Constraint Graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Amarda Shehu (580) CSP Examples 6

Varieties of CSPs

Discrete variables

finite domains; size d =⇒ O(dn) complete assignments
♦ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

infinite domains (integers, strings, etc.)
♦ e.g., job scheduling, variables are start/end days for each job
♦ need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3
♦ linear constraints solvable, nonlinear undecidable

Continuous variables
♦ e.g., start/end times for Hubble Telescope observations
♦ linear constraints solvable in polynomial time by linear programming (LP)

Amarda Shehu (580) CSP Examples 7

Varieties of Constraints

Unary constraints involve a single variable
e.g., SA 6= green

Binary constraints involve pairs of variables
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables
e.g., cryptarithmetic column constraints

Strong vs. soft constraints

Preferences (soft constraints)
e.g., red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems

Amarda Shehu (580) CSP Examples 8

Example: Cryptarithmetic

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Constraints
alldiff(F ,T ,U,W ,R,O)
O + O = R + 10 · X1, etc.

Amarda Shehu (580) CSP Examples 9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Real-world problems almost always involve real-valued variables

Amarda Shehu (580) CSP Examples 10

Standard Search Formulation (Incremental)

Let’s start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

♦ Initial state: the empty assignment, ∅
♦ Successor function: assign a value to an unassigned variable

that does not conflict with current assignment.
=⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!

2) Every solution appears at depth n with n variables
=⇒ use depth-first search

3) Path is irrelevant, so can also use complete-state formulation

4) b = (n − `)d at depth `, hence n!dn leaves!!!!

Amarda Shehu (580) Backtracking Search for CSPs 11

Backtracking Search

Variable assignments are commutative, i.e.,
[WA= red then NT = green] same as [NT = green then WA= red]

Only need to consider assignments to a single variable at each node
=⇒ b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

Amarda Shehu (580) Backtracking Search for CSPs 12

Backtracking Search

function Backtracking-Search(csp) returns solution/failure
return Backtrack({ }, csp)

function Backtrack(assignment, csp) returns soln/failure
if assignment is complete then return assignment
var←Select-Unassigned-Variable(csp, assignment)
for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment then
add {var = value} to assignment
inferences← INFERENCE(var, assignment, csp)
if inferences 6= failure then

add inferences to assignment
result←Backtrack(assignment, csp)
if result 6= failure then

return result
remove {var = value} and inferences from assignment

return failure

Amarda Shehu (580) Backtracking Search for CSPs 13

Backtracking Example

Amarda Shehu (580) Backtracking Search for CSPs 14

Backtracking Example

Amarda Shehu (580) Backtracking Search for CSPs 15

Backtracking Example

Amarda Shehu (580) Backtracking Search for CSPs 16

Backtracking Example

Amarda Shehu (580) Backtracking Search for CSPs 17

Improving Backtracking Efficiency

General-purpose methods can give huge gains in speed:

1 Which variable should be assigned next? [SELECT-UNASSIGNED-VARIABLE]

2 In what order should its values be tried? [ORDER-DOMAIN-VALUES]

3 Can we detect inevitable failure early? [INFERENCE]

4 Can we take advantage of problem structure?

Amarda Shehu (580) Backtracking Search for CSPs 18

Minimum Remaining Values

Minimum remaining values (MRV) for
var ← SELECT-UNASSIGNED-VAR(csp, assignment):

choose the variable with the fewest legal values to prune search tree
also called “most constrained variable” or “fail-first heuristic”

... but MRV heuristic does not help in selecting the first variable

Amarda Shehu (580) Backtracking Search for CSPs 19

Minimum Remaining Values

Minimum remaining values (MRV) for
var ← SELECT-UNASSIGNED-VAR(csp, assignment):

choose the variable with the fewest legal values to prune search tree
also called “most constrained variable” or “fail-first heuristic”

... but MRV heuristic does not help in selecting the first variable

Amarda Shehu (580) Backtracking Search for CSPs 19

Degree Heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

called degree heuristic because can get this information from constraint graph

attempts to reduce branching factor on future choices

Amarda Shehu (580) Backtracking Search for CSPs 20

Least Constraining Value Heuristic

Least Constraining Value Heuristic for:
var ← ORDER-DOMAIN-VALUES(var, assignment, csp)

Given a variable, choose the least constraining value:
selects value that rules out the fewest values in the remaining variables

Goal is to reach one complete assignment fast

Combining above heuristics makes 1000 queens feasible

When all solutions/complete assignments needed, LCV is irrelevant

Amarda Shehu (580) Backtracking Search for CSPs 21

Inference

Idea: Infer reductions in the domain of variables

When: Before and/or during the backtracking search itself

How: Constraint propagation

Algorithms: Forward Checking, AC-3

Amarda Shehu (580) Backtracking Search for CSPs 22

Simplest Form of Inference: Forward Checking

Idea: Keep track of remaining legal values for unassigned variables
Idea: Terminate search when any variable has no legal values

Amarda Shehu (580) Backtracking Search for CSPs 23

Forward Checking

Idea: Keep track of remaining legal values for unassigned variables
Idea: Terminate search when any variable has no legal values

Amarda Shehu (580) Backtracking Search for CSPs 24

Forward Checking

Idea: Keep track of remaining legal values for unassigned variables
Idea: Terminate search when any variable has no legal values

Amarda Shehu (580) Backtracking Search for CSPs 25

Constraint Propagation

Forward checking propagates information from assigned to unassigned variables:

Forward checking establishes arc consistency

whenever a var X is assigned, domains of neighbors Y of X in constraint graph are
reduced

for each unassigned var Y that is connected to X by a constraint, delete from Y’s
domain any value that is inconsistent with the value chosen for X

Amarda Shehu (580) Backtracking Search for CSPs 26

Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but
doesn’t provide early detection for all failures:

BUT: NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally, and does not “chase” arc
consistency

When the domain of a neighbor Y of X is reduced, domains of neighbors of Y may also
become inconsistent (e.g.: NT and SA)

Amarda Shehu (580) Backtracking Search for CSPs 27

Back to Arc Consistency

Simplest form of constraint propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed value y of Y

Amarda Shehu (580) Backtracking Search for CSPs 28

Arc Consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed value y of Y

Amarda Shehu (580) Backtracking Search for CSPs 29

Arc Consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed value y of Y

If a variable loses a value, its neighbors in the constraint graph need to be rechecked

Amarda Shehu (580) Backtracking Search for CSPs 30

Maintaining Arc Consistency

More powerful idea than forward checking: If a variable loses a value, its neighbors in
the constraint graph need to be rechecked

Recursively propagates constraints when changes are made to domains of variables

This recursive constraint propagation approach detects failure earlier than forward
checking

Can be preprocessing or run after each assignment (INFERENCE) in the backtracking
search algorithm

Algorithm: Maintaining Arc Consistency (MAC), also known as AC-3

Amarda Shehu (580) Backtracking Search for CSPs 31

Maintaining Arc Consistency (MAC) Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do

(Xi , Xj)←Remove-First(queue)
if Remove-Inconsistent-Values(Xi , Xj) then

for each Xk in Neighbors[Xi] do
add (Xk , Xi) to queue

function Remove-Inconsistent-Values(Xi , Xj) returns true iff suc-
ceeds

removed← false
for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint
Xi ↔ Xj

then delete x from Domain[Xi]
removed← true

return removed

Amarda Shehu (580) Backtracking Search for CSPs 32

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?

at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?

sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph

which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?

cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain

...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?

O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?

O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Time Complexity Arc Consistency Algorithm

Given: c constraints, ≤ d values in the domain of each variable Xi

How many (Xk ,Xi) arces will be added to the queue when pruning domain of some Xi?
at most deg(Xi)

How many is this over all variables?
sum over all degrees is O(E) of constraint graph
which is O(c)

How often will the domain of each variable be pruned?
cannot be more than the actual size of the domain
...so...O(d) times

In total, how many arces (Xk ,Xi) will be added to the queue over all variables?
O(cd)

How long does it take to check consistency of an arc?
O(d2)

So, putting it all together: T (AC− 3) ∈ O(cd3)

Amarda Shehu (580) Backtracking Search for CSPs 33

Problem Structure

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Amarda Shehu (580) Problem Structure and Problem Decomposition 34

Problem Structure continued

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · d c , linear in n

E.g., n = 80, d = 2, c = 20

280 = 4 billion years at 10 million nodes/sec

4 · 220 = 0.4 seconds at 10 million nodes/sec

Amarda Shehu (580) Problem Structure and Problem Decomposition 35

Tree-structured CSPs

Theorem: if the constraint graph has no cycles (so, it’s a tree),
the CSP can be solved in O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Amarda Shehu (580) Problem Structure and Problem Decomposition 36

Algorithm for Tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

2. For j from n down to 2, apply RemoveInconsistent(Parent(Xj),Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

Amarda Shehu (580) Problem Structure and Problem Decomposition 37

Nearly Tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c =⇒ runtime O(d c · (n − c)d2), very fast for small c

Amarda Shehu (580) Problem Structure and Problem Decomposition 38

Iterative Algorithms for CSPs

Hill-climbing, simulated annealing typically work with
“complete” states, i.e., all variables assigned

To apply to CSPs:
allow states with unsatisfied constraints
operators reassign variable values

Variable selection: randomly select any conflicted variable

Value selection by min-conflicts heuristic:
choose value that violates the fewest constraints
i.e., hill-climber with h(n) = total number of violated constraints

Take-home: Propose a simple EA for 4-queens CSP

Amarda Shehu (580) Local Search for CSPs 39

Example: 4-Queens as CSP

States:

4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators:

move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test:

no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation:

h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Example: 4-Queens as CSP

States: 4 queens in 4 columns (44 = 256 states)

Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Amarda Shehu (580) Local Search for CSPs 40

Performance of Min-conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)
The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

R =
number of constraints

number of variables

Amarda Shehu (580) Local Search for CSPs 41

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Amarda Shehu (580) Take-home Problem 42

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Amarda Shehu (580) Take-home Problem 42

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}

Amarda Shehu (580) Take-home Problem 42

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}

Constraints
Qi 6= Qj (cannot be in same row)
|Qi − Qj | 6= |i − j | (or same diagonal)

Amarda Shehu (580) Take-home Problem 42

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}

Constraints
Qi 6= Qj (cannot be in same row)
|Qi − Qj | 6= |i − j | (or same diagonal)

Translate each constraint into set of allowable values for its variables

Amarda Shehu (580) Take-home Problem 42

4-Queens as a CSP

Work through the 4-queens as CSP in greater detail

Assume one queen in each column. Which row does each one go in?

Variables Q1, Q2, Q3, Q4

Domains Di = {1, 2, 3, 4}

Constraints
Qi 6= Qj (cannot be in same row)
|Qi − Qj | 6= |i − j | (or same diagonal)

Translate each constraint into set of allowable values for its variables
E.g., values for (Q1,Q2) are (1, 3) (1, 4) (2, 4) (3, 1) (4, 1) (4, 2)

Amarda Shehu (580) Take-home Problem 42

CSP Summary

CSPs are a special kind of search problems:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Variable ordering and value selection heuristics help significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Iterative min-conflicts is usually effective in practice

Amarda Shehu (580) CSP Summary 43

	Outline of Today's Class
	CSP Examples
	Backtracking Search for CSPs
	Problem Structure and Problem Decomposition
	Local Search for CSPs
	Take-home Problem
	CSP Summary

