Lecture 10: Bayesian Networks and Inference CS 580 (001) - Spring 2018

Amarda Shehu
Department of Computer Science
George Mason University, Fairfax, VA, USA

May 02, 2018

1 Outline of Today's Class - Bayesian Networks and Inference
2. Bayesian Networks

- Syntax
- Semantics
- Parameterized Distributions

3 Inference on Bayesian Networks
■ Exact Inference by Enumeration

- Exact Inference by Variable Elimination
- Approximate Inference by Stochastic Simulation
- Approximate Inference by Markov Chain Monte Carlo (MCMC)
- Digging Deeper...

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents:
$\mathbf{P}\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$
In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Topology of network encodes conditional independence assertions:

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Cavity

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects "causal" knowledge:

- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

A CPT for Boolean X_{i} with k Boolean parents

has:

2^{k} rows for the combinations of parent values
Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=$ false is just $1-p$)

If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{k}\right)$ numbers
I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution

For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

Global semantics defines the full joint

distribution

as the product of the local conditional distributions:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

Global Semantics

"Global" semantics defines the full joint

distribution

as the product of the local conditional distributions:

$$
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

e.g., $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$
\begin{aligned}
& =P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e) \\
& =0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998 \\
& \approx 0.00063
\end{aligned}
$$

Local semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov Blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing Bayesian Networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that
$\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
This choice of parents guarantees the global semantics:

$$
\begin{aligned}
\mathrm{P}\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \quad \text { (chain rule) } \\
& =\prod_{i=1}^{n} \mathrm{P}\left(X_{i} \mid \text { Parents }\left(X_{i}\right)\right) \quad \text { (by construction) }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

MaryCalls

$P(J \mid M)=P(J)$?

Suppose we choose the ordering M, J, A, B, E

MaryCalls

$$
\begin{aligned}
& P(J \mid M)=P(J) ? \quad \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A)
\end{aligned}
$$

Suppose we choose the ordering M, J, A, B, E

MaryCalls

$$
\begin{aligned}
& P(J \mid M)=P(J) ? \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? } \\
& P(B \mid A, J, M)=P(B) ?
\end{aligned}
$$

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? } \mathrm{No} \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) ? \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? }
\end{aligned}
$$

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? } \mathrm{No} \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

Deciding conditional independence is hard in noncausal directions (Causal models and conditional independence seem hardwired for humans!) Assessing conditional probabilities is hard in noncausal directions Network is less compact: $1+2+4+2+4=13$ numbers needed

Example: Car Diagnosis

Initial evidence: car won't start
Testable variables (green), "broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

CPT grows exponentially with number of parents CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:
$X=f(\operatorname{Parents}(X))$ for some function f
E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian \vee US \vee Mexican
E.g., numerical relationships among continuous variables

$$
\frac{\partial \text { Level }}{\partial t}=\text { inflow }+ \text { precipitation - outflow - evaporation }
$$

Compact Conditional Distributions

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Longrightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Subsidy? Harvest

Cost

Buys?

Option 1: discretization-possibly large errors, large CPTs Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy } ?=\text { true }) \\
& \quad=N\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& \quad=\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

All-continuous network with LG distributions
\Longrightarrow full joint distribution is a multivariate Gaussian
Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}^{x} N(0,1)(x) d x \\
& P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma)
\end{aligned}
$$

Why the probit?

1. It's sort of the right shape
2. Can view as hard threshold whose location is subject to noise

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

Summary on Bayesian Networks

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs $=$ compact representation of joint distribution

Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs
Continuous variables \Longrightarrow parameterized distributions (e.g., linear Gaussian)
Next: Inference on Bayesian Networks

Bayes nets provide a natural representation for (causally induced) conditional independence

Topology + CPTs $=$ compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) $=$ compact representation of CPTs
Continuous variables \Longrightarrow parameterized distributions (e.g., linear Gaussian)
Next: Inference on Bayesian Networks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$ e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=$ on, Starts $=$ false $)$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?

Inference by Enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation

Simple query on the burglary network:

$\mathbf{P}(B \mid j, m)$
$=\mathbf{P}(B, j, m) / P(j, m)$
$=\alpha \mathbf{P}(B, j, m)$
$=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)$
Rewrite full joint entries using product of CPT entries:
$\mathbf{P}(B \mid j, m)$
$=\alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
$=\alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$
Recursive depth-first enumeration: $O(n)$ space, $O\left(d^{n}\right)$ time
function Enumeration- $\operatorname{Ask}(X, \mathbf{e}, b n)$ returns a distribution over X inputs: X, the query variable
e, observed values for variables \mathbf{E}
$b n$, a Bayesian network with variables $\{X\} \cup \mathbf{E} \cup \mathbf{Y}$
$\mathbf{Q}(X) \leftarrow$ a distribution over X, initially empty
for each value x_{i} of X do
extend \mathbf{e} with value x_{i} for X
$\mathbf{Q}\left(x_{i}\right) \leftarrow$ Enumerate-All (Vars $\left.[b n], \mathbf{e}\right)$
return Normalize $(\mathbf{Q}(X))$
function Enum-AlL(vars, e) returns a real number
if Empty? (vars) then return 1.0
$Y \leftarrow$ First (vars)
if Y has value y in \mathbf{e}
then return $P(y \mid P a(Y)) \times$ Enum-All(Rest(vars), e)
else return $\sum_{y} P(y \mid \operatorname{Pa}(Y)) \times \operatorname{Enum}-\operatorname{All}\left(\operatorname{Rest}(\right.$ vars $\left.), \mathbf{e}_{y}\right)$ where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Enumeration is inefficient: repeated computation e.g., computes $P(j \mid a) P(m \mid a)$ for each value of e

Variable elimination refers to a heuristic to reduce complexity of exact inference
Use of memoization to avoid redundant calculations (stored in factors)
$\mathbf{P}(B \mid j, m)$
$=\alpha \underbrace{\mathbf{P}(B)}_{B} \sum_{e} \underbrace{P(e)}_{E} \sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{A} \underbrace{P(j \mid a)}_{J} \underbrace{P(m \mid a)}_{M}$
$=\alpha f_{1}(B) \sum_{e} f_{2}(E) \sum_{a} f_{3}(A, B, E) f_{4}(A) f_{5}(A)$
pointwise product and sum out A
$=\alpha f_{1}(B) \sum_{e} f_{2}(E) f_{6}(B, E)$
$=\alpha f_{1}(B) f_{7}(B)$
sum out E

Basic operations: pointwise product and summation of factors
Direction: Carry out summations right-to-left
Example of factors:
$f_{4}(A)$ is $\langle P(j \mid a), P(j \mid \neg a)\rangle=\langle 0.90,0.05\rangle \quad f_{5}(A)$ is $\langle P(m \mid a), P(m \mid \neg a)\rangle=\langle 0.70,0.01\rangle$
$f_{3}(A, b, E)$ is a matrix of two rows, $\langle P(a \mid b, e), P(\neg a \mid b, e)\rangle$ and $\langle P(a \mid b, \neg e), P(\neg a \mid b, \neg e)\rangle$
$f_{3}(A, B, E)$ is a $2 \times 2 \times 2$ matrix (considering also b and $\neg b$).

Pointwise product $f_{4}(A) \times f_{5}(A)=\langle P(j \mid a) \cdot P(m \mid a), P(j \mid \neg a) \cdot P(m \mid \neg a)\rangle$
Corresponding entries in vectors are multiplied, yielding another same-size vector
equivalent to going bottom-up in tree, keeping track of both children in a vector, and multiplying child with parent to "roll up" to higher level.

Generally:
Pointwise product of factors f_{1} and f_{2} :
$f_{1}\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}\right) \times f_{2}\left(y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)$
$=f\left(x_{1}, \ldots, x_{j}, y_{1}, \ldots, y_{k}, z_{1}, \ldots, z_{l}\right)$
vars are unions
Example: $f_{1}(a, b) \times f_{2}(b, c)=f(a, b, c)$
Rewrite $f_{4}(A)$ as $f(j, A)$ and $f_{5}(A)$ as $f(m, A)$
Rule suggests $f(j, A) \times f_{2}(m, A)=f(j, m, A)$
Correct: $P(j \mid A) \times P(m \mid A)=P(j, m \mid A)$ (because J and M are conditionally indepedent given their parent set A)

Consider $f_{3}(A, b, E)$ which is a 2×2 matrix:
$\langle P(a \mid b, \neg e), P(\neg a \mid b, \neg e)\rangle \quad$ (each row corresponds to branching point in search tree)
"Summing out" A means pointwise product on each branch and sum up at parent
Example: What is $=\sum_{a} f_{3}(A, b, E) f_{4}(A) f_{5}(A)$?
Let $f_{4}(A) \times f_{5}(A)$ be $f(j, m, A)=<P(j, m \mid a), P(j, m \mid \neg a>$ (from previous slide)
Take pointwise product of first row of $f_{3}(A, b, E)$ with $f(j, m, A)$
Take pointwise product of second row of $f_{3}(A, b, E)$ with $f(j, m, A)$
Sum the two rows to get a new factor $f_{6}(b, E)$
Generally, summing out a variable from a product of factors:
move any constant factors outside the summation add up submatrices in pointwise product of remaining factors
$\sum_{x} f_{1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \sum_{x} f_{i+1} \times \cdots \times f_{k}=f_{1} \times \cdots \times f_{i} \times f_{\bar{X}}$ assuming f_{1}, \ldots, f_{i} do not depend on X summation needed to account for all values of hidden variables (A, E)

```
function Elimination- \(\operatorname{Ask}(X, \mathbf{e}, b n)\) returns a distribution over \(X\)
    inputs: \(X\), the query variable
            \(\mathbf{e}\), evidence specified as an event
            bn, a belief network specifying joint distribution \(\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)\)
    factors \(\leftarrow[] ;\) vars \(\leftarrow \operatorname{Reverse}(\operatorname{Vars}[b n])\)
    for each var in vars do
        factors \(\leftarrow[\) Make-FACtor (var, e) \(\mid\) factors \(]\)
        if \(v a r\) is a hidden variable then factors \(\leftarrow\) Sum-Out (var, factors)
    return Normalize(Pointwise-Product(factors))
```

Every choice of ordering for variables yields a sound algorithm Different orderings give different intermediate factors Certain variable orderings can introduce irrelevant calculations Intractable to find optimal ordering, but heuristics exist

Consider the query $P($ JohnCalls \mid Burglary $=$ true $)$

$$
P(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)
$$

Sum over m is identically $1 ; M$ is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in \operatorname{Ancestors}(\{X\} \cup \mathbf{E})$
Here, $X=$ JohnCalls, $E=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$ so MaryCalls is irrelevant

Consider the query $P($ JohnCalls \mid Burglary $=$ true $)$

$$
P(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(J \mid a) \sum_{m} P(m \mid a)
$$

Sum over m is identically $1 ; M$ is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in \operatorname{Ancestors}(\{X\} \cup \mathbf{E})$
Here, $X=$ JohnCalls, $E=\{$ Burglary $\}$, and Ancestors $(\{X\} \cup \mathbf{E})=\{$ Alarm, Earthquake $\}$ so MaryCalls is irrelevant

Hence the name, variable elimination algorithm

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph

For $P($ JohnCalls \mid Alarm = true $)$, both
Burglary and Earthquake are irrelevant

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- worst-case time and space cost of a query is $O(n)$
- worst-case time and space cost of n queries is $O\left(n^{2}\right)$

Multiply connected networks:

- worst-case time and space cost are exponential, $O\left(n \cdot d^{n}\right)$ (n queries, d values per r.v.)
- NP-hard and \#P-complete
- can reduce 3SAT to exact inference \Longrightarrow NP-hard
- equivalent to counting 3SAT models \Longrightarrow \#P-complete

How to reduce time? Identify structure in BN similar to CSP setting: group variables together to "reduce" network to a polytree

How? Cluster variables together (joint tree algorithms)
Parents of a node can be grouped into a meta-parent node (meganode)
As in CSP, meganodes may share variables, so special inference algorithm is needed
Algorithm takes care of constraint propagation so that meganodes agree on posterior probability of shared variables

No free lunch, so what gives?
The exponential time cost is hidden in the combined CPTs, which can become exponentially large

How to reduce time? Identify structure in BN similar to CSP setting: group variables together to "reduce" network to a polytree

How? Cluster variables together (joint tree algorithms)
Parents of a node can be grouped into a meta-parent node (meganode)
As in CSP, meganodes may share variables, so special inference algorithm is needed
Algorithm takes care of constraint propagation so that meganodes agree on posterior probability of shared variables

No free lunch, so what gives?

The exponential time cost is hidden in the combined CPTs, which can become exponentially large

Giving up on Exact Inference: Go for Approximate Instead

Or...

Give up on exact inference

Or...

Give up on exact inference
Go for approximate inference algorithms...

Or...

Give up on exact inference

Go for approximate inference algorithms...
that use sampling (Monte Carlo-based) to estimate posterior probabilities

Or...

Give up on exact inference

Go for approximate inference algorithms...
that use sampling (Monte Carlo-based) to estimate posterior probabilities

Basic idea:

1) Draw N samples from a sampling distribution S

Can you draw N samples for the r.v. Coin from the probability distribution $\mathrm{P}($ Coin $)=[0.5,0.5]$?
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:

- Direct Sampling: Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Direct Sampling: Sampling from an Empty Network

Empty refers to the absence of any evidence: used to estimate joint probabilities
Main idea:

Sample each r.v. in turn, in topological order, from parents to children

Once parent is sampled, its value is fixed and used to sample child

Events generated via this direct sampling, observing joint probability distribution
To get (prior) probability of an event, have to sample many times, so frequency of "observing" it among samples approaches its probability

Direct Sampling: Sampling from an Empty Network

Empty refers to the absence of any evidence: used to estimate joint probabilities
Main idea:

Sample each r.v. in turn, in topological order, from parents to children

Once parent is sampled, its value is fixed and used to sample child

Events generated via this direct sampling, observing joint probability distribution
To get (prior) probability of an event, have to sample many times, so frequency of "observing" it among samples approaches its probability

Example next

Direct Sampling Example

Direct Sampling Example

function Prior-Sample(bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution $\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)$ $\mathbf{x} \leftarrow$ an event with n elements for $i=1$ to n do
$x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ given the values of $\operatorname{Parents}\left(X_{i}\right)$ in \mathbf{x}
return x

Direct Sampling Continued

Probability that PriorSample generates a particular event $x_{1} \ldots x_{n}$:
$S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)$
i.e., the true prior probability
E.g., $S_{P S}(t, f, t, t)=0.5 \times 0.9 \times 0.8 \times 0.9=0.324=P(t, f, t, t)$

Let $N_{\text {PS }}\left(x_{1} \ldots x_{n}\right)$ be the number of samples generated for event x_{1}, \ldots, x_{n} Then we have:

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N \\
& =S_{P S}\left(x_{1}, \ldots, x_{n}\right) \\
& =P\left(x_{1} \ldots x_{n}\right)
\end{aligned}
$$

That is, estimates derived from PriorSample are consistent (becomes exact in large-sample limit)

Shorthand: $\hat{P}\left(x_{1}, \ldots, x_{n}\right) \approx P\left(x_{1} \ldots x_{n}\right)$
Problem: N needs to be sufficiently large to sample "rare events"

Rejection Sampling (for Conditional Probabilities $P(X \mid e)$)

Main idea:

Given distribution too hard to sample directly from it: use an easy-to-sample distribution for direct sampling, and then reject samples based on hard-to-sample distribution
(1) Direct sampling to sample (X, E) events from prior distribution in BN
(2) Determine whether (X, E) is consistent with given evidence e
(3) Get $\hat{\mathbf{P}}(X \mid E=e)$ by counting how often $(E=e)$ and ($X, E=e$) occur as per Bayes' rule: $\hat{\mathbf{P}}(X \mid E=e)=\frac{N(X, E=e)}{N(E=e)}$

Example: estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples
Generate 100 samples for Cloudy, Sprinkler, Rain, WetGrass via direct sampling 27 samples have Sprinkler $=$ true event of interest Of these, 8 have Rain = true and 19 have Rain=false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NormaLIZE}(\langle 8,19\rangle)=\langle 8 / 27,19 / 27\rangle=\langle 0.296,0.704\rangle$
Similar to a basic real-world empirical estimation procedure

Rejection Sampling

$\hat{\mathbf{P}}(X \mid \mathrm{e})$ estimated from samples agreeing with e
function REJECTION-SAMPLING $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: \mathbf{N}, a vector of counts over X, initially zero
for $j=1$ to N do
$\mathbf{x} \leftarrow \operatorname{Prior}-\operatorname{SAMPLE}(b n)$
if \mathbf{x} is consistent with \mathbf{e} then
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x}
return Normalize $(\mathbf{N}[X])$

```
\hat{P}}(X|\mathbf{e})=\alpha\mp@subsup{\mathbf{N}}{PS}{}(X,\mathbf{e})\quad\mathrm{ (algorithm defn.)
= N NPS}(X,\mathbf{e})/\mp@subsup{N}{PS}{}(\mathbf{e})\quad(\mathrm{ normalized by N NPS}(\mathbf{e})
\approx\mathbf{P}(X,\mathbf{e})/P(\mathbf{e})\quad\mathrm{ (property of PriorSamPle)}
= P(X|e) (defn. of conditional probability)
Hence rejection sampling returns consistent posterior estimates Standard deviation of error in each probability proportional to \(1 / \sqrt{n}\) (number of r.v.s)
Problem:
If \(e\) is very rare event, most samples rejected; hopelessly expensive if \(P(e)\) is small
\(P(\) e) drops off exponentially with number of evidence variables!
Rejection sampling is unusable for complex problems \(\rightarrow\) Likelihood Weighting instead
```


A form of importance sampling (for BNs)

Main idea:
Generate only events that are consistent with given values e of evidence variables E
Fix evidence variables to given values, sample only nonevidence variables
Weight each sample by the likelihood it accords the evidence (how likely e is)
Example: Query $P($ Rain \mid Cloudy $=$ true, WetGrass $=$ true $)$
Consider r.v.s in some topological ordering
Set $w=1.0$ (weight will be a running product)
If r.v. X_{i} is in given evidence variables (Cloudy or WetGrass in this example), $w=w \times P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
Else, sample X_{i} from $P\left(X_{i} \mid\right.$ evidence $)$
When all r.v.s considered, normalized weights to turn to probabilities

Cloudy considered first, sample, $w=1.0$ because nonevidence

Cloudy considered first, sample, $w=1.0$ because nonevidence Say, Cloudy=T sampled

Sprinkler considered next, evidence variable, so update w $w=w \times P($ Sprinkler $=t \mid$ Parents $($ Sprinkler $))$
$w=1.0$

Sprinkler considered next, evidence variable, so update w

```
w=w\timesP(Sprinkler =t Parents(Sprinkler ) ) = P(Sprinkler = t Cloudy = t)
w}=1.0\times0.
```


Rain considered next, nonevidence, so sample from BN, w does not change $w=1.0 \times 0.1$

Sample Rain, note Cloudy $=\mathrm{t}$ from before Say, Rain $=\mathrm{t}$ sampled $w=1.0 \times 0.1$

Likelihood Weighting Example

Last r.v. WetGrass, evidence variable, so update w $w=w \times P($ WetGrass $=t \mid P a r e n t s($ WetGrass $))=P(W=t \mid S=t, R=t)$
$w=1.0 \times 0.1 \times 0.99=0.099$
(this is not probability but weight of this sample)
function Likelinood-Weighting $(X, e, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: W, a vector of weighted counts over X, initially zero

$$
\text { for } j=1 \text { to } N \text { do }
$$

$\mathbf{x}, w \leftarrow$ Weighted-Sample $(b n)$
$\mathbf{W}[x] \leftarrow \mathbf{W}[x]+w$ where x is the value of X in \mathbf{x}
return Normalize($\mathbf{W}[X]$)
function Weighted-Sample($b n, \mathbf{e}$) returns an event and a weight
$\mathbf{x} \leftarrow$ an event with n elements; $w \leftarrow 1$
for $i=1$ to n do
if X_{i} has a value x_{i} in \mathbf{e}
then $w \leftarrow w \times P\left(X_{i}=x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ else $x_{i} \leftarrow$ a random sample from $\mathbf{P}\left(X_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
return x, w

Sampling probability for WeightedSample is
$S_{w s}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{\prime} P\left(z_{i} \mid \operatorname{parents}\left(Z_{i}\right)\right)$
Note: pays attention to evidence in ancestors only

\Longrightarrow somewhere "in between" prior and posterior distribution
Weight for a given sample \mathbf{z}, e is $w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{parents}\left(E_{i}\right)\right)$
Weighted sampling probability is:
$S_{w s}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e})$
$=\prod_{i=1}^{\prime} P\left(z_{i} \mid \operatorname{parents}\left(Z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid\right.$ parents $\left.\left(E_{i}\right)\right)$
$=P(\mathrm{z}, \mathrm{e})$ (by standard global semantics of network)

Likelihood weighting returns consistent estimates
Order actually matters
Degradation in performance as number of evidence variables increases
A few samples have nearly all the total weight
Most samples will have very low weights, and weight estimate will be dominated by tiny fraction of samples that contribute little likelihood to evidence

Exacerbated when evidence variables occur late in the ordering
Nonevidence variables will have no evidence in their parents to guide generation of samples

Samples in simulations will bear little resemblance to reality suggested by evidence
Change framework: do not directly sample (from scratch), but modify preceding sample

Main idea:

Markov Chain Monte Carlo (MCMC) algorithm(s) generate each sample by making a random change to a preceding sample

Concept of current state: specifies value for every r.v.
"State" of network $=$ current assignment to all variables

Random change to current state yields next state
A form of MCMC: Gibbs Sampling

Initial state has evidence variables assigned as provided
Next state generated by randomly sampling values for nonevidence variables
Each nonevidence variable Z sampled in turn, given its Markov blanket mb
function GIBBS-ASK $(X, \mathbf{e}, b n, N)$ returns an estimate of $P(X \mid \mathbf{e})$
local variables: $\mathbf{N}[X]$, a vector of counts over X, initially zero \mathbf{Z}, nonevidence variables in $b n$
\mathbf{x}, current state of network, initially copied from \mathbf{e}
initialize \mathbf{x} with random values for the variables in \mathbf{Z}
for $j=1$ to N do
for each Z_{i} in \mathbf{Z} do
sample the value of Z_{i} in \mathbf{x} from $\mathbf{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)$
given the values of $M B\left(Z_{i}\right)$ in \mathbf{x}
$\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1$ where x is the value of X in \mathbf{x}
return Normalize $(\mathbf{N}[X])$

The Markov Chain

With Sprinkler $=$ true, WetGrass $=$ true, there are four states:

Wander about for a while, average what you see

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain = true, 69 have Rain = false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=\operatorname{Normalize}(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$
Theorem: chain approaches stationary distribution
long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov Blanket Sampling

Markov blanket of Cloudy is Sprinkler and Rain

Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass
Probability given the Markov blanket is calculated as follows:
$P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid\right.$ parents $\left.\left(X_{i}\right)\right) \prod_{z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid\right.$ parents $\left.\left(Z_{j}\right)\right)$
Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
$P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables
\diamond MCMC Analysis
\diamond Stationarity
\diamond Detailed Balance
\diamond General Gibbs Sampling

Transition probability $q\left(x \rightarrow x^{\prime}\right)$
Occupancy probability $\pi_{t}(\mathbf{x})$ at time t
Equilibrium condition on π_{t} defines stationary distribution $\pi(\mathbf{x})$ Note: stationary distribution depends on choice of $q\left(x \rightarrow x^{\prime}\right)$

Pairwise detailed balance on states guarantees equilibrium
Gibbs sampling transition probability:
sample each variable given current values of all others
\Longrightarrow detailed balance with the true posterior
For Bayesian networks, Gibbs sampling reduces to sampling conditioned on each variable's Markov blanket
$\pi_{t}(\mathbf{x})=$ probability in state \mathbf{x} at time t
$\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=$ probability in state \mathbf{x}^{\prime} at time $t+1$
π_{t+1} in terms of π_{t} and $q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\mathbf{X}^{\pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)}
$$

Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum \mathbf{X}^{\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime} . . .{ }^{\prime} .}
$$

If π exists, it is unique (specific to $q\left(x \rightarrow \mathbf{x}^{\prime}\right)$)
In equilibrium, expected "outflow" = expected "inflow"
"Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

Detailed balance \Longrightarrow stationarity:

$$
\begin{aligned}
\Sigma_{\mathbf{X}^{\pi(\mathrm{x}) q\left(\mathrm{x} \rightarrow \mathrm{x}^{\prime}\right)}} & =\Sigma_{\mathbf{X}^{\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathrm{x}^{\prime} \rightarrow \mathrm{x}\right)}} \\
& =\pi\left(\mathrm{x}^{\prime}\right) \sum_{\mathbf{X}^{q\left(\mathrm{x}^{\prime} \rightarrow \mathrm{x}\right)}} \\
& =\pi\left(\mathrm{x}^{\prime}\right)
\end{aligned}
$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Sample each variable in turn, given all other variables
Sampling X_{i}, let $\overline{\mathbf{X}}_{i}$ be all other nonevidence variables Current values are x_{i} and $\overline{\mathrm{x}}_{i}$; e is fixed

Transition probability is given by

$$
q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=q\left(x_{i}, \overline{\mathbf{x}_{i}} \rightarrow x_{i}^{\prime}, \overline{\mathbf{x}_{i}}\right)=P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}_{i}}, \mathbf{e}\right)
$$

This gives detailed balance with true posterior $P(\mathbf{x} \mid \mathbf{e})$:

$$
\begin{aligned}
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =P(\mathbf{x} \mid \mathbf{e}) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right)=P\left(x_{i}, \overline{\mathbf{x}_{i}} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \\
& =P\left(x_{i} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) P\left(\overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \quad \text { (chain rule) } \\
& =P\left(x_{i} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) P\left(x_{i}^{\prime}, \overline{\mathbf{x}_{i}} \mid \mathbf{e}\right) \quad \text { (chain rule backwards) } \\
& =q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \pi\left(\mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right)
\end{aligned}
$$

Absolute approximation: $|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})| \leq \epsilon$
Relative approximation: $\frac{|P(x \mid \mathbf{e})-\hat{P}(x \mid \mathbf{C})|}{P(x \mid \mathbf{C})} \leq \epsilon$
Relative \Longrightarrow absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$)
Randomized algorithms may fail with probability at most δ
Polytime approximation: $\operatorname{poly}\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$
Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta<0.5$
(Absolute approximation polytime with no evidence-Chernoff bounds)

