
An Empirical Study of a Segment-Based
Streaming Proxy in an Enterprise Environment

Sumit Roy1, Bo Shen1, Songqing Chen2, and Xiaodong Zhang3

1 Streaming Media Systems Group
Hewlett-Packard Laboratories

Palo Alto, CA 94304
2 Department of Computer Science

George Mason University
Fairfax, VA 22030

3 Department of Computer Science
College of William and Mary

Williamsburg, VA 23187
zhang@cs.wm.edu

Abstract. Streaming media workloads have a number of desirable prop-
erties that make them good candidates for caching via proxy systems.
The content does not get modified, and access patterns exhibit some lo-
cality of reference. However, media files tend to be much larger in size
than traditional web pages, and users tend to view video clips only par-
tially. Hence, segment-based strategies have been proposed to deliver
large streaming media objects via a web-proxy. In this work, we evaluate
the performance of such a segment-based streaming proxy using extensive
trace driven simulation. We use representative workloads from enterprise
media server logs, and evaluate the caching system performance regard-
ing different cache sizes, different segment sizes, and different prefetching
methods. Our results show that cost-effective caching requires only about
8 - 16 % of the total unique object size as proxy storage. Secondly, a seg-
ment size of around 200 Kbytes provides a good trade-off between cache
object granularity and transaction overhead. Finally, a lazier prefetching
schedule that provides a half-segment look-ahead has a significant perfor-
mance gain when compared to a more aggressive one-segment look-ahead
scheme.

1 Introduction

Recent years have seen abundant applications of streaming media objects on
the global Internet, such as remote education, tele-medical treatment, enter-
tainments, etc.. The increased amount of streaming data requires effective and
efficient streaming delivery strategies. In an IP based environment, a continuous
streaming session (often with a duration of minutes or hours, compared to mil-
liseconds or seconds for traditional web pages) keeps consuming network band-
width and disk bandwidth on the hosting server. Multiple concurrent streaming
sessions can easily exhaust the available network bandwidth and overload the

C.-H. Chi, M. van Steen, and C. Wills (Eds.): WCW 2004, LNCS 3293, pp. 261–272, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

262 S. Roy et al.

media content server. Placing multimedia objects closer to clients is an effec-
tive solution that would relieve the network bottleneck and distributed the load
across multiple streaming media servers. Hence, a lot of research has been done
on proxy based streaming delivery approaches, because streaming media objects
are generally in-variant, which makes them feasible for proxy caching without
worrying about cache consistency [1,2].

Streaming media object are usually large in size, of the order of multiple
MBytes, rather than kBytes, as is more common with web-pages. While caching
the complete media object would certainly work, it would require a considerable
storage space. Moreover, unless this is augmented by smart read-through tech-
niques, the startup-latency for a client that experiences a cache miss increases
dramatically with the clip length. Studies of client access patterns to streaming
media objects also show that most clips are only viewed partially [3,4]. Hence,
partial caching approaches are more effective at delivering quality streaming
media to clients. In partial caching, the media object is divided or segmented
into multiple parts. The proxy deals with individual segments for prefetching,
replacement, and cache management issues. This has a number of advantages.
First, in case of a cache miss, the startup-latency seen by a client is now de-
pendent on the segment size, rather than the clip length. Second, clips that are
viewed only partially do not have to be transferred in their entirety across the
network. This reduces the load on the backbone infrastructure. Finally, cache
utilization becomes more efficient, since the segments are smaller and can be
treated as fixed size units. However, there are some challenges to designing a
segment-based proxy cache. If a media client encounters a miss for a segment
during play-back, there could be an interruption in smooth media delivery. This
problem can be solved by providing large buffers at the client, the streaming
server, or by using prefetching techniques in the cache. There are various trade-
offs to be considered in deciding the segment size. A large segment size increases
startup-latency on a miss, decreases the number of hand-shakes required with
the back-end server, but might lead to inefficient cache utilization. Finally, it
is interesting to evaluate the optimal cache size, based on an understanding of
typical workloads.

In this paper, we evaluate the performance of a segment-based streaming
proxy using extensive trace driven simulation. We use representative workloads
from enterprise media server logs, and evaluate the system performance with
regard to different cache sizes, different segment sizes, and different prefetching
methods. Our results show that cost-effective caching requires only about 8 - 16
% of the total unique object size as proxy storage. Secondly, a segment size of
around 200 Kbytes provides a good trade-off between cache object granularity
and transaction overhead. Finally, a lazier prefetching schedule that provides a
half-segment look-ahead has a significant performance gain when compared to a
more aggressive one-segment look-ahead scheme.

The rest of this paper is organized as follows. We review related work in
Section 2. We evaluate the system performance through extensive experiments
in Section 3. We conclude the paper in Section 4.

An Empirical Study of a Segment-Based Streaming Proxy 263

2 Related Work

The research on proxy caching of streaming media content has received much
attention lately. Middleman [2] studied clusters of proxies for streaming media
delivery. However, they ignored an important feature of streaming media ac-
cesses: It is found that continuous media objects such as video or music clips are
often partially accessed. Based on this observation, partial caching approaches
have been proposed to reduce the cache space requirement. The basic strategy is
to cache segments of objects that are divided in the viewing time domain. Typ-
ical examples include prefix caching [5], uniform segmentation [6], exponential
segmentation [7] and adaptive and lazy segmentation [8]. Prefix caching always
caches the prefix of the objects to minimize the startup latency. The optimal
prefix length can be calculated according to [9]. Its protocol consideration, as
well as partial sequence caching, were studied in [10].

In uniform segmentation, objects are cached in uniform-size segments, while
in exponential segmentation, the segment size doubles along the viewing direc-
tion. Considering limited resources available from a single cache, the Rcache [1]
considers the usage of multiple proxies, focusing on the memory and disk uti-
lization. Adaptive and lazy segmentation partitions objects when necessary by
considering the user access pattern. These strategies are considered as partial
caching strategies, in which only partial data of a media object are cached
(Though, very popular objects can be fully cached). These strategies focus on
protocol design or benefit analysis based on artificial workloads, emphasizing
different performance aspects. Recently, authors in [11] proposed a flexible and
scalable proxy testbed to support a wide and extensible set of advanced proxy
streaming services. We proposed a segment-based streaming proxy design model
in [12]. Compared with the previous work, in this study, we focus on evaluating
different performance factors, particularly those related to the cache configura-
tions, thus providing guidance on how to use segment-based streaming proxy in
a cost-effective fashion.

The partial caching strategy can be extended to the quality domain. Layered
caching techniques [13,14] have demonstrated efficient usage of cache space by
considering different QoS characteristics of client devices or connectivity. A com-
parison with multiple version caching is studied in [15] while a model of layered-
encoded object distribution is studied in [16]. In [17], the proposed approach
attempts to select groups of consecutive frames by the selective caching algo-
rithm, while in [18], the algorithm may select groups of non-consecutive frames
for caching in the proxy. A different idea is proposed in video staging [19], in
which a portion of bits from the video frames whose size is larger than a prede-
termined threshold is cut off and prefetched to the proxy a priori to reduce the
bandwidth on the server proxy channel. Recently, a fine grained, network aware
and media adaptive rate control scheme is used in caching of scalable streaming
content [20]. Most of partial caching schemes in quality domain require layered
encoded objects or additional support from the proxy or client, and little work
has been done to evaluate them against different performance factors. The work
presented in this paper does not have this limitation.

264 S. Roy et al.

3 Performance Evaluation

We evaluate the performance of a streaming proxy that uses uniform segmenta-
tion of the content, in the time domain. We first describe the evaluation method-
ology and the workloads used. We then show results of our simulation using
different cache sizes, different segment sizes, and different prefetching methods.

3.1 Evaluation Methodology

We test the performance of the proxy by means of a trace driven cache simulator.
We first convert a streaming media server log into a segmented trace, using
the media object access time, the media offset and duration of the access, the
segment length, and the encoding rate to construct a segment access schedule.
This somewhat simplifies the actual segment access pattern, since real media
files (like Quicktime or MP4) include regions with meta information, and they
interleave audio and video data.

(a) ondemand (b) half

 100

 1000

 10000

 100000

 1e+06

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

 100

 1000

 10000

 100000

 1e+06

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

(c) window

 100

 1000

 10000

 100000

 1e+06

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

Fig. 1. Cache Hit Counts for LIGHT, different Cache capacities

This synthesized trace is run through a cache simulator, for cache size varying
from 1 % to 64 % of the total unique object size. For each cache size, we evaluate

An Empirical Study of a Segment-Based Streaming Proxy 265

Table 1. Summary of Media Server traces used for evaluation

Workload Num of Num of Num of Skewed Unique Object Accessed Data Accessed Object
Name Requests Objects Accesses (%) Size (GB) Size (GB) Size (GB)

LIGHT 655 83 89 (14 %) 2.08 3.232 19.854
MEDIUM 1086 85 376 (35 %) 2.02 3.909 13.314
HEAVY 1840 91 1156 (63 %) 2.44 11.676 34.686

(a) ondemand (b) half

 1000

 10000

 100000

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

 1000

 10000

 100000

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

(c) window

 1000

 10000

 100000

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

Fig. 2. Cache Hit Counts for MEDIUM, different Cache capacities

a range of segment sizes, from 20 KBytes to 2000 KBytes. We test three different
methods for scheduling segment downloads from the original content server in
these experiments. The ondemand method is entirely demand based, there is
not prefetch. The window based prefetching uses a single segment look-ahead
window. The access of one segment causes an immediate prefetch of the next
sequential segment. This is an aggressive scheme and we expect it to perform
well if a client accesses a media object in its entirety. On the other hand, clients
that terminate early will reduce the effectiveness of prefetching, since the later
segments will not be accessed. Finally, we also test the half method, where the
next segment is prefetched after half of the current segment has been played back.
Prefetching is beneficial for directly reducing client play-back jitter, measurement
of this quantity is beyond the scope of this simulation base work.

266 S. Roy et al.

(a) ondemand (b) half

 10000

 100000

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

 10000

 100000

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

(c) window

 10000

 100000

 100 1000

H
it

C
ou

nt

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

Fig. 3. Cache Hit Counts for HEAVY, different Cache capacities

3.2 Workload Selection

Streaming Media server log studies have shown that there can be considerably
skew in terms of object popularity [4,3]. We selected three different 12 hour
traces from a multi-month enterprise media server log. The characteristics of
these trace, called LIGHT, MEDIUM, and HEAVY, based on the skew, are
detailed in Table 1.

Unique object size is used as reference for cache capacity. Accessed object
size shows the total of accessed objects (full size). Accessed data shows the the
portion of it that is actually accessed by the client. The average access duration
for these three workloads are 337, 247 and 311 seconds, respectively.

3.3 Simulation Results

The goal of the simulation was to determine the behavior of the proxy with
respect to cache size, segment size, and segment scheduling method. We show
the condensed results in the next few sub-sections.

Cache Size. The proxy cache size is an important design consideration. For
every run, we assume a cold-start cache. Intuitively, a large cache performs bet-

An Empirical Study of a Segment-Based Streaming Proxy 267

(a) LIGHT (b) MEDIUM

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 1000

 M
is

se
d

B
yt

es
 (

G
B

)

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

 0.5

 1

 1.5

 2

 2.5

 3

 100 1000

 M
is

se
d

B
yt

es
 (

G
B

)

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

(c) HEAVY

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 100 1000

 M
is

se
d

B
yt

es
 (

G
B

)

Segment Size (kbytes)

1.0 %
2.0 %
4.0 %
8.0 %

16.0 %
32.0 %
64.0 %

Fig. 4. Missed Bytes of ondemand method, different Cache capacities

ter, since it can potentially eliminate misses induced due to limited capacity. A
cost-effective cache would be sized such that the short term working set com-
pletely fits in the cache. Thus, all misses would be cold-start misses, and segment
evictions would be for content that is no longer required. Our simulator uses the
standard LRU algorithm for replacing cached segments.

Figures 1, 2, and 3 show the Segment Hit Count for the LIGHT, MEDIUM,
and HEAVY traces. The Cache capacity is shown as a percentage of the total
unique object size. It is seen that the Hit Count approximately doubles when
the cache size is doubled, up to about a cache size of 8 % for LIGHT, 4 %
for MEDIUM, and 2 % for HEAVY. This behavior is consistent across a large
range of segment sizes, and is independent of the segment scheduling method.
Hence, a cache size of only 8 % of the total unique object size is sufficient
for providing good hit rates in the proxy. Note that this translates into a real
size of approximately 512 MBytes. This suggests that streaming proxies could
be implemented with solid state storage devices like FlashMemory or battery
backed DRAM.

Segment Granularity. The evaluation of an optimal segment sizes is very
important. Smaller segment sizes use the cache more efficiently, and provide

268 S. Roy et al.

(a) LIGHT (b) MEDIUM

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

N
ot

 U
se

d
(M

B
)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 4 8 16 32 64

N
ot

 U
se

d
(M

B
)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

(c) HEAVY

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

N
ot

 U
se

d
(M

B
)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

Fig. 5. Data prefetched but never used, window method, different Segment sizes

lower startup-latencies to a client when there is a cache miss. However, very
small segment sizes can cause excessive transactions with the media content
server.

Figure 4 shows the number of Bytes transferred due to cache misses for the
different workloads. Beyond a segment size of 100 - 200 KBytes, the curves
start sloping up, which means that extra data is transferred due to the larger
segment granularity. This effect is even more pronounced when we look at an
additional metric for methods that include prefetching. When a segment schedule
includes prefetches, it is possible that a client terminates the session, without ever
accessing the contents of the prefetched segment. The amount of data transferred
and not used is shown in Figures 5 and 6 for the window and half method
respectively.

For the previously determined optimal cache size of approximately 8 %, it is
seen that the amount of useless data increases rapidly for segment sizes greater
than approximately 200 KBytes, independent of the access pattern. Hence, the
optimal segment size is expected to be around 100 - 200 Kbytes.

Prefetching Effectiveness. The prefetching methods window and half pri-
marily affect client perceived jitter, whose evaluation is beyond the scope of this

An Empirical Study of a Segment-Based Streaming Proxy 269

(a) LIGHT (b) MEDIUM

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32 64

N
ot

 U
se

d
(M

B
)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8 16 32 64

N
ot

 U
se

d
(M

B
)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

(c) HEAVY

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8 16 32 64

N
ot

 U
se

d
(M

B
)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

Fig. 6. Data prefetched but never used, half method, different Segment sizes

paper. However, overly aggressive prefetching can lead to the following prob-
lem: A prefetched segment might be evicted from the cache due to capacity
misses, thus causing a completely unnecessary data transfer from the media
content server. Similarly, a client may terminate its session, before accessing the
prefetched segment. The amount of data transferred needlessly this way is shown
in Figures 7 and 8 for window and half, respectively.

The half method causes less than 50 % of the wasted data transfer compared
to the window method for the optimal cache size and segment size determined
previously. Since the schedule is less aggressive, when a client terminates its
session early, fewer segments are prefetched. This is particularly visible for the
LIGHT workload, where there is a more uniform access distribution to the ob-
jects. Hence a lazier prefetch method, for example half provides a much better
performance when measured at the cache. Note that the benefit is independent
of the segment size and workload. The amount of data never used, shown previ-
ously in Figures 5 and 6, also agree with this assessment.

270 S. Roy et al.

(a) LIGHT (b) MEDIUM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 2 4 8 16 32 64

F
al

se
 P

re
fe

tc
h

(M
B

)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64

F
al

se
 P

re
fe

tc
h

(M
B

)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

(c) HEAVY

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64

F
al

se
 P

re
fe

tc
h

(M
B

)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

Fig. 7. Data prefetched but evicted before use, window method, different Segment sizes

4 Conclusion

Streaming media workloads are amenable to proxy caching via segmentation.
In this paper we evaluate the performance of a segment-based streaming proxy
using a trace driven simulation. We use three different traces, which have light,
medium, and heavy skew in terms of object popularity. We first determine the
optimum cache size by looking at the hit counts for different sizes. Our definition
of optimality is based on the marginal performance gain due to an increase in
size. Based on this measure, our results show that cost-effective caching requires
only about 8 - 16 % of the total unique object size as proxy storage. This is an
interesting result, since it suggests that streaming proxies could be implemented
with solid state data stores for the enterprise workloads that were considered for
this paper.

Next we evaluate the performance of the system using different segment sizes.
In this case, we suggest that an increase in segment size should not cause an
undue increase in total bytes that are transferred on cache misses. At the same
time, we propose that unused data due to prefetches should be kept minimal. For
the optimal cache size determined earlier, a segment size of around 200 Kbytes
provides a good trade-off.

An Empirical Study of a Segment-Based Streaming Proxy 271

(a) LIGHT (b) MEDIUM

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64

F
al

se
 P

re
fe

tc
h

(M
B

)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1 2 4 8 16 32 64

F
al

se
 P

re
fe

tc
h

(M
B

)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

(c) HEAVY

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16 32 64

F
al

se
 P

re
fe

tc
h

(M
B

)

Cache Size (% of Unique Object Size)

20 K
50 K

100 K
200 K
500 K

1000 K
2000 K

Fig. 8. Data prefetched but evicted before use, half method, different Segment sizes

Finally, we look at two different prefetch schemes, and evaluate them based
on the amount of unnecessary data transferred due to prefetches. This metric is
particularly relevant to the interaction between the proxy cache, and the original
media content server. The less aggressive prefetching schedule issues a request
after serving half of a segment. It is seen that this method causes less than
50 % of needless data transfers when compared to the more aggressive, window
scheme.

References

1. Chae, Y., Guo, K., Buddhikot, M., Suri, S., Zegura, E.: Silo, rainbow, and caching
token: Schemes for scalable fault tolerant stream caching. In: IEEE Journal on
Selected Areas in Communications. (2002)

2. Acharya, S., Smith, B.: Middleman: A video caching proxy server. In: Proc. of
ACM NOSSDAV, Chapel Hill, NC (2000)

3. Cherkasova, L., Gupta, M.: Characterizing locality, evolution, and life span of
accesses in enterprise media server workloads. In: Proc. of ACM NOSSDAV, Miami,
FL (2002)

4. Chesire, M., Wolman, A., Voelker, G., Levy, H.: Measurement and analysis of a
streaming media workload. In: Proc. of the 3rd USENIX Symposium on Internet
Technologies and Systems, San Francisco, CA (2001)

272 S. Roy et al.

5. Sen, S., Rexford, J., Towsley, D.: Proxy prefix caching for multimedia streams. In:
Proc. of IEEE INFOCOM, New York City, NY (1999)

6. Rejaie, R., Handley, M., Yu, H., Estrin, D.: Proxy caching mechanism for multi-
media playback streams in the internet. In: Proc. of International Web Caching
Workshop, San Diego, CA (1999)

7. Wu, K., Yu, P.S., Wolf, J.: Segment-based proxy caching of multimedia streams.
In: Proc. of WWW, Hongkong, China (2001)

8. Chen, S., Shen, B., Wee, S., Zhang, X.: Adaptive and Lazy Segmentation Based
Proxy Caching for Streaming Media Delivery. In: Proc. of ACM NOSSDAV, Mon-
terey, CA (2003)

9. Wang, B., Sen, S., Adler, M., Towsley, D.: Proxy-based distribution of streaming
video over unicast/multicast connections. In: Proc. of IEEE INFOCOM, New York
City, NY (2002)

10. Gruber, S., Rexford, J., Basso, A.: Protocol considertations for a prefix-caching
for multimedia streams. In: Computer Network. Volume 33(1-6). (2000) 657–668

11. Zhang, X., Bradshaw, M., Guo, Y., Wang, B., Kurose, J., Shenoy, P., Towsley,
D.: Amps: A flexible, scalable proxy testbed for implementing streaming services.
Technical report, Department of Computer Science, University of Massachusetts
(2004)

12. Chen, S., Shen, B., Wee, S., Zhang, X.: Designs of high quality streaming proxy
systems. In: Proc. of IEEE INFOCOM, Hong Kong, China (2004)

13. Rejaie, R., H. Yu, M.H., Estrin, D.: Multimedia proxy caching mechanism for qual-
ity adaptive streaming applications in the internet. In: Proc. of IEEE INFOCOM,
Tel-Aviv, Israel (2000)

14. Rejaie, R., Handely, M., Estrin, D.: Quality adaptation for congestion controlled
video playback over the internet. In: Proc. of ACM SIGCOMM, Cambridge, MA
(1999)

15. Kim, T., Ammar, M.H.: A comparison of layering and stream replication video
multicast schemes. In: Proc. of ACM NOSSDAV 2001, Port Jefferson, NY (2001)

16. Kangasharju, J., Hartanto, F., Reisslein, M., Ross, K.W.: Distributing layered
encoded video through caches. In: Proc. of IEEE INFOCOM, Anchorage, AK
(2001)

17. Ma, W., Du, H.: Reducing bandwidth requirement for dilivering video over wide
area networks with proxy server. In: Proc. of IEEE ICME. Volume 2. (2000)
991–994

18. Miao, Z., Ortega, A.: Scalable proxy caching of video under storage constraints.
In: IEEE Journal on Selected Areas in Communications. (2002)

19. Zhang, Z., Wang, Y., Du, D., Su, D.: Video staging: A proxy-server based approach
to end-to-end video delivery over wide-area networks. In: IEEE Transactions on
Networking. Volume 8. (2000) 429–442

20. Liu, J., Chu, X., Xu, J.: Proxy cache management for fine-grained scalable video
streaming. In: Proc. of IEEE INFOCOM, Hong Kong, China (2004)

	Introduction
	Related Work
	Performance Evaluation
	Evaluation Methodology
	Workload Selection
	Simulation Results

	Conclusion

