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1. INTRODUCTION
It is commonly agreed that Web traffic follows the Zipf-like

distribution, which is an analytical foundation for improving
Web access performance by client-server based proxy caching
systems on the Internet. However, some recent studies have
observed non-Zipf-like distributions of Internet media traf-
fic in different content delivery systems. Due to the variety
of media delivery systems and the diversity of media con-
tent, existing studies on media traffic are largely workload
specific, and the observed access patterns are often different
from or even conflict with each other. For Web media sys-

tems, study [3] reports that the access pattern of streaming
media is Zipf-like in a university campus network, while study
[2] finds that it is not Zipf-like in an enterprise media server.
For VoD media systems, study [1] finds that it is not Zipf-like
in a multicast-based Media-on-Demand server of a campus
network, while study [9] reports it is Zipf-like in a large VoD
streaming system of an ISP. For P2P media systems, study [4]
reports that the access pattern of media workload in KaZaa
system collected in a campus network is not Zipf-like, while
study [5] reports that it is Zipf-like in another campus net-
work. For live streaming media systems, study [8] reports it is
Zipf-like while study [6] reports it is not Zipf-like. A number
of models have been proposed to explain the observed media
access patterns, such as the generalized Zipf-like model [7],
“fetch-at-most-once” model [4], and two-mode Zipf model [6].
However, each of these models can only explain a very limited
scope of measurement results. A general model of Internet
media access patterns is highly desirable for traffic engineer-
ing on the Internet and is critical to design, benchmark, and
evaluate Internet media delivery systems.

In this study, we have analyzed a wide variety of media
workloads on the Internet. The workloads were collected from
both the client side and the server side in Web, VoD, P2P, and
live streaming environments between 1998 and 2006, where
the media content is delivered via Web/P2P downloading or
unicast/multicast streaming. The duration of these work-
loads ranges from a few days to more than two years and
the user population ranges from several thousands to more
than one hundred thousand. The number of client requests
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ranges from tens of thousands to hundreds of million, and
the number of objects in each workload ranges from several
hundreds to several million. Through extensive analysis, we
find that the reference ranks of media objects in all sixteen
workloads follow the stretched exponential (SE) distri-
bution, and a biased measurement may lead to a Zipf-like ob-
servation on media access patterns. With such a request pat-
tern, the temporal locality in media systems is hard to exploit
by client-server based caching systems. The stretched expo-
nential model implies that peer-to-peer collaborative caching
systems can effectively deliver Internet media content. Cur-
rent technology advancements such as PPLive and BitTorrent
have demonstrated the strong advantages of P2P collabora-
tion on the delivery of Internet media content.

2. THE STRETCHED EXPONENTIAL DIS-
TRIBUTION OF MEDIA TRAFFIC

Figures 1(a), 1(b), 1(c), and 1(d) show the reference rank
distributions of media objects in typical Web, VoD, P2P, and
Live media systems, respectively. In each figure, the x coor-
dinate represents the reference rank of each object, plotted
in log scale, while the y coordinate represents the number of
references to this object, plotted in both log scale (marked
on the right of y-axis) and a powered scale (by a constant
c, as marked on the left of y-axis). These figures show that
the reference rank distributions of all these workloads cannot
be fitted with a straight line in a log-log scale, meaning they
are not Zipf-like. Instead, by selecting a proper constant c,
all these workloads can be well fitted with a straight line in
log-yc scale. Such a distribution is called a stretched exponen-

tial distribution. As marked in the figures, the coefficient of
determination of the stretched exponential fitting result, R2,
is very close to 1 for all workloads.

The cumulative probability function of a stretched expo-
nential distribution can be expressed as

P (X < x) = 1 − e
−( x

x0
)c

, (1)

where c and x0 are constants. If we rank the N objects in
the workload in descending order of their reference numbers
yi (1 ≤ i ≤ N), we have P (yn > yi) = i/N . So the reference
rank distribution can be expressed as follows

yc

i = −a log i + b (1 ≤ i ≤ N), (2)

where a = xc

0 and b = yc

1. Since b is a normalization param-
eter, the shape of an SE distribution is determined by c, the
stretch factor of y coordinate, and a, the slope of the straight
line in log-yc scale.

For on-demand media systems, the stretch factor c of the
object reference rank distribution is highly related with the
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(a) Web media system

10
0

10
1

10
2

10
3

1

2773

14877

40268

81921

142337

223716

Rank (log scale)
# 

of
 R

ef
er

en
ce

s 
(y

c  s
ca

le
)

c = 0.4, a= 12.961, b = 118.864
R2 = 0.985824

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

# 
of

 R
ef

er
en

ce
s 

(lo
g 

sc
al

e)

data in log−yc scale
SE model fit

data in log−log scale

(b) VoD media system
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(c) P2P media system
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(d) Live media system

Figure 1: Reference rank distributions of different kinds of media systems

sizes of files in the system. In general, for media workloads de-
livered by similar kinds of systems or techniques, the stretch
factors of their corresponding object reference rank distribu-
tions increase with their median file sizes; for workloads with
similar median file sizes, the stretch factors of their corre-
sponding object reference rank distributions are similar re-
gardless of their underlying media systems and delivery tech-
niques. Furthermore, for objects accessed in different time
periods in a media system with roughly constant object birth
rate, the stretch factor c of corresponding reference rank dis-
tributions is a time-invariant constant.

For media systems with roughly constant request rates and
object birth rates over time, the parameter a (the slope of the
SE line in log-yc scale) of the object reference rank distribu-
tion increases with its stretch factor c and the average number
of requests per object in the workload. Furthermore, due to
the increase of the average number of requests per object over
time, parameter a increases with the length of the workload
duration gradually but converges to a constant, which is de-
termined by the ratio of the media request rate to the object
birth rate and the stretch factor c.

For a stretched exponential reference rank distribution with
slope a in log-yc scale and total N objects, the difference be-
tween this distribution and its corresponding Zipf-like model
in log-log scale increases with a log N . For a workload with
large media files, both the average number of requests per
object and the stretch factor c are large. Thus a is large, and
the difference between its reference rank distribution and the
corresponding Zipf-like model is large. For a workload with
small media files, the difference between its reference rank dis-
tribution and the corresponding Zipf-like model is also large
when the workload duration is long enough (at least months
to years).

3. IMPLICATIONS ON MEDIA CACHING
Internet media objects commonly have long lifespans be-

cause they are seldom updated and have low production rates
compared to Web objects. Most requested media objects are
created long time ago, and most media requests are for ob-
jects created long time ago. For example, for a media work-
load collected at a large residential cable network in 2005,
more than 50% requested objects are created at least 250
days ago, and more than 50% requests are for objects older
than 150 days.

The temporal locality in a computer system comes from
the concentration and correlation of requests to the content
in the system. During a short period such as one week, the
popularity of media objects is almost stationary, thus the

temporal locality mainly comes from the request concentra-
tion. We have modeled the optimal hit ratios of typical short
term media workloads and Web workloads, where request
concentration dominates the temporal locality. In such cases,
caching of media (SE) workload is far less efficient than that
of Web (Zipf) workload. For example, assuming all objects
are cachable and have the same file size, caching 1% Web
content can achieve about 40% hit radio, while caching 1%
media content can only achieve 18% hit ratio, even though
they have the same hit ratio with an unlimited cache.

Nevertheless, the request concentration in a media work-
load (parameter a) increases with time. Furthermore, due
to the long lifespan of media objects, the request correlation
becomes important with time. With a much higher temporal
locality, long-term caching can have a high hit ratio greater
than 85% with caching 10% content. However, it may take
months to years and a huge amount of storage to achieve
such an improvement, for which peer-to-peer techniques can
be much effective.

4. CONCLUSION
Our study shows that Internet media access patterns fol-

low the stretched exponential distribution. Thus, the perfor-
mance of media caching with a client-server model is far less
effective than that of Web content caching. The stretched ex-
ponential distribution lays out an analytical foundation to es-
tablish peer-to-peer caching systems for delivering the rapidly
increasing Internet media content.
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