
SRB: Shared Running Buffers in Proxy to Exploit Memory Locality of
Multiple Streaming Media Sessions

Songqing Chen�, Bo Shen�, Yong Yan, Sujoy Basu�, and Xiaodong Zhang�
�Department of Computer Science �Mobile and Media System Lab
The College of William and Mary Hewlett-Packard Laboratories

Williamsburg, VA 23187, USA Palo Alto, CA 94304, USA
�sqchen,zhang�@cs.wm.edu �boshen,basus�@hpl.hp.com

Abstract

With the falling price of the memory, an increasing num-
ber of multimedia servers and proxies are now equipped
with a large DRAM memory space. Caching media objects
in the memory of a proxy helps to reduce network traffic,
disk I/O bandwidth requirement, and data delivery latency.
The running buffer approach and its alternatives are rep-
resentative techniques to cache streaming data in the mem-
ory. However, there are two limits in the existing techniques.
First, although multiple running buffers for the same me-
dia object co-exist in a given processing period, data shar-
ing among the multiple buffers is not considered. Second,
user access patterns are not insightfully considered in the
buffer management. In this paper, we propose two tech-
niques based on shared running buffers (SRB) in the proxy
to address these limits. Considering user access patterns
and characteristics of the requested media objects, our tech-
niques adaptively allocate memory buffers to fully utilize
the currently buffered data of streaming sessions, with the
aim to reduce both the server load and the network traffic.
Experimentally comparing with several existing techniques,
we show that the proposed techniques have achieved sig-
nificant performance improvement by effectively using the
shared running buffers.

1. Introduction

The basic infrastructure of a Web content delivery net-
work is a server-proxy-client system. In this system, the
server delivers the content to the client through a proxy. The
proxy can choose to cache the object so that subsequent re-
quests to the same object can be served directly from the
proxy without contacting the server. Proxy caching strate-
gies have therefore been the focus of many studies. Much
work has been done in caching the static Web contents to
reduce network load and end-to-end latency.

The delivery of streaming media content presents sev-
eral challenges: (1) The size of a streaming media object
is usually orders of magnitudes larger than traditional text-
based Web contents. For example, a two hour MPEG video
requires more than 1 GB of disk space, while text-based
Web objects are of the magnitude of 10 KB; (2) The de-
mand of continuous and timely delivery of a streaming me-
dia object is more rigorous than that of the text-based Web
pages. Therefore a lot of resources have to be reserved for
delivering the streaming media data to a client. In practice,
even a relatively small number of clients can overload a
media server, creating bottlenecks by demanding high disk
bandwidth on the server and high network bandwidth to the
clients.

To address these challenges, researchers have proposed
different methods to cache streaming media objects. Partial
caching (see e.g. [3], [7], [10], [11], [13], [14]) is a techni-
cal method to cache either a prefix or segments of a media
object in the disk storage of the proxy.

Researchers have also paid attention to dynami-
cally caching streaming data in the proxy memory to re-
duce the access latency. The fixed-sized running buffer
caching [1] and the interval caching [4], [5] are two rep-
resentative memory-based running buffer based caching
techniques. The basic idea of the running buffer based
caching technique is as follows. When a request ar-
rives, a fixed-sized buffer of a predetermined length
is allocated in the main memory to cache the me-
dia data fetched by the proxy, hoping that subsquent
requests could reuse the data in the memory instead of ob-
taining it from other sources (the disk, the origin server
or other caches). In contrast, the interval caching tech-
nique uses a different approach. It considers two immedi-
ately followed requests as a request pair, and incremen-
tally orders the arrival intervals of all request pairs (the
arrival interval of a request pair is defined as the differ-
ence in their arrival times). In the memory allocation, the
interval caching gives a preference to smaller intervals, ex-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

pecting more requests can be served for a given amount
of memory. Figure 1 illustrates the basic ideas of the run-
ning buffer caching and the interval caching techniques.

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

R1 R2 R3 R4 R5 R6

Media Position

Access Time

B1 B2

(a)

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�
�
�
�
�

�
�
�
�
�

�����
�����
�����

�����
�����
��������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����
����
����
����

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

����
����
����
����

R1 R2 R3 R4 R5 R6

Media Position

Access Time

B1 B2

(b)

Figure 1. Running Buffer (a) and Interval
Caching (b)

In Figure 1, the Media Position indicates a time position
in a streaming media where the media object is delivered to
the client. The solid slope represents a delivery session. In
Figure 1(a), a fixed-sized buffer�� is allocated upon the ar-
rival of the request ��. Subsequently, requests R2, R3, R4
are served by the data cached in this buffer since they ar-
rive in time. The request R5 does not arrive in time, so a
new buffer �� of the same length is allocated, which bene-
fits the request R6.

In Figure 1(b), upon the arrival of ��, an interval is
formed between�� and��, and a buffer of the interval size
is allocated to cache data read by �� from now on. So the
request R2 only needs to read the first part of data from the
proxy/server while receiving the rest data from the buffer.
The situation changes until the arrival of request ��, where
we assume the interval between �� and �� is smaller than
that between�� and��. Since the interval between�� and
�� is smaller than that between �� and ��, the buffer al-
located for the interval between �� and �� is deallocated,
and the space is re-allocated to the new interval between��
and ��.

However, the running buffer caching does not take con-
sideration of user access patterns, resulting in the inefficient
usage of the memory resource. For example, in Figure 1(a),
the size of buffer �� is bigger than the amount needed to
serve the requests of R� through R�, the size of buffer ��
is bigger than the amount needed to serve the request R�

and the request R�. The interval caching approach does con-
sider the user access pattern in the buffer allocation. How-
ever, it shares another limit with the running buffer caching:
data sharing among different buffers has not been consid-
ered. For example, �� in Figure 1(b) does not need to run

to the end of the media if the data cached in buffer �� are
shared by the later requests.

In this paper, we first propose a new memory-based
caching algorithm for streaming media objects, called
Shared Running Buffers (SRB). In this algorithm, the
memory space on the proxy is allocated adaptively based
on the user access patterns and the requested media ob-
jects themselves. By caching streaming sessions in running
buffers, this algorithm dynamically caches media ob-
jects in the memory while delivering the data to the client
so that the bottleneck of the disk and/or network I/O is re-
lieved. More importantly, the data cached in different run-
ning buffers are fully shared, which is different from any
of the previous work [1], [4], [5]. This approach is espe-
cially useful when requests to streaming objects are highly
temporally localized. The algorithm also efficiently re-
claims the idle memory space and does near-optimal
buffer replacement at runtime when requests are termi-
nated.

By further looking into the patching approaches that
were heavily studied in the VOD (Video-On-Demand) en-
vironment [6], [8], we found that patching algorithms, such
as the greedy patching, the grace patching and the optimal
patching [9], take advantage of the client-side storage re-
source to buffer data in multiple channels without any delay.
The greedy patching always patches to the existing com-
plete stream while the grace patching restarts a new com-
plete stream at some appropriate points in time. Further-
more, the optimal patching [12] considers how to reuse the
limited storage on the client side to receive as many data
as possible while listening to as many channels as possi-
ble. Motivated by this, we further propose an efficient me-
dia delivering algorithm: Patching SRB (PSRB), which fur-
ther improves the performance of the media data delivery
without the necessity of caching.

Finally, we evaluated our algorithms through a compre-
hensive set of simulations based on synthetic workloads and
a real access trace of an enterprise media server. The simu-
lation results show that the performance of our algorithms
is superior to previous solutions.

The rest of the paper is organized as follows. Section 2
describes the memory-based SRB algorithms we proposed.
Simulation based performance evaluation results are pre-
sented in Section 3. We then make concluding remarks in
Section 4.

2. Shared Running Buffers (SRB) Media
Caching Algorithm

It has also been shown that two current memory caching
approaches of the media objects: the running buffer caching
and the interval caching, do not make effective use of the
limited memory resource.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

Motivated by the limits of the current memory buffer-
ing approaches, we design a Shared Running Buffer (SRB)
based caching algorithm for streaming media with the aim
to maximize the memory utilization. In this section, with
the introduction of several new concepts, we first describe
our basic SRB media caching algorithm in detail. Then, we
present an extension to the SRB: Patching SRB (PSRB).

2.1. SRB Related Concepts

The algorithm first considers buffer allocation in a time
span � starting from the first request. We denote ��

� as the
j-th request to media object �, and � �

� as the arrival time of
this request. Assume that there are � request arrivals within
the time span � and ��

� is the last request arrived in � . For
the convenience of representation without losing precision,
� �� is normalized to 0 and � �

� (where � � � � �) is a time
relative to � �� . Based on the above, the following concepts
are defined to capture the characteristics of the user request
pattern.

1. Interval Series: An interval is defined as the difference
in time between two consecutive request arrivals. We
denote ��� as the j-th interval for object �. An Interval
Series consists of a group of intervals. Within the time
� , if � � �, the interval ��� is defined as�; otherwise,
it is defined as:

��� �

�
� ���
� � � �

� � if � � � � �

� � ��
� � if � � � �

(1)

Since ��� represents the time interval between the last
request arrival and the end of the investigating time pe-
riod, it is called as the Waiting Time.

2. Average Request Arrival Interval (ARAI): The ARAI is
defined as

����

��� �
�
� 	��� �� when �
 �. ARAI does

not exist when � � � since it indicates only one re-
quest arrival within time frame � and thus we set it as
�.

For the buffer management, three buffer states and three
timing concepts are defined respectively as follows.

1. Construction State & Start-Time: When an ini-
tial buffer is allocated upon the arrival of a request, the
buffer is filled while the request is being served, ex-
pecting that the data cached in the buffer could
serve the closely followed requests for the same ob-
ject. The size of the buffer may be adjusted to cache
less or more data before it is frozen. Before the freez-
ing happens, the buffer is in the Construction State.

Thus, the Start-Time of a buffer ��
� , the j-th buffer

allocated for object i, is defined as the arrival time of
the last request before the buffer is frozen. We use ��

�

to denote the Start-time of the buffer ��
� . The requests

arriving in a buffer’s Construction State are called as
the resident requests of this buffer and the buffer is
called as the resident buffer of these requests.

2. Running State & Running-Distance: After the buffer
freezes its size it will serve as a running window of
a streaming session and moves along with the stream-
ing session. Therefore, the state of the buffer is called
the Running State.

The Running-Distance of a buffer is defined as the
distance in terms of time between a running buffer and
its preceding running buffer. We use �

� to denote the
Running-Distance of ��

� . Note that for the first buffer
allocated to an object �, �

� is equal to the length of
object �: ��. Here, we assume a complete viewing sce-
nario initially. Since we are encouraging the sharing
among the buffers, the buffer ��

� needs only to run to
the end point of ����

� . Mathematically, we have:

�
� �

�
��� if � � �

��
� � ����

� � if �
 ��
(2)

3. Idle State & End-Time: When the running window
reaches the end of the streaming session, the buffer en-
ters the Idle State, which is a transient state that allows
the buffer to be reclaimed.

The End-Time of a buffer is defined as the time
when a buffer enters idle state and is ready to be re-
claimed. The End-Time of the buffer ��

� , denoted as
��

� is defined as:

��
� �

�
��
� � ��� if � � �

� ������
� ��

� � if �
 ��
(3)

� ������
� denotes the arrival time of the most recent re-

quest to the object �. Here, the � ������
� dynamically

changes with the coming of new requests and so does
the ��

� . The detailed updating procedure of ��
� is de-

scribed in the following section.

2.2. SRB Algorithm

For an incoming request to the object �, the SRB algo-
rithm works as follows: (1) If the latest running buffer of
the object � is caching the prefix of the object �, the request
will be served directly from all the existing running buffers
of the object. (2) Otherwise, (a) If there is enough mem-
ory, a new running buffer of a predetermined size � is al-
located. The request will be served from the new running
buffer and all existing running buffers of the object �. (b) If
there is no enough memory, the SRB buffer replacement al-
gorithm (see 2.2.3) is called to either re-allocate an exist-
ing running buffer to the request or serve this request with-
out caching. (3) Update the End-Times of all existing buffers

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

�������
�������
�������
�������

�������
�������
�������
�������

T

Media Position

Access Time

(a)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

��������
��������
��������
��������

��������
��������
��������
��������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Media Position

T Access Time

(b)

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

Media Position

Access TimeT’T

(c)

Figure 2. SRB Memory Allocation: the Initial
Buffer Freezes its Size

of the object � based on Equation 3. During the process of
the SRB algorithm, parts of a running buffer could be dy-
namically reclaimed as described in Section 2.2.2 due to
the request termination and the buffer is dynamically man-
aged based on the user access pattern through a lifecycle of
three states as described in Section 2.2.1.

2.2.1. SRB Buffer Lifecycle Management Initially,
a running buffer is allocated with a predetermined size
of � . Starting from the Construction State, it then ad-
justs its size by going through a three-state lifecycle man-
agement process as described in the following.

� Case 1: the buffer is in the Construction State. The
proxy makes a decision at the end of � as follows.

– If ���� � �, which indicates that there is
only one request arrival so far, the initial buffer
enters the Idle State (case 3) immediately. For
this request, the proxy will serve as a bypass
server, i.e., the content is passed to the client
without caching. This scheme gives preference
to more frequently requested objects in the mem-
ory allocation. Figure 2(a) illustrates this situa-
tion. The shadow indicates the allocated initial
buffer, which is reclaimed at � .

– If �� � ���� (�� is the waiting time), the ini-
tial buffer is shrunk to the extent that the most re-
cent request can be served from the buffer. Subse-
quently, the buffer enters the Running State (case
2). This running buffer will serve as a shifting
window and run to the end. Figure 2(b) illustrates
an example. Part of the initial buffer is reclaimed
at the end of � . This scheme performs well for
periodically arrived request groups.

– If �� � ���� , the initial buffer maintains the
construction state and continues to grow to the
length of � �, where � �

� � � �� � ���� , ex-
pecting that a new request arrives very soon. At
� �, the ����

�

and �
�

� are recalculated and the

above procedure repeats. Eventually, when the
request to the object becomes less frequent, the
buffer will freeze its size and enter the Running
State (case 2). In the extreme case, the full length
of the media object is cached in the buffer. In this
case, the buffer also freezes and enters the run-
ning state (a static running). For most frequently
accessed objects, this scheme ensures that the re-
quests to these objects are served from the proxy
directly. Figure 2(c) illustrates this situation. The
initial buffer has been extended beyond the size
of � for the first time.

The buffer expansion is bounded by the avail-
able memory in the proxy. When the available
memory is exhausted, the buffer freezes its size
and enters the running state regardless of future
request arrivals.

� Case 2: the buffer is in the Running State. After a buffer
enters the running state, it has run away from the be-
ginning of the media object and subsequently arrived
requests can not be served completely from the run-
ning buffer. In this case, a new buffer of an initial size
� is allocated and subsequent requests are served from
the new buffer as well as its preceding running buffers.

In addition, the End-Time of the new running buffer
needs to be determined and the End-Times of its pre-
ceding running buffers ����

� , ... ��
� need to be modi-

fied according to the arrival time of the latest request,
as shown in Equation 3.

Figure 3(a) illustrates the maximal data sharing
in the SRB algorithm. The requests R�

� to R���
� are

served simultaneously from B�
� and B�

� . Late requests
could be served from all existing preceding running
buffers . Note that except for the first buffer, the
other buffers do not have to run to the end of the
object. When the buffer runs to its End-Time, it en-
ters the Idle State (case 3).

� Case 3: the buffer is in the Idle State. When a buffer
enters the Idle State, it is ready for reclamation.

In the above algorithm, the time span � (which is the ini-
tial buffer size) is determined based on the object length.
Typically, a Scale factor (say, 1/2 to 1/32) of the origin
length is used. To prevent a extremely large or small buffer
size, the buffer size is bounded by a upper bound: High-
Bound and a lower bound: Low-Bound. It can be adjusted
by the streaming rate to allow the initial buffer to cache a
reasonable length (e.g., 1 minute to 10 minutes) of media
data.

The algorithm requires the client be able to listen to mul-
tiple channels at the same time: once a request is posted, it
should be able to receive data from all the ongoing running
buffers of that object simultaneously.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������
��������������������������

R
1
i Ri

k
Ri

2
Ri

k+1
Ri

n

Bi
1

Bi
2

�
�
�

�
�
�

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�
�
�

�
�
�

Access Time

Media Position

...

(a)
Ri

1
Ri

2
Ri

3
Ri

4
Ri

5
Ri

6
Ri

7
Ri

8

Bi
1

Bi
2

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����

����
����
����
����

��������
��������
��������

��������
��������
��������

������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������������������

������������
������������
������������
������������

������������
������������
������������
������������
������������

��
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

������������
������������
������������
������������
������������

������������
������������
������������
������������
������������

Access Time

Media Position

b
a

(b)

Figure 3. Data Sharing among Buffers in SRB
Algorithm (a) and Example of PSRB Algo-
rithm (b)

2.2.2. SRB Buffer Dynamic Reclamation The memory
reclamation of a running buffer is triggered by two differ-
ent types of session terminations: the complete session ter-
mination and the premature session termination.

In the complete session termination, a session terminates
only when the delivery of the whole media object is com-
pleted, which only happens when the buffer is in the Run-
ning State. In this case, assume that ��� is the first request
being served by a running buffer. When ��� reaches the end
of the media object, the following two scenarios happen for
the resident buffer of ��� ;

1. If the resident buffer is the only running buffer for the
media object, the resident buffer enters the idle state.
In this state, the buffer maintains its content until all
the resident requests reach the end of the session. On
that time, the buffer is released.

2. If the resident buffer is not the only running buffer,
that is, there are succeeding running buffers, the buffer
enters the idle state and maintains its content until its
End-Time. Note that the End-Time may be updated by
succeeding running buffers.

The premature session termination is much more compli-
cated. In the premature session termination, the request ar-
riving later may terminate earlier, which can happen when
a buffer is in the Construction State or the Running State.
Considering a group of consecutive requests ��� to ��

� that
are being served by a running buffer, the session for one
of the requests, say �

�
� , where � � � � �, terminates be-

fore everyone else. The situation is handled as follows.

1. If �
�
� is served from the middle of its resident

buffer, that is, there are preceding and succeeding re-
quests served from the same running buffer, the
resident buffer maintains its current state and the re-
quest ��

� gets deleted from all its associated running
buffers.

2. If ��
� is served from the head of its resident buffer,

the request is deleted from all of its associated running
buffers. The resident buffer enters the idle state for a
time period of � . During this time period, the content
within the buffer is moved from �

���
� to the head. At

the end of the time period � , the buffer space from the
tail to the last served request is released and the buffer
enters the running state again.

3. If ��
� is served at the tail of a running buffer, two sce-

narios are further considered.

� After deleting the ��
� from the request list of its

resident buffer, if the request list is not empty,
then do nothing. Alternatively, the algorithm can
choose to shrink the buffer to the extent that
�

���
� can still be served from the buffer (assum-

ing����
� is a resident request of the same buffer).

In this case, the End-Times of the succeeding run-
ning buffers need to be adjusted.

� If ��
� is at the tail of the last running buffer,

the buffer will be shrunk to the extent that ����
�

is the last request served from the buffer. ��
� is

deleted from the request list.

2.2.3. SRB Buffer Replacement Policy The replacement
policy is important in the sense that the available memory is
still scarce compared to the size of video objects. So to ef-
ficiently use the limited resources is critical to achieve the
best performance gain. In this section, we propose popular-
ity based replacement policies for the SRB media caching
algorithm. The basic idea is described as follows:

� When a request arrives while there is no available
memory, all the objects that have on-going streams in
the memory are ordered according to their populari-
ties calculated in a certain past time period. If the ob-
ject being demanded has a higher popularity than the
least popular object in the memory, then the latest run-
ning buffer of the least popular object will be deallo-
cated, and the space is re-allocated to the new request.
Those requests without running buffers do not buffer
their data at all. In this case, theoretically, they are as-
sumed to have no memory consumption.

We have precisely analyzed our popularity based re-
placement policies by both the modeling and the simula-
tion in the reference [2], which is omitted due to page lim-
its.

2.3. Patching SRB (PSRB) Media Delivering Algo-
rithm

Since the proxy has a finite amount of memory space, it
is possible that the proxy serves as a bypass server to tran-
siently cache concurrent sessions. The SRB algorithm pro-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

hibits the sharing of such sessions, which may lead to ex-
cessive server access when there are intensive request ar-
rivals to many different objects. To solve this problem, the
SRB algorithm is extended to a Patching SRB (PSRB) algo-
rithm which enables the sharing of such bypass sessions. It
is important to note that PSRB scheme makes the memory-
based SRB algorithm work with the memoryless patching
algorithm.

Figure 3(b) illustrates a PSRB scenario. The first running
buffer��

�
has been formed for requests��

�
to ��

�
. No buffer

is running for ��

�
since it does not have a close neighbor-

ing request. However, a patching session has been started to
retrieve the absent prefix in ��

�
from the content server. At

this time, request ��

�
is served from both the patching ses-

sion and ��

�
until the missing prefix is patched. Then, ��

�
is

served from �
�

�
only (the solid line for ��

�
ends).

When �
�

�
and �

�

�
arrive and form the second running

buffer ��

�
, they are served from �

�

�
and ��

�
as described in

the SRB algorithm. In addition, they are also served from
the patching session initiated for ��

�
. Note that the patching

session for��

�
is transient, or we can think of it as a running

buffer session with zero buffer size. As evident from the fig-
ure, the filling of ��

�
does not cause server traffic between

position � and � (no solid line between � and �) since ��

�
is

filled from the patching session for��

�
. Sharing the patching

session further reduces the the number of server accesses for
�
�

�
and ��

�
. In general, the PSRB algorithm is a combina-

tion of the SRB algorithm with the optimal patching algo-
rithm proposed in [12]. By using more client-side storage,
PSRB tries to maximize the data sharing among concurrent
sessions in order to minimize the server-to-proxy traffic.

3. Performance Evaluation

To evaluate the performance of the proposed algorithms
and to compare them with prior solutions, we have imple-
mented an event-driven simulator to model a proxy’s mem-
ory caching behavior. Both synthetic workloads and a real
workload extracted from enterprise media server logs are
used. However, in the following context, only the perfor-
mance results based on the real workload are presented.
Others are omitted due to page limits. Interested readers can
refer to [2].

The real workload, named as REAL, is extracted from
HP Corporate Media Solutions, covering the period from
April 1 to April 10, 2001. There are a total of 403 objects,
and the unique object size accounts to 20G. There are 9000
requests, which run for 916427 seconds, roughly 10 days.
Our analysis shows that 83% requests only view the objects
for less than 10 minutes and 56% requests only view the ob-
jects for less than 10%. Only about 10% requests view the
whole objects.

3.1. Evaluation Metrics

Since the object hit ratio or hit ratio is not suitable for
evaluating the caching performance of the streaming me-
dia, we use the server traffic reduction (shown as ”band-
width reduction” in the figures) to evaluate the performance
of the proposed caching algorithms. If the algorithms are
employed on a server, this parameter indicates disk I/O traf-
fic reduction.

Using SRB or PSRB algorithms, a client needs to listen
to multiple channels for the maximal sharing of the cached
data in the proxy’s memory. We measure the traffic between
the proxy and the client in terms of average client channel
requirement. This is an averaged number of channels the
clients are listening to during the sessions. Since the clients
are listening to earlier on-going sessions, storage is needed
at the client to buffer the data before its presentation. We
use the average client storage requirement in percentage of
the full size of the media object to indicate the storage re-
quirement on the client side.

If a session terminates before it reaches the end of the
requested media object, it is possible that the client has al-
ready downloaded future part of the media stream which is
no longer needed. To characterize this wasted delivery from
proxy to the client, we record average client waste during
the simulation. It is the percentage of wasted bytes versus
the averaged total prefetched data.

The effectiveness of the algorithms is studied by simu-
lating different scale factors for the allocation of the ini-
tial buffer size and varying memory cache capacities. The
streaming rate is assumed to be constant for simplicity. The
simulations are conducted on a HP workstation x4000, with
1 GHz CPU and 1 GB memory, running Linux Redhat 7.1.

For each simulation, we compare a set of seven algo-
rithms in three groups. The first group contains buffering
schemes which include the running buffer caching and the
interval caching. The second group contains patching algo-
rithms, specifically the greedy patching, the grace patching
and the optimal patching. The third group contains the two
shared running buffer algorithms proposed in this paper.

3.2. Performance Results

First, we evaluate the caching performance with respect
to the initial buffer size. With a fixed memory capacity of
1GB, the initial buffer size varies from 1 to 1/32 of the
length of media objects. For each scale factor, the initial
buffer of different sizes is allocated if the length of the me-
dia object is different. The server traffic reduction, the aver-
age client channel requirement and the average client stor-
age requirement are recorded in the simulation. The results
are plotted in Figure 4 and Figure 5.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

1 2 4 8 16 32
0

10

20

30

40

50

60

1/Scale

B
a
n
d
w

id
th

 R
e
d
u
c
ti
o
n
 (

%
)

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

1 2 4 8 16 32
0

1

2

3

4

5

6

1/Scale

A
v
e

ra
g

e
 C

li
e

n
t

C
h

a
n

n
e

l
R

e
q

u
ir
e

m
e

n
t RB Caching

Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

Figure 4. REAL: (a) Bandwidth Reduction and
(b) Average Client Channel Requirement with
1GB Memory

Figure 4(a) shows the server traffic reduction achieved
by each algorithm. Notice that PSRB achieves the best traf-
fic reduction. As expected, the performance of the three
patching algorithms does not depends on the scale factor for
allocating the initial buffer. Neither does that of the interval
caching since the interval caching allocates buffers based
on access intervals. The changes of scale factor have a sig-
nificant impact on the performance of the proposed SRB
and PSRB algorithms, especially when the scale factor is
1/8, 1/16 or 1/32. This is due to the burst nature of the ac-
cesses logged in the workload and the trade-off between the
number of running buffers and the sizes of running buffers.
A larger buffer implies that more requests can be served
from the proxy buffer. However, a larger buffer also indi-
cates that less memory space is left for other requests. This
in turn leads to a larger number of server accesses since
there is no available memory. On the other hand, a smaller
buffer may serve a smaller number of requests but it leaves
more memory space for the system to allocate for other re-
quests. Despite of these performance fluctuations, we can
still see that PSRB and SRB achieve higher traffic reduc-
tion rates from Figure 4. The result concludes that PSRB
uses 60% of the client channel to achieve 5% higher traf-
fic reduction than the optimal patching as shown in Figure
4(b).

Figure 5(a) shows the average storage requirement on the
client. PSRB allows the session sharing even when memory
space is not available. It is therefore expected that PSRB
achieves the highest rate of server traffic rate reduction. In
the mean time, it also requires the largest client side stor-
age. On the other hand, SRB achieves about 4% less traf-
fic reduction averagely, but the requirement on client chan-
nel and storage is significantly lower.

Figure 5(b) shows that the client side wastes for PSRB

1 2 4 8 16 32
0

2

4

6

8

10

1/Scale

A
v
e
ra

g
e
 C

li
e
n
t
S

to
ra

g
e
 R

e
q
u
ir
e
m

e
n
t
(%

)

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

1 2 4 8 16 32
0

10

20

30

40

50

1/Scale

A
v
e
ra

g
e
 C

li
e
n
t
W

a
s
te

 (
%

)

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

Figure 5. REAL: (a) Average Client Storage
Requirement(%) and (b) Client Waste(%) with
1GB Memory

0.25 0.5 1 2 4
0

10

20

30

40

50

Memory Cache Size (Gbytes)

B
a

n
d

w
id

th
 R

e
d

u
c
ti
o

n
 (

%
)

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

0.25 0.5 1 2 4
0

1

2

3

4

5

Memory Cache Size (Gbytes)

A
v
e
ra

g
e
 C

li
e
n
t
C

h
a
n
n
e
l
R

e
q
u
ir
e
m

e
n
t RB Caching

Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

Figure 6. REAL: (a) Bandwidth Reduction and
(b) Average Client Channel Requirement with
the Scale of 1/4

and SRB are about 33% and 15% respectively, compared to
0% for the interval caching. Since the wasted bytes are not
counted as hits, this leads to the lowered traffic reduction
rate for PSRB and SRB. From another perspective, even
with the waste, PSRB and SRB still can achieve better per-
formance than other techniques.

Setting the initial buffer size as 1/4 of the requested me-
dia object, we again evaluate the caching performance with
the increasing amount of the available proxy memory. Fig-
ure 6 and Figure 7 show the server traffic reduction rate and
the client side statistics respectively.

Figure 6(a) shows that distances between the traffic re-
duction curves of PSRB, SRB and the interval caching be-
come much smaller in general. This reinforces the observa-
tion that PSRB and SRB have more waste due to the partial
viewing nature. In addition, the grace patching achieving al-

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

0.25 0.5 1 2 4
0

1

2

3

4

5

6

7

8

Memory Cache Size (Gbytes)

A
v
e
ra

g
e
 C

li
e
n
t
S

to
ra

g
e
 R

e
q
u
ir
e
m

e
n
t
(%

)

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

0.25 0.5 1 2 4
0

10

20

30

40

50

Memory Cache Size (Gbytes)

A
v
e
ra

g
e
 C

li
e
n
t
W

a
s
te

 (
%

)

RB Caching
Interval Caching
SRB Caching
Greedy Patching
Grace Patching
Optimal Patching
Patching SRB

Figure 7. REAL: (a) Average Client Storage
Requirement(%) and (b) Client Waste(%) with
the Scale of 1/4

most no traffic reduction shows its incapability in dealing
with the partial viewing situation.

Figure 6 and Figure 7 also show a flat gain when the
memory capacity increases. It seems to indicate that the
memory capacity is a minor factor. Once again, the burst
nature of the request arrival may play a role here. In addi-
tion, the volume of the burst may also be low which leads
to the fact that a limited amount of memory space suffices
the sharing of sessions.

4. Conclusion

In this paper, we propose two new algorithms for ef-
ficiently delivering streaming media objects. Shared Run-
ning Buffers (SRB) caching algorithm is proposed to dy-
namically cache media objects in the proxy memory during
the delivery. Patching SRB (PSRB) algorithm is proposed
to further enhance the memory utilization in the proxy. Our
algorithms can adaptively allocate the memory buffer by
considering the user access pattern, and enable the data be-
ing fully shared among different buffers. Extensive simula-
tions are conducted to evaluate these algorithms. The sim-
ulation results demonstrate the efficiency achieved by the
proposed algorithms. Both algorithms require the client ca-
pable of listening to multiple channels at the same time.
Compared with previous solutions which also require multi-
ple client channels, the proposed algorithms achieve higher
server traffic reduction rate with less or similar load on the
link between the proxy and the client.

Acknowledgments We appreciate the constructive com-
ments from the anonymous referees. We also thank Mitch
Trott and Susie Wee of HP Laboratories for their comments
and suggestions on this work.

References

[1] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul. Design
and implementation of a caching system for streaming me-
dia over the internet. In Proceedings of IEEE Real Time Tech-
nology and Applications Symposium, May 2000.

[2] S. Chen, B. Shen, S. Basu, and Y. Yan. Srb:the shared run-
ning buffer based proxy caching of streaming sessions. In
Hewlett-Packard Laboratories Tech. Report, 2003.

[3] S. Chen, B. Shen, S. Wee, and X. Zhang. Adaptive and
lazy segmentation based proxy caching for streaming me-
dia delivery. In Proceedings of ACM Workshop on Network
and Operating System Support for Digital Audio and Video
(NOSSDAV), June 2003.

[4] A. Dan and D. Sitaram. Buffer management policy for an
on-demand video server. In IBM Research Report 19347,
1993.

[5] A. Dan and D. Sitaram. A generalized interval caching policy
for mixed interactive and long video workloads. In Proceed-
ings of Multimedia Computing and Networking, Jan. 1996.

[6] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling poli-
cies for an on-demand video server with batching. In Pro-
ceedings of ACM Multimedia, Oct. 1994.

[7] D. L. Eager, M. C. Ferris, and M. K. Vernon. Optimized re-
gional caching for on-demand data delivery. In Proceedings
of Multimedia Computing and Networking, Jan. 1999.

[8] L. Gao and D. Towsley. Supplying instantaneous video-on-
demand services using controlled multicast. In Proceedings
of IEEE International Conference on Multimedia Computing
and Systems, June, 1999.

[9] K. A. Hua, Y. Cai, and S. Sheu. Patching : A multicast tech-
nique for true video-on-demand services. In Proceedings of
ACM Multimedia, Sept. 1998.

[10] S. Lee, W. Ma, and B. Shen. An interactive video deliv-
ery and caching system using video summarization. In Com-
puter Communications, volume 25, pages 424–435, March
2002.

[11] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching
mechanism for multimedia playback streams in the internet.
In Proceedings of Web Caching Workshop, March 1999.

[12] S. Sen, L. Gao, J. Rexford, and D. Towsley. Optimal patch-
ing schemes for efficient multimedia streaming. In Proceed-
ings of ACM Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), June 1999.

[13] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for
multimedia streams. In Proceedings of IEEE INFOCOM,
March 1999.

[14] K. Wu, P. S. Yu, and J. Wolf. Segment-based proxy caching
of multimedia streams. In Proceedings of WWW, Sept. 2001.

Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04)

1063-6927/04 $20.00 © 2004 IEEE

