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Abstract
Software Defined Networks use logically centralized control
due to its benefits in maintaining a global network view and
in simplifying programmability. However, the use of cen-
tralized controllers can affect network performance if the
control path between the switches and their associated con-
trollers becomes a bottleneck. We find from measurements
that the software control agents on some of the switches
have very limited throughput. This can cause performance
degradation if the switch has to handle a high traffic load,
as for instance due to flash crowds or DDoS attacks. This
degradation can occur even when the data plane capacity
is under-utilized. The goal of our paper is to design new
mechanisms to enable the network to scale up its ability
to handle high control traffic loads. For this purpose, we
design, implement, and experimentally evaluate Scotch, a
solution that elastically scales up the control plane capacity
by using a vSwitch based overlay. Scotch takes advantage
of both the high control plane capacity of a large number
of vSwitches and the high data plane capacity of commod-
ity physical switches to increase the SDN network scalability
and resiliency under normal (e.g., flash crowds) or abnormal
(e.g., DDoS attacks) traffic surge.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design

General Terms
Design
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1. INTRODUCTION
Software Defined Networking has recently emerged as a

new networking paradigm of much research and commer-
cial interest. A key aspect of Software Defined Networks
(SDN) is the separation of control and forwarding [20]. The
control plane is logically centralized and implemented on
one or more controllers [13, 18, 3]. The centralized con-
troller configures the flow tables in the various switches that
it controls using a de facto standard protocol such as Open-
Flow [12]. Each OpenFlow capable switch has a software im-
plemented OpenFlow Agent (OFA) that communicates with
the switch’s controller over a secure TCP connection. This
connection is used by the switch to inform the controller the
arrival of new flows, and by the controller to configure the
switch’s flow table in both reactive (on-demand) and proac-
tive (a priori configured) modes. The reactive mode, which
permits fine-grained control of flows, is invoked when a new
flow starts and there is no entry in the flow table correspond-
ing to that flow. In this paper, we call the interconnection
between a switch and its controller this switch’s control path
or control channel.

Since the controller and the switches it controls are sepa-
rated, it is important that swithes’ control paths are not bot-
tlenecks between the switches and their controller. This is
particularly important if the switch is configured to operate
with a large fraction of reactive flows since each reactive flow
requires communication with the controller. If a switch’s
control path is completely saturated, the switch becomes
essentially disconnected from the controller and unable to
change its flow tables in response to network conditions or
new flow arrivals. The switch may then become unable to
handle new flows even though the data plane is uncongested
and could have forwarded the flow’s packets. A low through-
put of a control path can also lead to new Denial-of-Service
(DoS) attacks. Malicious users may attempt to saturate the
switch to controller channels and stop network operations
by effectively making the controllers not reachable.

The load on the control path can be reduced by limiting
reactive flows and pre-installing rules for all expected traf-
fic. However, this comes at the expense of fine-grained pol-
icy control, visibility, and flexibility in traffic-management,
as evidently required in [3, 16]. Alternatively, the control
path capacity can be increased by optimizing the OFA im-
plementation. However this is not sufficient to bridge the



large gap between control plane and data plane through-
puts. A switch’s data plane forwarding capacity is typically
several orders of magnitude larger than that of its control
path. Ideally, one would like to elastically scale control plane
capacity. Mechanisms for elastically scaling controller ca-
pacity have been proposed [18, 7]. However, they only scale
the actual processing capacity of the controller but not the
switch-controller control path capacity.

In this paper, we aim to develop new mechanisms that
exploit the available high data plane capacities to elastically
scale up the achievable throughput of control paths. We
propose Scotch, an Open vSwitch based overlay that avoids
the OFA bottleneck by using the data plane to scale the con-
troller channel capacity. This scaling permits the network
to handle much higher reactive flow loads, makes the con-
trol plane far more resilient to DDoS attacks by providing a
mitigating mechanism, and permits faster failure recovery.

Scotch essentially bridges the gap between control and
data plane capacities by building an overlay from each switch
to the Open vSwitches that run on host hypervisors (as-
suming a virtualized environment). The idea is to pool the
vSwitch-controller capacities of all the vSwitches and use it
to expand the total capacity of control paths. Two signifi-
cant factors that we exploit are (i) the number of vSwitches
greatly exceeds the number of physical switches, and (ii) the
control paths of vSwitches running on powerful CPUs with
sufficient memory possess higher throughput than that of
physical switches whose OFA runs on less powerful CPUs
with less memory.

Scotch enables an elastic expansion of control channel ca-
pacity by tunnelling new flows to vSwitches over a control
overlay. When the control path of a physical switch is over-
loaded, the default rule at the switch is modified so that
new flows will be tunneled to multiple vSwitches, instead
of being sent to the central controller through Packet-In
messages. Note that when the new flows are tunneled to
vSwitches there is no additional load on the OFA since the
flows are handled by the switch hardware and stay in the
data plane. This results in shifting load from the OFA to
edge vSwitches. The vSwitches send the new flow’s pack-
ets to the controller by using Packet-In messages. Since the
vSwitch control agent has much higher throughput than the
OFA on a hardware switch, and a large number of vSwitches
can be used, the control plane bottleneck at the OFA can
be effectively eliminated. Below we use DDoS attacks as
an extreme example of traffic that can cause control path
overload and study this in detail.

Scotch also uses the overlay to forward the data traffic, and
separates the handling of small and large flows. Generally,
it is not sufficient to address the performance bottlenecks
at any one switch. When one switch is overloaded, it is
likely that other switches are overloaded as well. This is
particularly so if the overload is caused by an attempted
DDoS attack that generates a large number of small flows
in an attempt to overload the control plane. If an attacker
spoofs packets from multiple sources to a single destination,
then even if we spread the new flows arriving at the first
hop hardware switch to multiple vSwitches, the switch close
to the destination will still be overloaded since rules have
to be inserted there for each new flow. To alleviate this
problem, Scotch forwards new flows on the overlay so that
new rules are initially only inserted at the vSwitches and
not the hardware switches.

Most flows are likely to be small, and may terminate af-
ter a few packets are sent [1]. This is particularly true for
flows from attempted DDoS attacks. Scotch can use mon-
itoring information at the controller to migrate large flows
back to paths that use physical switches. Since the major-
ity of packets belong to a small number of large flows, this
approach allows Scotch to effectively use the high control
plane capacity on vSwitches and the high data plane capac-
ity on hardware switches. The activation of Scotch overlay
can also trigger the network security tools and solutions.
The collected flow information can be fed into the security
tools to help pinpoint the root cause of the overloading sys-
tem. The security tools will hopefully kick in and tame the
attacks. Once the control paths become uncongested, the
Scotch overlay automatically phases out. The SDN network
will gradually revert back to the normal working conditions.

The paper is organized as follows. Section 2 describes the
related work. Section 3 investigates the performance of SDN
networks in a DDoS attack scenario. We use DoS attacks
and their mitigation as the extreme stress test for control
plane resilience and performance under overload. Section 4
proposes the Scotch overlay scheme to scale up the SDN
network’s control-plane capacity, and Section 5 describes
the design of key components of Scotch. The experimen-
tal results of Scotch performance are reported in Section 6.
Concluding remarks are in Section 7.

2. RELATED WORK
Security issues in SDN have been studied and examined

from two different aspects: to utilize the SDN’s centralized
control to provide novel security services, e.g., [21, 27], and
to secure network itself, e.g., [10, 28]. The SDN security
under DDoS attacks is studied in [28]. Two modules are
added at the data-plane of the physical switches. One mod-
ule functions similarly to a SYN proxy to avoid attacking
traffic from reaching the controller. The other module en-
ables the traffic statistics collection and active treatment,
e.g., blocking harmful traffic. The motivation for our work
is to elastically scaling up the control path capacity as the
load on the control plane increases, due to either the flash
crowds or DDoS attacks. No modification at the physical
switches is required.

Centralized network controllers are key SDN components
and various controllers have been developed, e.g., [13, 2, 18,
9], among others. In our experiment, we use the Ryu [5]
OpenFlow controller. Ryu supports latest OpenFlow at the
time of our experiments, and is the default controller used
by Pica8 switch [23], the physical switch used in our exper-
iment. Since Scotch increases the control path capacity, the
controller will receive more packets. A single node multi-
threaded controller can handle millions of PacketIn/sec [30].
A distributed controller, such as [7], can further scale up
capacity. The design of a scalable controller is out of the
scope of this paper.

Traffic detouring techniques have been employed to reduce
the routing table size, e.g., [33, 17, 25, 26], where traffic is
re-routed inside the physical networks. Scotch employs an
overlay apporach for traffic detouring, which offers better
flexibility and elasticity than the in-network traffic detour-
ing approach. In addition, Scotch can also help reduce the
number of routing entries in the physical switches by routing
short flows over the overlay.



DevoFlow [6] has some similarity with our work in the
sense that it identifies limited control-plane capacity as an
important issue impacting SDN performance. The proposed
DevoFlow mechanism maintains a reasonable amount of flow
visibility that does not overload the control path.

The authors of [15] investigated the SDN emulation accu-
racy problem. Their expriments also reveal SDN switches’
slow control-path problem, which is consistent with our find-
ings using a different type of physical switch. However, the
goal of their work is quite differnt from ours. While they
attempt to improve the emulation accuracy, we develop a
new scheme to improve SDN’s control-path capacity.

3. OPENFLOW CONTROL PLANE BOTTLE-
NECK

3.1 Background
Fig. 1 shows a basic OpenFlow network where all the

switches are connected to a central controller via secure
TCP connections. Each switch consists of both a data plane
and a simple control plane – the OpenFlow Agent (OFA).
The data plane hardware is responsible for packet processing
and forwarding, while the OFA allows the central controller
to interact with the switch to control its behavior. Each
switch has one or more flow tables (not shown in the fig-
ure), which store rules that determine how each flow should
be processed.

When the first packet of a new flow arrives at a switch, the
switch looks up the flow table to determine how to process
the packet. If the packet does not match any existing rule,
it is treated as the first packet of a new flow and is passed
to the switch’s OFA. The OFA encapsulates the packet into
a Packet-In message and delivers the message to the cen-
tral controller (Step 1 in Fig. 1). The Packet-In message
contains either the packet header or the entire packet, de-
pending on the configuration, along with other information
such as ingress port id, etc. Upon receiving the Packet-In
message, the OpenFlow controller determines how the flow
should be handled based on policy settings and the global
network state. If the flow is admitted, the controller com-
putes the flow path and installs new flow entries at the cor-
responding switches along the path (Step 2). This is done by
sending a flow modification command to the OFA on each
switch along the route. The OFA then installs the new for-
warding rule into the flow table. The controller may also
generate a Packet-Out message to explicitly tell the switch
where to forward the first packet.

One problem with the current OpenFlow switch imple-
mentation is that the OFA typically runs on a low end
CPU that has limited processing power. This seems to be
a reasonable design choice since one intention of the Open-
Flow architecture is to move the control functions out of
the switches so that the switches can be simple and of low
cost. However, this can significantly limit the control path
throughput.

To better understand this limitation, we study a DDoS
attack scenario, where a DDoS attacker generates SYN at-
tack packets using spoofed source IP addresses. The switch
treats each spoofed packet as a new flow and forwards the
packet to the controller. The insufficient processing power
of the OFA limits how fast the OFA can forward the pack-
ets to the OpenFlow controller, as well as how fast it can

Figure 1: OpenFlow network with the OpenFlow
Controller.

insert new flow rules into the flow table. A DDoS attack can
cause Packet-In messages to be generated at a much higher
rate than what the OFA can handle. This effectively makes
the controller unreachable from the switch and causes le-
gitimate traffic to be blocked even though there is no data
plane congestion. Note that this blocking of legitimate traf-
fic can occur whenever the control plane is overloaded, e.g.,
under DDoS attacks or due to flash crowds. We merely use
the DDoS attack scenario as an extreme traffic pattern that
causes control plane overload.

3.2 Attack’s impact on SDN switch performance
Here, we experimentally evaluate the impact of control

plane overload on SDN packet forwarding performance. The
overload is caused by an attempted DDoS attack. The
testbed setup is shown in Fig. 2. We experiment with two
types of hardware switches: Pica8 Pronto 3780 and HP
Procurve 6600, with OpenFlow 1.2 and 1.0 support, re-
spectively. For comparison, we also experiment with Open
vSwitch, which runs on a host with an Intel Xeon 5650
2.67GHz CPU. We use the Ryu OpenFlow controller, since
it was one of the few controllers that supported OpenFlow
1.2 at the time of our experiments, a requirement by Pica8
Pronto switch. The experiments are done using one switch
at a time. The attacker, the client and the server are all
attached to the data ports, and the controller is attached
to the management port. We use hping3 [14] to generate
attacking traffic. The Pica8 switch uses 10 Gbps data ports,
and the HP switch and vSwitch have 1 Gbps data ports.
The management ports for physical switches are 1Gbps.

Both the attacker and the legitimate client attempt to ini-
tiate new flows to the server. We simulate the new flows by
spoofing each packet’s source IP address. Since the Open-
Flow controller installs the flow rules at the switch using
both the source and destination IP addresses, a spoofed
packet is treated as a new flow by the switch. Hence in our
experiment, the flow rate, i.e., the number of new flows per
second, is equivalent to the packet rate. We set the client’s
new flow rate at 100 flows/sec, while vary the attacker’s at-
tacking rate from 10 and 3800 flows/sec. We collect the net-
work traffic using tcpdump at the client, the attacker, and



Figure 2: DDoS attack experiment setup.

the server. We define the client flow failure fraction to be
the fraction of client flows that are not able to pass through
the switch and reach the server. The client flow failure frac-
tion is computed using the collected network traces. Fig. 3
plots the client flow failure fraction for different switches as
the attacking flow rate increases. We observe that all three
switches suffer from the client flow failure as the attacking
flow rate increases. Note that even at the peak attacking
rate of 3800 flows/sec, and even with the maximum packet
size of 1.5 Kbytes, the traffic rate is merely 45.6 Mbps, a
small fraction of the data link bandwidth. This indicates
that the bottleneck is at the control plane rather than at
the data plane. In addition, both Pica8 and HP Procurve
physical switches exhibit much higher flow failure fraction
than the software-based Open vSwitch, suggesting software-
based vSwitch has higher control path capacity than the two
physical switches tested in this experiment.
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trol plane throughput comparison.

3.3 Profiling the control path bottleneck
We next identify which component along the control path

is the actual bottleneck. Recall that a new flow arrival at the
SDN switch triggers the following control plane actions: (1)
a Packet-In message is sent from OFA to the controller; (2)
the controller sends back a new rule to OFA; and (3) OFA
inserts the rule into the flow table. The new flow can go
through the switch if all the above three steps are completed

successfully. Below we use the similar experimental set-up
as in the previous experiment (see Fig. 2), with the client
generating a new flow per packet towards the server while
the attacker is turned off. The network traffic is traced at
the server and the OpenFlow controller. We measure the
Packet-In message rate (observed at the controller), the flow
rule insertion rate (observed at the controller), and the rate
at which the new flows successfully pass through the switch
and reach the destination (observed at the server).

Fig. 4 plots the Packet-In message rate, flow rule insertion
rate (one rule is included in one packet), and the received
packet/flow rate at the server. We use the Pica8 switch for
this experiment. We observe that all three rates are identi-
cal, which suggests that the OFA’s capability in generating
Packet-In messages is the bottleneck. Experiments in Sec-
tion 6.1 further show that the rule insertion rate that the
switch can support is indeed higher than the Packet-In mes-
sage rate for Pica8 switch.
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Figure 4: SDN switch control path profiling.

A limited amount of TCAM at a switch can also cause new
flows being dropped [19]. A new flow rule won’t be installed
at the flow table if it becomes full. In the above experi-
ment, OFA’s capability in generating Packet-In messages is
the bottleneck while the TCAM size is not. However, the
solution proposed in this paper is applicable to the TCAM
bottleneck scenario as well.

We use Pica8 Pronto switch instead of HP Procurve switch
in this experiment and most of the later experiments. Though
the Procurve switch has higher OFA throughput (see Fig. 3),
we use the Pica8 Pronto switch due to its more advanced
OpenFlow data-plane features that it supports, e.g., tun-
neling, multiple flow table support, etc. Also the Pronto
switch can do wire speed packet processing with full Open-
Flow support, while the older Procurve switch used in our
experiments cannot. We do not intend to compare different
hardware switches here, but just to explain the rational for
our selection of equipments.

4. SCALING UP SDN CONTROL PLANE US-
ING SCOTCH OVERLAY

We make the following observations based on the experi-
ments as presented in Section 3:

• The control plane at the physical switches has limited
capacity. The maximum rate at which the new flows



can be set up at the switch is low – it is several orders
of magnitude lower than the data plane traffic rate.

• The OpenFlow network running in reactive mode is
very vulnerable to DDoS attacks. The operation of
SDN switches can be easily disrupted by the increase of
control traffic due to DDoS attacks, unless the switch
operates very much in proactive mode.

• The vSwitches have higher control plane capacity but
lower data plane throughput compared to the physical
switches. The higher control plane capacity can be
attributed to the more powerful CPUs on the general
purpose computers where the vSwitches typically run
on.

Our goal here is to elastically scale up the SDN control
plane capacity when needed without sacrificing any of the
advantages of SDN regarding the controller having high vis-
ibility and fine-grained control of all flows in the network.
A straightforward method is to use more powerful CPUs
for the OFA combined with other design improvements that
allow faster access rates between the OFA and line cards.
One can also improve the design and implementation of OFA
software stack to enable more efficient message processing.
With continued research interest in the SDN network con-
trol plane [6], these improvements will be likely. However,
the significant gap between the control path throughput and
data path flow setup requirements will still persist. For ex-
ample, it may not be economically desirable to dimension
the OFA capacity to be based on the maximum possible flow
arrival rate given that the peak flow rate may be several or-
ders of magnitude higher than the average flow rate [1]. An-
other method is to dedicate one port of the physical switch
to the overloaded new flows. Whenever the control path is
overloaded, the new flows are forwarded to the controller
via this dedicated port at the data-plane. However, using
a dedicated physical port does not fully solve the problem.
The maximum flow rule insertion rate is limited as shown in
Section 6.1. The controller cannot install the flow rules fast
enough at physical switches when overloaded.

Software based virtual switches (e.g., Open vSwitch) have
been widely adopted. vSwitches offer excellent switching
speed [4, 8], and high control path throughputs as shown in
the previous section. The interesting question is whether we
can use vSwitches to improve the control plane capacity of
physical switches. Scotch, our proposed solution, addresses
this question and achieves high control plane throughputs
using a vSwitch based overlay.

4.1 Scotch: vSwitch based SDN overlay net-
work

Fig. 5 depicts the architecture of the Scotch overlay net-
work. The main component of Scotch is a pool of vSwitches
that are distributed across the corresponding SDN network,
e.g., across different racks in the data center for a data cen-
ter SDN network, or distributed at different locations for a
wide-area SDN network. We select vSwitches at hosts that
are lightly loaded and with under-utilized link capacity.

The Scotch overlay consists of three major components:
(i) vSwitch mesh - a fully connected mesh (using tunnels)
of vSwitches; (ii) the tunnels that connect the underlying
physical switches with the vSwitch mesh; and (iii) the tun-
nels that connect the end hosts with the vSwitch mesh. The

tunnels can be configured using any of the availablel tun-
neling protocols, such as GRE, MPLS, MAC-in-MAC, etc.;
they use the underlying SDN network’s data plane.

The tunnels connecting the physical switches with the
vSwitch mesh allow a physical switch to forward the new
flows to the vSwitches whenever the physical switch be-
comes overloaded in its control path. The vSwitches can
then handle the new flow setup and packet forwarding tasks
for these flows. The benefits are two-fold. First, the new
flows can continue to be serviced by the SDN network in
the face of control path congestion. Second, the SDN con-
troller can continue to observe the new flows, which give us
the opportunity to mitigate the possible DDoS attack (more
in Section 5.2). The collected flow information can also be
fed into network security applications to diagnose the root
cause of the control path congestion. For the purpose of
load-balancing, a physical switch is connected to a set of
vSwitches so that the new flows can be distributed among
them. Further details of load-balancing are described in Sec-
tion 5.1.

The tunnels connecting the end hosts with the vSwitch
mesh allow the new flows to be delivered to the end hosts
over the Scotch overlay. Once a packet is forwarded from a
physical switch to a Scotch vSwitch, it needs to be forwarded
to the destination. This can be done if a path over the
underlying SDN network can be set up on demand. But
this may not be desirable since it may overload the control
paths of physical switches on the path and create other hot
spots. Another option is to configure tunnels between the
Scotch vSwitch and the destinations directly. This, however,
would lead to a larger number of tunnels since it requires one
tunnel from each Scotch vSwitch to each host.

To avoid these problems, we partition hosts based on their
locations so that all hosts are covered by one or more nearby
Scotch vSwitches. For example, in the case of data center
SDN network, there may be two Scotch vSwitches at each
rack. Tunnels are set up to connect the host vSwitches with
their local Scotch vSwitches.

Figure 5: Architecture of Scotch overlay network.

Finally, we choose to form a fully connected vSwitch mesh
in order to facilitate the overlay routing. The arrows in
Fig. 5 show how the packets are forwarded through the
Scotch overlay when the Scotch is on. Packets are first
forwarded from the physical switch to a randomly chosen



Scotch vSwitch. Then they are routed across the mesh to
the vSwitch that is closest to its destination. The receiving
Scotch vSwitch further delivers the packets to the destina-
tion host via the tunnel. Finally, the host vSwitch delivers
the packet to the destination VM. Since there is a full-mesh
tunnel connectivity between Scotch vSwitches, a packet tra-
verses three tunnels before reaching its destination.

Next, we use an example to describe how the Scotch over-
lay network scales up the control path throughput, and also
illustrate how packets are forwarded if middleboxes are in-
volved.

4.2 An example
Fig. 6 illustrates an example how the scheme works. The

OpenFlow controller monitors the rate of Packet-In mes-
sages sent by the OFA of each physical switch to determine
if the control path is congested. If a control path is deemed
to be congested, the new flow packets arriving at the switch
are forwarded to one or multiple Scotch vSwitches (only one
is shown in Fig. 6) (Step 1 in Fig. 6). This allow these pack-
ets to leave the physical switch via the data plane instead
of being handled by overloaded OFA and going through the
congested control path. Details of overload forwarding rule
insertion at the physical switch and load balancing across
multiple vSwitches are discussed in Section 5.1.
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Figure 6: An example showing how Scotch works.

When the packet reaches the vSwitch, the vSwitch treats
the packet as a new flow packet. The vSwitch OFA then con-
structs a Packet-In message and forwards it to the OpenFlow
controller (Step 2 in Fig. 6). We configure the vSwitch to
forward the entire packet to the controller, so that the con-
troller can have more flexibility in deciding how to forward
the packet. The controller can choose to set up the path ei-
ther from the vSwitch or from the original physical switch. If
the path is set up from the vSwitch, the Scotch overlay tun-
nels are used to forward the packet. The controller needs to
set up the forwarding rules at the corresponding vSwitches,
as done in Step 3 in Fig. 6.

The packets continue to be forwarded on the Scotch over-
lay until they reach the destination (Step 4 and 5 in Fig. 6).
If middleboxes need to be passed through, e.g., a firewall
needs to be passed through as shown in Fig. 6, the packets
are routed through the firewall (Step 6, 7, 8, and 5). Details
of maintaining policy consistency is described in Section 5.4.

Packets from the same flow follow the same overlay data
path.

5. DESIGN DETAILS

5.1 Load balancing across vSwitches
In general, we want to balance the network traffic among

different vSwitches in the overlay to avoid performance bot-
tlenecks. Hence when multiple vSwitches are used to receive
packets from a physical switch, we need a mechanism to do
load balancing between these vSwitches. In the following,
we describe a method that implements load balancing by us-
ing the group table feature offered in OpenFlow Switch Spec
1.3 [12].

A group table consists of multiple group entries, where
each entry contains group Id, group type, counters, and ac-
tion buckets. Group type defines the group semantics. Ac-
tion buckets contain an ordered list of action buckets, where
each action bucket contains a set of actions to be executed
and their associated parameters.

To achieve load balancing, we use select group type, which
chooses one bucket in the action buckets to be executed.
The bucket selection algorithm is not defined in the spec
and the decision is left to the switch vendors/users. Given
that ECMP load balancing is well accepted for router im-
plementations, it is conceivable that using a hash function
based on the flow id may be a likely choice for many vendors.
We define one action bucket for each tunnel that connects
the physical switch with a vSwitch (see Fig. 5). The action
of this bucket is to forward the packet to the corresponding
vSwitch using the pre-set tunnel.

5.2 Flow management at OpenFlow controller
Identifying the flows at the controller. In order to
manage the flows at the central controller, we first need to
make sure that the Packet-In message arriving at the con-
troller from the Scotch vSwitch carries the same information
as that coming directly from the physical switches. This is
mostly true since the Packet-In messages contain similar in-
formation in both cases. But there are two exceptions. First,
when the packet comes from a vSwitch, it does not contain
the original physical switch id. This can be easily addressed
by maintaining a table to map the tunnel id to the phys-
ical switch id, so that the controller can infer the physical
switch id based on the tunnel id contained in the Packet-In
meta data. Second, the packet from vSwitch also does not
contain the original ingress port id at the physical switch.
We propose to use a second label to solve this problem. In
the case of MPLS, an inner MPLS label is pushed into the
packet header based on the ingress port. In the case of GRE,
the GRE key is set according to the ingress port. Note that
since the packets need to be load balanced across different
vSwitches, two flow tables are needed at the physical switch:
the first table contains the rule for setting the ingress port;
and the second table contains the rule for load balancing.
The vSwitch strips off the inner MPLS label or the GRE
key, attaches the information on the Packet-In message, and
send them to the controller. The controller maintains the
flow’s first-hop physical switch id and the ingress port id at
the Flow Info Database. Such information will be used for
large flow migration as described in Section 5.3.
Flow grouping and differentiation. Next we describe
how the OpenFlow controller manages the new flows. When



a new flow arrives, the controller has three choices: (1) for-
warding the flow over the physical SDN network, starting
from the first physical switch encountered by the flow; (2)
forwarding the flow using the vSwitch overlay network, start-
ing from the vSwitch which forwards the first packet using
the Packet-In message; and (3) dropping the flow when the
load is too high, especially if the flow is identified as a DDoS
attack flow. In general, we can classify the flows into dif-
ferent groups and enforce fair sharing of the SDN network
across groups. For example, we can group the flows accord-
ing to which customer it belongs to, so that we can achieve
fair sharing among different customers. In the following, we
give an example of providing fair access to the SDN network
for the flows arriving from different ingress ports of the same
switch. This is motivated by the observation that if a DDoS
attack comes from one or a few ports, we can limit its impact
to those ports only.

Figure 7: Scotch Flow management at the OpenFlow
controller for one SDN switch: ingress-port differ-
entiation and large flow migration from the Scotch
overlay to the SDN network.

For the new flows from the same physical switch, the
OpenFlow controller maintains one queue per ingress port
(see Ingress port differentiation at the lower part of Fig. 7).
The service rate for the queue is R, the maximum rate at
which the OpenFlow controller can install rules at the physi-
cal switch without insertion failure or packet loss in the data
plane. We will investigate how to choose the proper value
of R in Section 6. The controller serves the different queues
in a round-robin fashion so as to share the available service
rate evenly among ingress ports. If a queue size grows to be
larger than the overlay threshold, we assume that the new
flows at this queue are beyond the control plane capacity on
the physical switch network. Hence the controller will route
the flows surpassing the threshold over the Scotch overlay by
installing forwarding rules at corresponding vSwitches. If a
queue size continues to build up, and exceeds the dropping
threshold, then neither the physical network nor the Scotch
overlay is able to carry these flows. The Packet-In messages
beyond the dropping threshold will simply be dropped from
the queue.

Note that the focus of this paper is to provide a mecha-
nism to mitigate the impact of SDN control path congestion,
which may be caused by flash crowds or DDoS attacks. Al-

though our scheme offers high visibility to new flows and the
opportunity and mechanism to monitor and handle flows, we
do not address DDoS attack detection and diagnosis prob-
lems. Existing network security tools or solutions can be
readily integrated into our framework, e.g., as a new ap-
plication at the SDN controller, to take advantage of the
visibility and flexibility offered by Scotch.

5.3 Migrating large flows out of the overlay
network

Although vSwitch overlay can scale up the control path
capacity, it is not desirable to only forward flows by using
vSwitches since the vSwitch data plane has a much lower
throughput than that of physical switches. In addition, the
forwarding path on the overlay network is longer than the
path on the physical network. In this section, we discuss
how to take advantage of the high data plane capacity of
the underlying physical network.

Measurement studies have shown that the majority of link
capacity is consumed by a small fraction of large flows [1].
Hence our idea is to identify the large flows in the network
and migrate the large flows out of the Scotch overlay. Since
there are few large flows in the network, such migration
should not incur major control plane overhead.

The middle part of Fig. 7 illustrates the operations that
the controller conducts for large flow migration. The con-
troller sends the flow-stats query messages to the vSwitches,
and collects the flow stats including packet counts. The large
flow identifier selects the flows with high packet counts, and
puts the large flow migration requests into the large flow
migration queue. The controller then queries the Flow Info
Database to look up the flow’s first hop physical switch. The
controller then computes the path and checks the message
rate of all switches on the path to make sure their control
plane is not overloaded. It then sets up the path from the
physical switch to the destination. This is done by insert-
ing the flow forwarding rules into the admitted flow queue of
the corresponding switches (top part of Fig.. 7). The rules
will be installed on the switches when the inserted rules are
pulled out of the queue by the controller. Once the foward-
ing rules are installed along the path, the flow will be moved
to the new path, and remain at the physical SDN network for
the rest of time. Note that the forwarding rule on the first
hop switch is added at last so that packets are forwarded on
the new path only after all switches on the path are ready.

The OpenFlow controller gives the highest priority to the
admitted flow queue, followed by the large flow queue. Ingress-
port differentiation queues receive the lowest priority. Such
a priority order causes small flows to be forwarded on phys-
ical paths only after all large flows are accommodated.

5.4 Maintaining policy consistency
When we migrate a flow from Scotch overlay to the un-

derlying physical network, we need to make sure that both
routing paths satisfy the same policy constraints. The most
common policy constraints are middlebox traversal, where
the flow has to be routed across a sequence of middleboxes
according to a specific order.

A naive approach is to compute the new path of physi-
cal switches without considering the existing vSwitch path.
For example, if a flow is routed first through a firewall FW1

and then a load balancer LB1 on the vSwitch paths, we
may compute a new path that uses a different set of fire-



wall FW2 and load balancer LB2. This approach in general
does not work since the middleboxes often maintain flow
states. When a flow is routed to a new middlebox in the
middle of the connection, the new middlebox may either re-
ject the flow or handle the flow differently due to lack of
pre-established context. Although it is possible to transfer
flow states between old and new middleboxes, this requires
middlebox specific changes and may lead to significant de-
velopment cost and performance penalty.

Figure 8: Maintain policy consistency in Scotch.

In order to avoid the middlebox state synchronization
problem, our design enforces the flow to go through the same
set of middleboxes in both the vSwitch and physical switch
paths. Figure 8 illustrates how this is done. In this example
we assume a typical configuration where a pair of physical
switches, SU and SD, are connected to the input and output
of the middlebox (firewall), respectively. But the solution
also works for other configurations, as we will discuss at the
end of this section.

The green line on the top shows the overlay path. The
vSwitches in the overlay mesh connect to the physical switches
SU and SD with tunnels. In the case that the physical
switches cannot support tunnels to all vSwitches in the mesh,
a few dedicated vSwitches in the mesh that are close to
the middleboxes can serve as dedicated tunnel aggregation
points. The upstream physical switch, SU , decapsulates the
tuneled packet before forwarding the packet to the middle-
box to ensure that the middlebox sees the original packet
without the tunnel header. Similarly, the downstream phys-
ical switch, SD, encapsulates the packet again so that the
packet can be forwarded on the tunnel. The flow rules at
physical switches SU and SD (green entries in the flow ta-
bles) enforce the flows on the overlay path to go through the
firewall and stay on the overlay.

The red line at the bottom shows the path for flows that
are not routed on the overlay. They can be either elephant
flows that are selected to migrate, or the flows that are set
up while the physical switches have sufficient control plane
capacity. The flow rules for forwarding such flows are shown
in red in the flow tables. The red (physical path) rules have
higher priority than the green (overlay) rules. Each individ-
ual flow forwarded on the physical path requires a red rule,
while all flows on the overlay path share the same green rule.
In other words, flows without individual rule entries are for-
warded on the overlay path by default. This is important for
scalability: when the control plane is overloaded, all flows
can be forwarded on the overlay path without incurring per-
flow setup overhead on the physical switches.

Fig. 8 shows an example of how flows are forwarded. Ini-
tially, flow f1 is routed over the underlying physical network

while other flows are routed over the Scotch overlay. When
an elephant flow, say f2, needs to be migrated to the phys-
ical path at the bottom, the controller adds an additional
forwarding rule to make SD forward flow f2 to the physical
network.

We next examine the impact of different middlebox con-
nection types. In the data center network, sometimes the
middleboxes are “attached” to a physical switch. This hap-
pens, for instance, when the middlebox is integrated with
the physical switch or router. This is essentially combining
the SU and SD in Figure 8. Since the rules on both switches
are independent of each other, we can simply combine the
rules on SU and SD and install them on the “attaching”
switch. Virtual middleboxes that run on Virtual Machines
may also be combined. In this case a vSwitch can run on the
hypervisor of the middlebox host and execute the functions
of SU and SD.

5.5 Withdrawal from Scotch overlay
As the DDoS attack stops or the flash crowd goes away,

the switch control path becomes uncongested and hence the
Scotch overlay becomes unnecessary. We then stop forward-
ing new flows to the overlay at the uncongested switch, while
keeping existing flows uninterrupted.

The controller detects such control plane condition change
by monitoring the new flow arrival rate at physical switches.
If the arrival rate falls below a threshold, the OpenFlow con-
troller starts the withdrawal process. The withdrawal process
consists of three steps. First, for the flows that are currently
being routed over the Scotch overlay, the controller inserts
rules at the switch to continuously forward these flows to
the Scotch overlay. Since the large flows should have been
already migrated to the physical network, most of these flows
are likely to be small flows and may terminate shortly. Sec-
ond, the controller removes the default flow forwarding rule
that was inserted initially when Scotch was activated (Sec-
tion 5.1). The new flow packets will be forwarded to the
OpenFlow controller directly via OFA. Third, if any remain-
ing small flows routed on the overlay become large flows,
they can still be migrated to the physical path following the
same migration procedure.

Note that the Scotch overlay is for the entire network, so
other congested switches may continue to use Scotch overlay.

5.6 Configuration and maintenance
To configure the Scotch overlay, we first need to select host

vSwitches based on the planned control path capacity, phys-
ical network topology, host and middlebox locations, and so
on. Extra backup vSwitches are added to provide necessary
fault tolerance. We then configure the Scotch overlay by set-
ting up tunnels between various entities: between physical
switches and vSwitches for load distribution, between each
pair of mesh vSwitches for forwarding, and between mesh
and host vSwitches for delivery. vSwitch offers reasonably
high data throughput [4]. Recent advancements in packet
processing at general purpose computers, such as the sys-
tems based on the Intel DPDK library, can further boost
the vSwitch forwarding speed [8] significantly. In addition,
vSwitch has low overhead to support software tunneling. Ac-
cording to [31], it is possible to do tunneling in software with
performance and overhead comparable to non encapsulated
traffic, and to support hundreds of thousands of tunnel end
points. In terms of configuration overhead, although the



Scotch overlay can be large, configuration is done largely
offline so it should not affect operation efficiency.

A vSwitch may fail or stop functioning properly. Hence
we need to detect such failures in order to avoid service in-
terruption. vSwitch has a build-in heartbeat module that
periodically sends the ECHO REQUEST message to the
OpenFlow controller, which responds with the ECHO RE-
SPONSE message. The heartbeat period can be adjusted
by changing configuration parameter. The heartbeat mes-
sage enables the OpenFlow controller to detect the failure
of a vSwitch. In fact, several OpenFlow controllers, e.g.
Floodlight [11], already include the vSwtich failure detection
module. Once a controller detects the failure, the controller
can replace the failed vSwitch with the backup in the action
buckets installed in the physical switch as described in Sec-
tion 5.1. The flows that are originally routed through the
failed vSwitch will then be handled by the backup vSwitch,
which treats the affected flows as new flows. When recov-
ered, the failed vSwitch can join back Scotch as a new or
backup vSwitch.

We may also need to add new vSwitches to increase the
Scotch overlay capacity or replace the departed vSwitches. A
new vSwitch becomes part of the overlay after it is connected
with other vSwitches or physical switches, depending on its
role, and is registered with the Scotch overlay controller. We
do not expect frequent vSwitch additions or failures.

6. EVALUATION
We implement the Scotch overlay management as an appli-

cation on the Ryu OpenFlow controller. We also construct
a basic Scotch overlay with multiple vSwitches, and form
an overlay together with end-hosts and physical switches
using MPLS tunnels. Note that attackers, servers, clients,
and vSwitches can be anywhere as long as a tunnel can be
set up between the physical switch and them. We use ex-
periments to demonstrate the benefits of ingress port dif-
ferentiation and large flow migration. We also show the
growth in the Scotch overlay’s capacity with addition of new
vSwitches into the overlay. We further investigate the extra
delay incurred by the Scotch overlay traffic relay. Finally,
we conduct the trace driven experiment that demonstrates
the benefits of Scotch to the application performance in a
realistic network environment.

6.1 Maximum flow rule insertion rate
As shown in Fig. 7, the maximum rate at which the Open-

Flow controller installs the new rules into the switch, R, is an
important design parameter. The larger the R, the better,
so that more traffic can be routed over the physical network.
However, the value of R needs to be set properly so that all
the new flow rule insertion requests can be successfully han-
dled at the switch. We first measure the maximum flow rule
insertion rate allowed by the Pica8 switch. We let the Ryu
controller generate flow rules at a constant rate and send
them to the Pica8 switch. The switch OFA installs the rules
into the flow table. The generated rules are all different,
and the time-out period of a rule is set to be 10 seconds.
Throughout the experiment, there is no data traffic passing
through the switch.

The Ryu controller periodically queries the switch to get
the number of rules currently installed in the flow table. We
set the query interval sufficiently long (30 seconds), to min-
imize the impact on the OFA’s rule insertion performance.

Denote by Nk the number of rules in the flow table at the
k-th query, and K the total number of queries. Denote by T
the rule time-out period. The successful insertion rates can
be estimated as

∑
Nk/(K · T ).
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Figure 9: Maximum flow rule insertion rate at the
Pica8 switch.

Fig. 9 plots the successful flow rule insertion rate with
varying attempted insertion rate. The Pica8 switch is able
to handle up to 200 rules/second without loss. After that,
some rule requests are not installed into the flow table,
and the successful insertion rate flattens out at about 1000
rules/second. In Scotch, the OpenFlow controller should
only insert the flow rules at a rate that does not cause in-
stallation failure.

6.2 Interaction of switch data plane and con-
trol path

During the maximum flow rule insertion rate experiment,
the Pica8 switch does not route any data traffic. In real-
ity, while the OFA writes the flow rules into the flow ta-
ble, the switch also does flow table lookups to route incom-
ing packets. These two activities interact with each other.
We conduct an experiment where the OpenFlow controller
attempts to insert the flow rule at certain rates while the
switch routes the data traffic with rates of 500, 1000, and
2000 packets/second. We measure the data-plane packet
loss rate at the receiving host.
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Figure 10: Interaction of the data path and the con-
trol path at the Pica8 switch.

Fig. 10 depicts the packet loss ratio with varying flow
rule insertion rates. The curve exhibits an interesting turn-
ing point at a rule insertion rate of 1300 rules/second. The
data path loss rate exceeds 90% when the rule insertion rate



is greater than 1300 packets/second. This clearly demon-
strates the interaction between the data and control-paths.
We conjecture that the interaction is caused by the con-
tention for the flow table access, which is confirmed by the
vendor [22].

The results from this experiment and the previous exper-
iment help us with setting the right new flow insertion rate
at the OpenFlow controller. For Pica8 switch, the flow rule
insertion rate is lower. Thus it governs the new flow inser-
tation rate at the controller. Fortunately we only need to
do one set of such experiments for every type of physical
switches.

6.3 Effect of ingress port differentiation
Here we evaluate the benefits of ingress port differentia-

tion. The experiment setup is the same as in Fig. 2 with
the vSwitches added to form the Scotch overlay. An at-
tacker generates the attacking flows, while the client gener-
ates the normal flows. The normal new flow rate is set at
30 flows/second, while we vary the attacker’s new flow rate.
Since we are only interested in switch’s control-path perfor-
mance, we generate one packet for each flow with different
IP addresses. For this experiment, we turn off the large flow
migration functionality and focus only on the ingress port
differentiation feature. We set the queue service rate to be
70 flows/second to make sure the rule insertion will be suc-
cessful and that it will not affect the data path throughput.

Fig. 12(a) depicts the flow failure rate for the attacking
traffic and the normal traffic. The Scotch overlay manage-
ment application maintains two queues and each queue re-
ceives at least 35 flows/second for rule insertion. All normal
flows can be installed successfully. Attack traffic only uses
the leftover capacity from the server, with some of the attack
traffic being dropped at the OpenFlow controller. Ingress
port differentiation clearly segregates the attack traffic from
normal traffic arriving at a different ingress port.

6.4 Benefits of large flow migration and adding
additional vSwitches

In this experiment, we examine the effect of large flow
migration. To focus on the performance of large flow mi-
gration, we turn off the ingress port differentiation in the
OpenFlow controller application. All flows arriving at the
OpenFlow controller will be routed over the Scotch overlay.
The large flow will be migrated to the underlying physical
network. We set the large flow detection packet count to be
10 packets.

The attacker sends out the attacking traffic (one packet
per flow) at a constant rate of 200 flows/second. The client
establishes two large flows to the server at time 200 and
400 seconds, respectively. Fig. 12(b) depicts the data-path
traffic rate going through the vSwitch and the Pica8 switch,
respectively. Since the traffic is forwarded to the vSwitch by
the Pica8 switch, the data-path traffic rate going through
the Pica8 switch is equal to the total traffic rate. The data-
path traffic rate going through the vSwitch is the traffic rate
routed over the Scotch overlay.

The data-plane traffic rate is 200 packets/second at both
the Pica8 switch and the Open vSwtich at the beginning of
the experiment. This is because the Scotch overlay is on and
all traffic passes through both the Pica8 physical switch and
the vSwitch. The flow size is small (one packet per flow) so
none of the attacking flow is migrated to the physical switch.

At time 200 seconds, a large flow of 80 packets/second
starts. We see a small bump in the data-path traffic rate of
the vSwitch since the large flow is initially routed through
the vSwitch. Once the packet count reaches 10 packets,
the large flow detection threshold set in the Scotch appli-
cation at the controller, the large flow is migrated to the
Pica8 switch. The traffic rate at the vSwitch comes back to
200 packets/second. The same happens at time 400 seconds
when the second large flow of 60 packets/second arrives. Ex-
cept for a short time period during which the vSwitch traffic
rate experiences a bump, the data-path traffic rate at the
vSwitch remains at 200 packets/second. The experiment
clearly shows that Scotch overlay carries the small attack
flows that require large control-path handling but relatively
a small data-path throughput.

Next we investigate the benefits of additional vSwitches
to the Scotch overlay. The experimental setup is similar
to the large flow migration experiment except that we add
one more vSwitch as a Scotch node. Fig. 12(c) depicts the
data-path traffic rate at the Pica8 switch and two vSwitches,
respectively. Here the data-path traffic rate is 100 pack-
ets/seconds since the attack traffic is carried by two vSwitches.
The large flow arriving at time 200 seconds is first routed
through vSwitch 1 and then migrated to Pica8 switch. The
second large flow arriving at time 400 seconds is routed
through vSwitch 2 at first and then migrated to Pica8 switch.
The two vSwitches, however, split the attacking traffic. The
Scotch overlay’s data-path and control-path overall capaci-
ties are doubled by adding one more vSwitch. In general, we
can scale up the Scotch overlay’s data-path and control-path
capacity by adding more vSwitches.

6.5 Delay of vSwitch relay in Scotch
As in any Peer-to-Peer network, Scotch overlay incurs

both extra bandwidth and delay overhead. There have been
extensive studies on the bandwidth overhead caused by the
extra traffic of the overlay network, e.g., [32]. Such overhead
is in general tolerable. Also in our case, Scotch is turned on
only if the control path is congested. The alternative would
be to drop the new flows, which is clearly less preferrable.

We conduct experiments to evaluate the extra delay over-
head caused by Scotch overlay. Without considering the
middleboxes, when Scotch is activated, packets are first sent
to a randomly selected vSwitch for load balancing purpose.
Packets are then forward to the vSwitch close to the desti-
nation host. The later vSwitch finally forwards the traffic to
the destination. The extra delay comprises of both propa-
gation and processing delays incurred at both the vSwitches
and the extra physical switches along the tunnels. Since the
load-balancing vSwitch is randomly selected, the propaga-
tion delay on average is doubled when packets are forwarded
on the Scotch overlay.

We conduct two delay measurements with and without
Scotch overlay. In the first experiment, a client periodically
sends ping messages to a server via the Pica8 physical switch.
In the second experiment, the ping message is detoured to
two vSwitches in sequence before reaching the server; each
vSwitch represents a vSwitch in the Scotch overlay. There
is no direct link between the vSwitches; instead they are
connected via the Pica8 switch. Hence the packet has to
traverse through the physical switch multiple times when it
is forwarded on the overlay. Note that we ignore the host
vSwitch in both experiments; including it would add a small
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Figure 12: (a)(b) Delay with and without vSwitch relay (c) File downloading delay with and without Scotch.

additional delay for both cases but not affecting the compar-
ison. For the convenience of measurement, we run both the
client and the server on the same physical host in order to
avoid clock synchronization problem.

Fig. 12(a)(b) shows 5,000 measured delay samples and
the CDF from the experiments. The delay without over-
lay is very small, around 17 microseconds. The delay with
overlay is on average 113 microseconds. The delay with the
vSwitch relay is more volatile, with the standard deviation
of 22 microsecond. This indicates that packet processing
done by a vSwitch software has larger variance compared to
a hardware switch. However, given that the overall delay
is still very small, well below 1ms, we believe this satisfies
the requirement of most applications in the data-center sce-
nario. If Scotch is employed for a wide-area network, the
extra switch processing delay should be negligible compared
to the propagation delay.

6.6 Case study with data center traffic trace
Finally we conduct a case study with real data center traf-

fic traces [24]. We select the packet trace collected from a
university data-center (EDU1 in [1]). The packet trace is
collected at a switch inside this data-center. We use Tcpre-
play [29] to playback the first 30 minutes of the trace, and
send the traffic toward a sink node via the Pica8 switch.
To study the benefit of Scotch on applications, we set an
Apache server that serves out a small file of one Kbytes. A
client periodically (every ten seconds) attempts to fetch the
file. Both the file download traffic and background traffic
go through the same physical switch. We measure the file
downloading time for both with and without Scotch, and
report the results in Fig. 12(c).

As reported in the study [1] (Fig. 3(a)), the number flow
rate is slightly greater than 200 flows/sec, which is right
above the loss-free control path capacity of the Pica8 switch.
Without the help of Scotch, 3% of file retrieval fails. For the
successful file retrievals, the average downloading time is
71.4 second, with the standard deviation of 133.9 seconds.
In contrast, with the Scotch overlay, the control path ca-
pacity is greatly improved and the client always manages to
retrieve the file successfully. The average downloading time
is shortened to 0.8 second, with the standard deviation of
3.3 seconds. This result shows that Scotch improves the file
downloading performance significantly. Note that without
Scotch, the worst downloading time is 711 seconds. Looking
at the tcpdump trace, we notice that due to the control path
congestion, it takes multiple attempts to successfully install
a flow rule into the switch. Since the expiration time interval
for a flow rule is 10 seconds, a flow rule may be timed out
before a TCP connection is succesfully set up. This causes
the application to make multiple retransmissions before the
download succeeds.

7. CONCLUSION
To mitigate the bottleneck of control path of SDN un-

der the surge of control traffic (e.g., due to flash crowds
or DDoS attacks), we present Scotch that can elastically im-
prove the control plane capability of SDN by using an Open-
flow vSwitch overlay network that primarily carries small
flows. Scotch exploits both the high control plane through-
put of vSwitches and the high data plane throughput of
hardware switches. It enables the control plane through-
put to scale linearly with the number of vSwitches used.



While achieving the high control plane capacity, Scotch still
preserves high visibility of new flows and flexibility of fine-
grained flow control at the central controller. We exper-
imentally evaluate the performance of Scotch and show its
effectiveness in elastically scaling control plane capacity well
beyond what is possible with current switches.
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