
An Investigation of Different Computing Sources
for Mobile Application Outsourcing on the Road

Mohammed Anowarul Hassan and Songqing Chen

Dept. of Computer Science
George Mason University

mhassanb@gmu.edu,sqchen@cs.gmu.edu

Abstract. Mobile applications are growing fast due to pervasive usage
of mobile devices. With inherently limited on-device resources, plenty of
research has been conducted on job partitioning/outsourcing strategies
to execute mobile computing tasks on external sources, such as public
clouds or nearby computers. However, little is known about the perfor-
mance difference to mobile users on these external computing sources.
In this paper, considering the user’s response time and the battery power
consumption on mobile devices, we first show that outsourcing mobile
applications to public clouds may not outperform outsourcing to nearby
residential computers, particularly for delay sensitive applications. To
facilitate efficient mobile outsourcing to residential computers, we pro-
pose to build a framework RoseMic (ROad-SidE-MobIle-Computing). In
RoseMic, a resource overlay network is built with users’ idle residential
(home) computers. To encourage the sharing of idle residential comput-
ers, RoseMic also includes a credit based incentive mechanism that can
be enforced automatically without users’ interferences in order to de-
feat collusion attacks. To demonstrate the performance of RoseMic, we
run several real-world applications. The results show that RoseMic out-
performs Amazon EC2 by 3 times and 4 times on average in terms of
response time and the battery power consumption, respectively.

1 Introduction

With the fast development of micro-chip and wireless technologies, mobile de-
vices are gaining increasing popularity. According to International Data Corpo-
ration, the total number of hand-held devices sold in 2009 is 1,127.8 million [4].
Among them, 174.2 millions (15.5%) are smartphones, which is a 15.1% increase
from the previous year.

The pervasive usage of mobile devices has enabled fast growth of mobile
applications. Compared to traditional mobile phones that are mainly used for
voice communications, today a smartphone is capable of common tasks that
were only possible on desktop computers, such as surfing the Internet, taking
and editing pictures, gaming, document processing, etc.

However, mobile devices, albeit their fastly increasing CPU speed and mem-
ory size, are not as capable as modern desktop computers when running these
applications. In particular, mobile devices are ultimately constrained by the
limited battery supply and a prolonged computation process or a computing
intensive application can quickly exhaust the limited battery power.

2 Mohammed Anowarul Hassan and Songqing Chen

To address the fundamental challenge posed by the limited on-device re-
sources for computing-intensive tasks, plenty of research has been conducted on
designing various job partitioning/outsourcing strategies [7, 12, 15] to outsource
mobile computing tasks to external sources. Today external computing sources
are widely available, such as public clouds or nearby surrogate computers. How-
ever, little has been done to investigate the outsourcing performance to mobile
users on different computing sources. This is particularly important for some
delay sensitive mobile applications. In practice, a mobile user in motion may
only have sporadic WiFi connections with very short connection duration. For
example, previous work [14] has shown that with a typical WLAN with 200 me-
ters of range, a user in motion with a speed up to 120 Km/h can have Internet
access for about only 6 - 12 seconds. It is thus very desirable for a mobile user
to complete the outsourcing and get the result back as soon as possible, best in
this time frame.

In this paper, we set to investigate where to effectively outsource mobile
applications on the road. Considering the response time to the user and the
battery power consumption on mobile devices that are critical to mobile users
in motion, we first show that outsourcing mobile applications to clouds may not
outperform outsourcing to nearby residential computers, particular for delay
sensitive applications. Thus, to facilitate efficient mobile outsourcing to road-
side residential computers, we propose to build a framework RoseMic (ROad-
SidE-MobIle-Computing), aiming to reduce the user’s response time and battery
power consumption. In RoseMic, a resource overlay network is constructed with
participating users’ idle residential (home) computers. Furthermore, to encour-
age users to participate in this resource overlay, an incentive mechanism is built
and enforced automatically without any user’s interference in order to defeat
collusion attacks.

To demonstrate the performance of RoseMic, we have built a prototype
and experimented RoseMic with several real-world applications, including text
searching, face detection, and image processing. The results show that RoseMic
not only outperforms on-device computing by 8 times and 10 times in terms of
response time and the battery power consumption, respectively, but also out-
performs Amazon EC2 by 3 times and 4 times on average, respectively.

The remainder of the paper is organized as follows. We present our motivation
in Section 2 and RoseMic overview in Section 3, followed by the detailed design
in Section 4. We present some preliminary evaluation results in Section 5 and
discuss related work in Section 6. We make concluding remarks in Section 7.

2 Motivation

Previous research has proposed that mobile devices can outsource computing
intensive jobs to public clouds or surrogate computers. To test the performance
of outsourcing to the public clouds and nearby residential computers, we have
conducted some preliminary experiments with Amazon EC2 and our local com-
puters. The experiment is to find a string in a text file. Three approaches have
been tested out.

Mobile Application Outsourcing 3

– Android: This is to perform computation on the mobile device itself. In the
experiment, we use Google Nexus one SmartPhone with Android 2.2 Operat-
ing System and 1 GHz CPU and 512 MB RAM.

– Amazon EC2: This is to send the data file and the computing task to Ama-
zon EC2. We rent EC2 and follow the instructions to get our rented portion
initialized first. Our portion of slice uses a CPU of 5 GHz and 1.7 GB of
memory. The wireless network speed is 300 Kbps on average.

– Residential Computers: This is to send the data file and the computing
task to nearby computers. In the experiment, we use the Android phone to
send to the local computer in the same network via 802.11b with a speed of
10 Mbps. The local computer has a CPU of 2 GHz and 3.2 GB of RAM.

10 100 200 400 750 1000
0

5

10

15

20

25

File Size (KB)

Tim
e (

Se
c)

Residential Computers
Android
Amazon EC2 Instance

Fig. 1. Response Time

10 100 200 400 750 1000
0

2

4

6

8

File Size (KB)

En
erg

y (
J)

Residential Computers
Android
Amazon EC2 Instance

Fig. 2. Energy Consumption

Figure 1 shows the user response time when the same program is executed
with different approaches along the increase of the file size. It also shows that
although EC2 has a much faster CPU, the local machine outperforms EC2 by
about 7 times and the performance on EC2 is even worse than the performance
when it is executed on the mobile device itself. Figure 2 further shows the cor-
responding energy consumed on the mobile device for executing the program
with different approaches. Not surprisingly, outsourcing to nearby computers
consumes the least amount of energy on Android based on Power Tutor [5].

We have also conducted experiments with several other applications and
obtained similar results. These results show that when outsourcing mobile com-
puting tasks, the network tranferring time, i.e., the available bandwidth, has to
be taken into consideration and sometimes this may be a dominant factor. Un-
der such situations, outsourcing to nearby residential computers may be more
beneficial than to public clouds.

3 Overview of ROad-SidE-MobIle-Computing (RoseMic)

RoseMic is proposed to assist mobile computation outsourcing by leveraging
nearby residential computers. In RoseMic, we assume that data transferring in
this procedure can only be done through WiFi instead of cellular connections
considering its cost and relatively small bandwidth.

Figure 3 depicts the architecture of RoseMic. As shown in this figure, there
is a resource overlay that a participating mobile user can leverage for computing

4 Mohammed Anowarul Hassan and Songqing Chen

Fig. 3. Architecture of RoseMic

in motion. The resource overlay consists of normal users’ residential (home)
computers. In general, when a user is in motion, her home computer is often
idle, offering available CPU cycles and WiFi connections that can be utilized.
A user can register her home computer in the resource overlay (Step 2) before
her departure through the rendezvous points (Step 1). At present, we assume
there is one to one map between the mobile user and her home computer on the
overlay. It is easy to expand to the one to many case.

When the user is on the road and wants to execute some computing intensive
application, she submits the job to the RoseMic client running on her mobile
device (Step 3). The RoseMic client will contact the overlay (Step 4) by vis-
iting a well-known bootstrapping site. Such contact could be done through the
cellular connection if WiFi is not available. In the response to this request, the
user is directed to the rendezvous point (Step 5). Based on the geographical
location of the mobile user, a list of nearby residential computers on the over-
lay are identified by the rendezvous point. The rendezvous point also maintains
the credit information for each user. The scheduler running on the rendezvous
point further selects some of these computers based on its scheduling policy. The
scheduler can take a lot of factors into consideration, such as the current load
on the machines, the distance to the user, the available credit of the requesting
machine, etc.

Once the list of residential computers in the connectivity range is determined,
the list of the machines is sent back by the rendezvous point to the mobile user
(Step 5). From now on, all communications are done through WiFi connections.
Based on the list, the mobile user connects to these nearby computers and can
start the execution. If the RoseMic scheduler decides to execute the job on-device,
then it does so and returns the result to the user (Step 3). If outsourcing is more
economical, RoseMic then submits the job to the most appropriate residential
computer and waits for the result (Step 6). The RoseMic then also returns
the result to the user’s application (Step 3). Upon the completion of the task,
RoseMic automatically sends the completion information to the rendezvous point

Mobile Application Outsourcing 5

so that the credit scores of the involved users are updated (Step 7). That is,
the credit of the mobile user who requests the computation outsourcing should
be deducted accordingly and the credits of owners of the computing machines
should be increased.

Note that in practice RoseMic does not prevent the user from leveraging
public clouds when necessary. For example, when there is no nearby residential
computers available, public cloud can be used.

4 Design of RoseMic

The previous section shows that RoseMic consists of (1) a resource overlay, (2)
an incentive model and (3) a scheduler. In this section, we further present our
design of these three parts.

4.1 Resource Overlay Network

To utilize nearby residential computers, in RoseMic, a resource overlay network
is constructed by mobile users’ residential computers that would otherwise be
idle. Note that our assumption is that there is a one-to-one map between a mo-
bile user and her residential computer on the overlay. That is, there is a same
id used to identify the mobile device and the corresponding overlay computer.
In addition, a rendezvous point is used to store the credit made by the corre-
sponding overlay computer for each mobile user. Basically, the rendezvous point
provides directory services and maintain a database of record <id, location,

status, credit> for each user. Note the location is the geographical location
of the mobile user’s residential machine, and the status is the load state on that
machine. The location is denoted as a pair of <latitude, longitude>. The
status could be one of the following: idle, medium, busy, and is determined
simply based on the CPU utilization on the machine. In the following context, we
assume the node and the residential computer are interchangeable unless noted
otherwise.

Node Joining If a user wants to register her node to offer services, she can in-
struct the joining node to first contact the bootstrapping site via a Web browser
(assume the same Web site www.RoseMic.org). In the response, the rendezvous
point (RP) is returned to the joining node. Subsequently, the joining node con-
tacts the RP for joining. In the joining request to the RP, the id and location

information is also required. However, we do not assume GPS or GPS-capable
functions on the home computer. Instead, we rely on the Google Geolocation ser-
vice by enabling the “sharing your location” in the web browser. Such a request
leverages Google Geolocation service to identify the location of the requesting
computer based on nearby access points and other wireless information [3].

With the id and location information, the RP can retrieve its available
credit from the database. Furthermore, the RP sets this computer status to idle
initially, and sorts the available computers based on their location. After joining
the resource overlay network, the joining node does not keep its connection with
the RP. Instead, a participating node sends periodic heartbeat message to the
RP to notify it aliveness.

6 Mohammed Anowarul Hassan and Songqing Chen

Node Departure A user’s residential computer may depart from the resource
overlay network for many reasons. For example, the user may want to use her
computer exclusively or it may simply crash. Accordingly, we classify node de-
parture into two categories. The first is normal departure. In a normal departure,
the node notifies the RP about its un-availability and requests to be taken off
from the available list maintained by the RP. Correspondingly, the RP removes
this node from the available computer list. Since a participating node periodi-
cally sends keepalive message to the RP, it is easy to deal with abrupt departure.
Basically, if there is no keepalive message received for a certain timeout period,
the node is assumed to be dead. Correspondingly, the node is removed from the
available list.

4.2 Credit-based Incentive Model

To encourage the contribution of idle CPU cycles and bandwidth from residen-
tial computers, we propose to build a credit-based incentive mechanism on the
overlay. The motivation behind users’ offering their residential computers is as
follows. While a user is in motion, her residential computers is often idle. So
is the residential WiFi connection. Thus, a user in motion can use other users’
computers for computation as a return of offering her computer and WiFi con-
nection for others when she is on the road. To guarantee fair sharing, users who
offer CPU cycles from their computers get credits that they could use in the
future (when they need to use other users’ computers or WiFi connections).

To keep track of the credit of each user, the credit is stored on the RP. To
deal with collusion attacks, RoseMic also includes a credit system. While more
details will be provided later, the high level idea is: upon the completion of a
task, a transaction module in RoseMic automatically reports to RP about the
computing tasks conducted on the relevant computers. Basically, the transaction
module reports 1) the id of computing requester, 2) the ids of the computers
used, 3) the amount of CPU cycles and bandwidth being used from each of
the involved computers. The RP uses this information to calculate the credits
that should be deducted from the requester and distribute these credits to the
involved ids proportionally.

For example, if user A uses the residential computer of C, the credit of user
C should be increased by the equation 1:

creditAC+ = α× CA + β ×DA, (1)

where CA represents the total CPU cycles used by user A, DA represents the
total bandwidth usage by user A, denoted by the amount of data transferred
to the computer of C from A’s mobile device for the computation. Based on
the same principle, user A’s credit is reduced. Note in equation 1, α and β are
normalization factors that can be determined experimentally and/or based on
the resource demand and supply. Initially, each user has no credit but we allow
negative credits in the system.

Our credit-based incentive model is enforced without direct involvement of
the users. This is to deal with collusion attacks that some users may launch to
claim credits for bogus transactions. Unless our transaction module in RoseMic

Mobile Application Outsourcing 7

is attacked and modified, no collusion attacks could be launched. In addition,
we can also enforce that a user cannot use other users’ computer unless her
computer is on the resource overlay in order to deal with free-riders.

4.3 RoseMic Scheduler

The RoseMic scheduler is responsible for finding the most appropriate residential
computers for the mobile user who requests the computation outsourcing service.
In our current design, the scheduler runs on the RP.

In finding the most appropriate computers to execute the task, the RoseMic
scheduler considers the following:

1. User’s credit: A user with a high credit score has a high priority to get her
job outsourced. This is to encourage more users to participate in the resource
overlay network.

2. Job Type: When requesting the computation outsourcing, the mobile user
also indicates the job type. Based on both the CPU and the bandwidth
demand and the data locations, nearby residential computers or the user’s
home computers are determined.

3. Bandwidth: In searching for the most appropriate residential computers for
outsourced computation, the computer with the highest bandwidth is always
selected first if other conditions are the same.

4. Node Status: Since RoseMic targets delay-sensitive applications, the status
of selected computers may affect the response time. Furthermore, it is also
important for the RP to maintain load balance across different residential
computers on the resource overlay.

Considering the above factors, RP employs its optimization function by com-
paring the predicted response time of different task assignment strategies. It
takes a number of input and outputs the best execution strategy.

Algorithm 1 RoseMic Scheduler(I,J,L)

1: LC ← The set of available computers nearby including the mobile device and home
computer of the user calculated from I,J and L

2: LCF ← empty set
3: for each node i in LC do

4: if Jc ≤ ic then

5: add i to LCF

6: end if

7: end for

8: for each node i in LCF do

9: idt ← JD − ids

10: candidate valuei ← (ic − JC)× γ − (idt ÷ ibw)× σ − (|L− il| ÷ ibw)× λ

11: end for

12: return node i = max{∀ i ∈ LCF: candidate valuei}

In the above algorithm, I represents the user’s id, from which the credit
of the user can be retrieved. If multiple users compete for the same residential

8 Mohammed Anowarul Hassan and Songqing Chen

computers, user with higher credit gets the priority. L is the location, which is
needed to find the nearby computers available for computation outsourcing. J
represents the job type. JC indicates the CPU cycle demanded, and JD indicates
the amount of data needed to the transfered for computation. LC is the list of
the available computers, which holds the following informations for each node
in that list: 1) ic: computation power available on node i ; 2) il: location of node
i ; 3) ibw : bandwidth of the channel from the mobile device to the node i ; 4)
ids: amount of data stored in prior for a job J in the node i ; 5) idt: amount of
data needed to be transferred from the mobile device to node i. γ, σ and λ are
constants to add weight on different components. Note that we assume profiling
can be used to obtain these parameters for mobile applications.

Note that we include the mobile device and the home computer of the user
as potential candidates to execute computation as well, because computation
may be economical to execute entirely on the mobile device or the user’s home
computer, where most of the data may reside.

As shown in the algorithm, in the first step, RoseMic reduces the set of
available computers nearby LC to the set of feasible computers LCF. If any node
has enough CPU to execute the job, it is a candidate and added to set LCF. The
candidate value for each node i is calculated based on the latency, bandwidth,
amount of data needed to be transferred and computation power available on
that node. The scheduler then selects the node with highest candidate value to
outsource the computation.

5 Preliminary Evaluation

To evaluate the performance of RoseMic, we conduct experiments with a
RoseMic prototype and compare its performance against when executing on the
mobile device as well as executing on the public cloud Amazon EC2. In these
experiments, the credit system is not being evaluated as these experiments are
conducted locally as proof-of-concept.

5.1 Experiment Setup

We use Google Android Nexus One with 1 GHz CPU and 512 RAM as the
mobile device for the local execution. We use computers with dual-core CPU
with 2GHz and 2 GB RAM to emulate overlay residential computers. The remote
EC2 Ubuntu instance has a 5 GHz CPU with 1.7 GB of RAM. We use Power
Tutor [5] to measure the power consumed by the applications running on the
smartphone. The WiFi is 10 Mbps and the average bandwidth from the Android
Phone to EC2 instance is around 300 Kpbs on average.

We have conducted experiments with three applications, 1) Text Searching,
2) Face Detection, and 3) Image Sub-Pattern Searching.

In the experiments, we emulate a 3 user model and they have identical res-
idential computers and mobile devices. The latitude and longitude of the first
user’s residential computer is 38.901222 and -77.26526, while the other two users’
residential computers are at 38.846224 (Lat.) and -77.306373 (Lon.). The EC2

Mobile Application Outsourcing 9

instances rented are at Northern Virginia Data Center of Amazon. We profile
each application to deduce the average CPU cycle and data transfer requirement
and we run each application in the following different environments.

– On-device(OD): This is to run the application on the mobile device directly.
– Computation+Data(CD): This is to outsource the computation program

and the data. The RoseMic client running on the mobile device gets connected
to the resource overlay and the rendezvous point to explore the neighboring
residential computers and outsource the computation with the data file.

– Computation+Data+Node Failure(CD+F): This is to consider the node
failure in the above environment to study the impact of node failure. When
a node fails, we contact the resource overlay and the rendezvous point once
again to find another neighboring residential computer and restart the job. To
emulate node failure case, we deliberately turn off one computer in the middle
of an on-going computation when the computation is 90% completed. Then
RoseMic detects the failure based on timeout and it contacts resource overlay
and rendezvous point to find another nearby residential computer.

– Computation(C): This is to outsource only the computation for these appli-
cations. This is to emulate the scenario when the selected residential computer
is the user’s home computer, which has the data of the task and the mobile
device only needs to transmit a small portion of data.

– Computation+Node Failure(C+F): This is to consider the node failure
in the above environment. Note that here for both the failed node and the
new node, we outsource only the computation. We emulate the node failure
case as we have done for CD+F.

– EC2 (EC2): We outsource the computation to the remote amazon EC2 in-
stance with 5 GHz of CPU and 1.7 GB of memory. We assume that EC2 is
always available and 100% reliable.

We use Java and outsource the computation class in byte code format and use
java dynamic class loader to execute the computation. We assume the computing
environment is set in advance. In these experiments, we mainly focus on the
response time and the energy consumption on the mobile device.

5.2 Experiment Results

In this section, we describe the performance of the different approaches we have
tested for the three applications. We repeat each experiment five times and
present the average of the results.

Text Search In this experiment, the user searches a string in a text file and the
frequency of occurrence of that string is returned to the user. This simple string
counting application takes an input file of 2.6 MB. We use string matching to
find the total number of occurrence of that string in that text file.

Figure 4 shows the performance of the application when it is executed on
the Android and the computation is outsourced. Figure 4(a) shows the response
time of the execution. Figure 4(b) shows the corresponding energy consumption
on the mobile device. In this application, if the data needs to be outsourced, it is

10 Mohammed Anowarul Hassan and Songqing Chen

0

10

20

30

40

50

60

OD CD
CD+F C

C+F
EC2

Ti
m

e
(S

ec
)

(a) Response Time (Sec)

0

10

20

30

40

50

OD CD
CD+F C

C+F
EC2

En
er

gy
 (J

)

(b) Energy Consumption (J)

Fig. 4. Text Search

2.6 MB. Otherwise, only the computing program needs to be outsourced, which
is 1 KB.

As shown in Figure 4, outsourcing to EC2 results in the worst performance in
terms of both the response time to the user and the amount of energy consumed,
which are significantly larger than if the application is executed on the mobile
device itself. On the EC2, the response time is over 50 seconds. If we consider
the average connection time of a mobile user with a roadside WiFi ranges be-
tween 6-12 seconds [14], this is impossible for a mobile user to get the result in
time in the same communication session although EC2 has a faster CPU speed
(note that Amazon Northern Virginia Center is in the same region where these
experiments are conducted). This would be a critical problem for delay sensitive
mobile applications that a user waits to get the result back.

Figure 4 also shows that although outsourcing to nearby residential comput-
ers demands some bandwidth for file transferring, the response time and the total
energy consumption on the mobile device are 69% and 59% less than that when
the application is executed on the mobile device itself, respectively, indicating
the benefit of the outsourcing.

As residential computers may not be reliable for many reasons (e.g., a user
comes home and wishes to use her computer dedicatedly), we also study the node
failure for this application. Figure 4 shows with node failure, the performance
of outsourcing still outperforms the on-device computing in terms of both the
response time and the total energy consumed on the mobile device, although
there is a 76% and 200% increase compared to if there is no node failure.

Face Detection In this experiment, we take a picture of a human face and
try to match it with all the pictures in a folder previously taken. We use Cross-
Correlation Function [2] to find the correlation between an image pair. Based
upon that, we detect a particular person. We have each image in a different jpg
file. The correlation between the files has been calculated by taking input from
three different streams for 3 RGB values. The resultant size for the reference
images is 575 KB in total and the newly taken image size is 145 KB. So the total
size of the data file is 720 KB, and the computation program is 3 KB.

Mobile Application Outsourcing 11

0

20

40

60

80

100

OD CD
CD+F C

C+F
EC2

Ti
m

e
(S

ec
)

(a) Response Time (Sec)

0

20

40

60

80

100

120

OD CD
CD+F C

C+F
EC2

En
er

gy
 (J

)

(b) Energy (J)

Fig. 5. Face Detection

Figure 5 shows the performance results when the program is executed in dif-
ferent environments. For this application, Figure 5(a) shows that executing on
the Android takes the longest time of about 94.5 seconds. In all the outsourc-
ing scenarios, the response time is significantly reduced. Not surprisingly, the
corresponding energy consumption is the largest for the on-device execution.

While in all the outsourced computation scenarios, both the response time
and the energy consumption are reduced, the reduction when the program is
outsourced to the nearby residential computers is more pronounced than when
the program is outsourced to EC2: on the residential computer, the response time
is about 10.25 seconds and 11.90 seconds without or with the data transferred.
This indicates that it is possible for the user to get the result back with the same
connection when the user is in motion. Correspondingly, the energy consumed
is only about 23% and 36%, respectively, when the computation is outsourced
to nearby residential computers.

Even when there is node failure, Figure 5 shows that both the response time
and the energy consumption increases by 107% and 127% compared to their
counterpart without any node failure, the results are still comparable or better
than those when outsourcing to EC2, in terms of response time and energy
consumption, respectively.

Image Pattern Search In this experiment, we take a picture and try to find
the picture as a part of another large picture in a folder previously taken. We
use Cross-Correlation Function [2] and 2D Logarithmic Search [13] to find the
sub-image. We have each image in a different jpg file. The correlation between
the files has been calculated by taking input from three different streams for 3
RGB values. The resultant size for the reference image is 1.7 MB and the newly
taken image size is 260 KB.

Figure 6 shows the performance results when the program is executed in
different environments. For this application, Figure 6(a) shows that executing on
the Android takes the longest time of about 163.9 seconds. In all the outsourcing
scenarios, the response time is significantly reduced. Correspondingly, the energy
consumption is the largest for the on-device execution.

12 Mohammed Anowarul Hassan and Songqing Chen

0

50

100

150

200

OD CD
CD+F C

C+F
EC2

Ti
m

e
(S

ec
)

(a) Response Time (Sec)

0

50

100

150

200

OD CD
CD+F C

C+F
EC2

En
er

gy
 (J

)

(b) Energy (J)

Fig. 6. Image Pattern Search

While in all the outsourced computation scenarios, both the response time
and the energy consumption are reduced, the reduction when the program is
outsourced to the nearby residential computers is more pronounced than when
the program is outsourced to EC2: on the residential computer, the response time
is about 13.37 seconds and 14.52 seconds without or with the data transferred.
Correspondingly, the energy consumed is only about 10% and 11%, respectively,
when the computation is outsourced to nearby residential computers without or
with the data transferred respectively.

When there is node failure, Figure 6 shows that both the response time
and the energy consumption increases by 40% and 136% compared to their
counterpart without any node failure. These results are still much better than
those when outsourcing to EC2.

Summary: The experimental results show that while computation is out-
sourced to local residential computers, the overall performance is better than
when the computation is outsourced to EC2, though EC2 is much more power-
ful than nearby residential computers in terms of the CPU speed. The average
gain for the response time is about 8 times and 3 times compared to if the
computation is executed on Android or outsourced to EC2. The corresponding
energy reduction is 10 times and 4 times, respectively.

We also note that EC2 performs the worse than on-device execution in Text

Searching but performs better in the other two applications. This is due to
the nature of the applications. Face Recognition and Image Pattern Searching

applications are more CPU intensive than Text Searching. Thus, even executing
on Android is faster than outsourcing to EC2, where data transferring becomes
a dominant factor.

Note that the above results are case studies because a different user who has
a different distance to EC2 or have conducted experiments on EC2 at different
times or have conducted experiments with different applications with different
data size and bandwidth may have different results.

Mobile Application Outsourcing 13

6 Related Work

Outsourcing computing tasks from mobile devices to powerful computing re-
sources, also referred to as remote execution, has been researched for over a
decade [7, 12, 15, 8]. The increasingly popular and pervasive usage of mobile
devices makes this imperative. To outsource the computation, two classes of ap-
proaches have been studied. The first is to create the computing environment
without modifying the applications. For example, work [9] proposes a full virtual
machine clone technique that can enable the applications to be run without any
modification on the cloud. This approach, however, has to consider the signifi-
cant overhead of cloning the mobile environment, which may be expensive and
delay the computing process, whether on the public computing clouds or nearby
surrogate computers [16].

Instead of cloning the computing environment, the second approach is to
partition the job between the mobile device and external computing resources [7,
8, 10]. Many of existing studies mainly aim to simplify such a process. Balan
et al. [7, 8] propose to augment the computation and storage capabilities of
mobile devices by exploiting the nearby (surrogate) computers. Rudenko et al.
[15] suggests that if the total energy cost of sending the task else where and
receiving the result back is lower than the cost of running it locally, then remote
process execution can save battery power. Flinn et al. [12] also propose a similar
idea, in which remote execution simultaneously leverages the mobility of mobile
devices and the richer resources of large devices. Studies [17, 10] demonstrate the
ability to partition the application and associate classes and thus outsourcing
them. MAUI [11] is recently proposed to partition the program dynamically and
submit it on surrogate computers.

Nevertheless, there is little research on where mobile applications should be
outsourced. We consider this problem because the response time and the battery
power consumption are critical to mobile users in motion. In addition, RoseMic
leverages the idle CPU cycle and bandwidth sharing to assist mobile application
outsourcing on the road. This is different from SETI@home [6] and BONIC [1],
where participants purely voluntarily contribute their CPU cycles to a scientific
problem. In RoseMic, participants share CPU and bandwidth with each other
in a P2P fashion in order to get services.

7 Conclusion

The pervasive usage of mobile devices demands a flexible and effective compu-
tation outsourcing mechanism. While a lot of work has been conducted on job
partitioning/outsourcing, in this study, we have investigated the effectiveness
of outsourcing to nearby residential computers, particularly for delay-sensitive
applications. To reduce the user response time and the energy consumption on
mobile devices, we have designed a framework RoseMic to effectively support
mobile computation outsourcing. We have experimented with several applica-
tions and our preliminary results show that our approach can more effectively
improve the user response time and reduce the energy consumption on mobile
devices than outsourcing to public clouds.

14 Mohammed Anowarul Hassan and Songqing Chen

8 Acknowledgement

We appreciate constructive comments from anonymous referees. The work is
partially supported by US NSF under grant CNS-0746649 and and AFOSR
under grant FA9550-09-1-0071.

References

1. Boinc. http://boinc.berkeley.edu/.
2. Cross Correlation . http://en.wikipedia.org/wiki/Cross-correlation.
3. Google Geolocation Service. http://code.google.com/p/gears/wiki/GeolocationAPI.
4. International Data Corporation : Press Release 28 Jan and 4 Feb, 2010.

http://www.idc.com/.
5. Power Tutor. http://ziyang.eecs.umich.edu/projects/powertutor/index.html.
6. Seti Home. http://setiathome.berkeley.edu/.
7. Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen, and Hen-

I Yang. The case of cyber foraging. In Proceedings of the 10th ACM SIGOPS
European Workshop, Saint-Emilion, France, July 2002.

8. Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan, and James Herb-
sleb. Simplifying cyber foraging for mobile devices. In Proceedings of The 5th In-
ternational Conference on Mobile Systems, Applications, and Services (MobiSys),
San Juan, Puerto Rico, June 2007.

9. Byung Gon Chun and Petros Maniatis. Augmented smartphone applications
through clone cloud execution. In Proceedings of the 12th Workshop on Hot Topics
in Operating Systems (HotOS), Monte Verit, Switzerland, May 2009.

10. Byung Gon Chun and Petros Maniatis. Dynamically partitioning applications
between weak devices and clouds. In Proceedings of ACM Workshop on Mobile
Cloud Computing & Services (MCS), San Francisco, CA, USA, June 2010.

11. Eduardo Cuervo, Aruna Balasubramanian, Dae ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: Making smartphones last
longer with code offload. In Proceedings of The 8th International Conference on
Mobile Systems, Applications, and Services (MobiSys), San Francisco, CA, USA,
June 2010.

12. Jason Flinn, Dushyanth Narayanan, and M. Satyanarayanan. Self-tuned re-mote
execution for pervasive computing. In Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS), Schloss Elmau, Germany, May 2001.

13. J. R. Jain and A. K. Jain. Displacement measurement and its application in
interframe image coding. In IEEE Transactions on Communications, volume 29,
December 1981.

14. Jőrg Ott and Dirk Kutscher. Drive-thru internet: Ieee 802.11b for automobile
users. In Proceedings of IEEE InfoCom, Hong Kong, March 2004.

15. Alexey Rudenko, Peter Reiher, Gerald J. Popek, and Geoffrey H. Kuenning. Saving
portable computer battery power through remote process execution. In Proceedings
of Mobile Computing and Communication Review (MC2R), 1998.

16. Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies. The
case for vm-based cloudlets in mobile computing. In IEEE Pervasive Computing,
volume 8(4), October 2009.

17. K. Nahrstedt X. Gu, A. Messer, I. Greenberg, and D. Milojicic. Adaptive offload-
ing inference for delivering applications in pervasive computing environments. In
Proceedings of IEEE International Conference on Pervasive Computing and Com-
munications(PerCom), Dallas-Fort Worth, Texas, March 2003.

